1. Field of the Invention
The present seal assembly will function when pressured acts on it from two different directions. It is therefore sometimes referred to as a bi-directional seal or a dual energized hydroseal. The present invention can be used in a variety of different types of valves where a dual energized seal assembly is needed, as well as in cases where single-direction control is necessary.
2. Background of the Invention
The dual energized hydroseal includes a seal spool, two O-rings and two opposing seal cups. This bi-directional seal assembly can be used in a dirty fluid valve and a variety of other applications where a bi-directional seal assembly is needed, as well as in cases where a single direction seal assembly is necessary. For purposes of example, the dual energized hydroseal will be described in a dirty fluid valve, which is a type of cartridge valve frequently used in downhole tools. A plurality of dirty fluid valves are positioned in a downhole tool that is used for sampling wellbore fluids. A plurality of empty sample collection bottles are located in the downhole tool. When the tool is inserted in the wellbore, all of the dirty fluid valves are in the closed position as shown in
External pressures in a wellbore often exceed 20,000 psi absolute. After a sample has been collected, a pilot valve is pulsed, causing the seal carrier to move back to the close position as shown in
The present seal assembly will function when pressure acts on it from two different directions. The present invention can be used in a variety of different types of valves. When the seal assembly of the present invention is constructed, the O-rings are squeezed into position and/or compressed approximately 40%. The squeeze of the O-rings causes them to act as springs urging the seal cups into contact with the opposing seal plates. By contrast, O-ring manufacturers such as Parker generally recommend that O-rings be squeezed axially approximately 20%–30% for static seal designs. The present invention is a static seal design. Other O-ring manufacturers, such as Apple, recommend that O-rings be squeezed axially for static seal in the range of approximately 25%–38%. Squeezing the O-rings more than recommended by most manufacturers improves the function in the present invention. The O-rings in the present invention perform a dual function as both the spring and the seal. They act as a spring to force the seal cups into contact with the opposing seal plates, at lower pressures and they act as a seal at higher pressures.
The present invention is rated to operate up to 30,000 psi and 350° F. Gilmore Valve Co., the assignee of the present invention, has previously produced a dirty fluid valve with a bi-directional seal that was rated to operate up to 20,000 psi absolute and 250° F. (see Gilmore Valve Co. drawing No. 25082, a copy of which is enclosed in the Informational Disclosure Statement which is filed concurrently herewith). The present invention uses two compressed O-rings to energize the bi-directional seal. The prior art dirty fluid valve from Gilmore Valve Co. used only one O-ring to energize a bi-directional seal. The prior art O-ring used by Gilmore Valve Co. in the dirty fluid valve shown in drawing No. 25082 was produced by Greene Tweed of Houston, Tex. from Viton® 90 durometer anti-explosive decompressive material. The present invention uses two O-rings produced from Buna-N 90 durometer material. Applicants have determined that a Parker No. 2-004 O-ring is suitable for use in the present invention. The Viton of the prior art is relatively stiff and the Buna-N of the present invention is more resilient. Buna-N has more of a memory and therefore works better than the Viton as a spring. The prior art Gilmore Valve Co. seal, described in drawing No. 25082, although it was bi-directional, loses sealing integrity at operational pressures in excess of 25,000 psi. The present invention is rated to operate up to 30,000 psi. The present invention functions at higher operational pressures because there are two O-rings instead of one, the O-ring material is different than the prior art, the mechanical and hydraulic sealing forces are improved, and the present seal design is less complicated.
U.S. Pat. No. 5,662,166 to Shammai, discloses an apparatus for maintaining at least downhole pressure of a fluid sample of upon retrieval from an earthbore. The Shammai device has a much more complex series of seal than the present invention. Further, the Shammi device does not have a dual-energized seal like the present invention.
U.S. Pat. No. 5,337,822 issued to Massie et al, discloses a wellfluid sampling tool. The Massie device maintains samples at the pressure at which they are obtained until they can be analyzed. The device does not, however, maintain this pressure by means of a dual-energized hydroseal. Rather, the device of Massey uses a hydraulically driven floating piston, powered by high-pressured gas such as nitrogen acting on another floating piston, to maintain sample pressure.
The seal assembly of the present invention uses two O-rings that are squeezed more than 38.5% causing them to act as springs urging the seal cups into sealing engagement at very low pressures with the seal plates and as seals at higher pressures. At higher pressure a seal is achieved because pressure on the rear of the seal cups forces them into sealing engagement with the opposing seal plates. The pressure forces act on the seal cups to achieve a tight metal to metal seal. The bi-directional seal assembly of the present invention is shown in a dirty fluid valve which is positioned in a downhole tool for sampling wellbore fluids. The seal assembly of the present invention can be used in a variety of other types of valves that require bi-directional seal assemblies and in other types of valves that only require a uni-directional seal.
Referring to
The valve 10 has a generally cylindrical body 12 which defines a longitudinal bore 14 which is sized and arranged to receive a seal carrier 16. The seal carrier moves from a normally closed position shown in
The body 12 has threads 18 formed on one end to threadably engage the cap 20. A cylinder cover 22 surrounds a portion of the body 12. The cylinder cover 22 is rotationally held in place on the body by a set screw 24 and longitudinally in place by cap 20.
The body 12 defines an open pilot port 26 which is in fluid communication with an open chamber 28. The body 12 and the cylinder cover 22 define a close pilot port 30 which is in fluid communication with the close chamber 32 which is defined by the longitudinal bore 14 in body 12, the cap 20 and the seal carries 16. The open pilot port 26 is in fluid communication with a pilot open valve, not shown. The close pilot port 30 is in fluid communication with a pilot close valve, not shown. Both pilot valves are connected to a source of pressurized pilot fluid, not shown.
The seal carrier 16 has a transverse bore 34 sized and arrange to receive a bi-directional seal assembly generally identified by the numeral 36. A transverse flow passageway 38 is also formed in the seal carrier 16 to facilitate fluid flow through the valve when it is in the open position.
A bore 40 is formed in the body 12 and is sized and arranged to receive the first seal plate 42. A through bore 44 is formed in the seal plate 42 and is in fluid communication with a supply port 46 formed in the cylinder cover 22.
A bore 48 is formed in the body 12 and is sized and arranged to receive the second seal plate 50. A through bore 52 is formed in the seal plate 50 and is fluid communication with a supply port 54 formed in the cylinder cover 22. For purposes of claim interpretation, the body 12 and the cylinder cover 22 may collectively be referred to as the body, although for manufacturing convenience, they are produced as two separate parts.
When the downhole tool is placed in the wellbore, pressures may reach 30,000 psi, depending on the depth of the well. Wellbore fluids exert this “supply pressure” as indicated by the arrow in
To shift the valve 10 from the closed position of
Referring to
An O-ring groove 104 is formed in the cap 20 and is sized and arranged to receive O-ring 106 which seals the cap 20 against the valve chamber in the downhole tool. A groove 108 is formed in the cylinder cover 22 and is sized and arranged to receive T-seal 110 which seals the cylinder cover 22 against the valve chamber in the downhole tool.
A groove 112 is formed in the body 12 and is sized and arranged to receive T-seal 114. A groove 116 is formed in the body 12 and is sized and arranged to receive T-seal 118. A groove 120 is formed in the body 12 and is sized and arranged to receive T-seal 122. T-seals 114 and 118 seal and isolate the function port 56 against the valve chamber in the downhole tool, not shown. T-seals 118 and 122 seal and isolate the pilot open port against the valve chamber in the downhole tool, not shown.
A groove 124 is formed in the seal carrier 16 and is sized and received to receive an O-ring 126 and a lock-up ring 128. The O-ring 126 and backup ring 128 seal and isolate the open chamber 28 from the other flow passageways in the valve 10.
A groove 130 is found in the other end of the seal carrier 16 and is sized and arranged to receive an O-ring 132 and backup ring 134. The O-ring 132 and backup ring 134 seal and isolate the close chamber 32 from the other flow passageways in the valve 10.
The bi-directional seal assembly generally identified by the numeral 36 is positioned in the transverse bore 36 of seal carrier 16. The seal assembly functions when supply pressure (pressure from wellbore fluids) enters the through bore 44 of first seal plate 42 and the through bore 52 of seal plate 50 and is applied to the seal assembly 36. The seal assembly also functions when function pressure (from the sample collection bottle) enters the longitudinal bore 14, and the transverse bore 34 in the seal carrier 16 and is applied to the seal assembly 36. The seal assembly 36 is therefore referred to as “bi-directional” because it functions when exposed to both supply pressure (pressure from wellbore fluids in the well) and function pressure (pressure from the stored wellbore fluids in the sample collection bottle).
The seal assembly 36 includes a first seal cup 160, a second seal cup 162, a seal spool 164, a first O-ring 166 and a second O-ring 168.
Referring to
Referring to
O-rings are used in two basic applications generally referred to as “static” and “dynamic” by those skilled in the art. The O-rings 166 and 168 in the bi-directional seal assembly 36 are considered as static. In a static seal, the mating gland parts are not subject to relative movement. In the present invention, the transverse bore 34, the seal spool 164, and the seal cups 160 and 162 are nonmoving.
O-ring manufacturers, for example Parker Seals of Parker Hannifin Corp. of Lexington, Ky., generally recommend that some squeeze be applied to O-rings for maximum sealing effectiveness. Squeeze can be either axial or radial. The O-rings 166 and 168 shown in
In the present invention, a Parker No. 2-004 O-ring is suitable for use as O-rings 166 and 168. These O-rings are formed from Buna-N 90 durometer material and the maximum operational temperature suggested by Parker is 350° F. Applicants recommend an axial squeeze of 40% or more. The July 1999 Parker O-ring Handbook Design Chart 4-2, a copy of which is included in the Information Disclosure Statement, filed concurrently herewith recommends an axial squeeze for No. 2-004 through 050 of 19 to 32 percent. Design chart 4-2 is for static O-ring sealing. Other O-ring manufacturers, for example, Apple Rubber Products of Lancaster, N.Y., recommends an axial squeeze for an O-ring with a 0.070 cross-section of between 25.5 and 38.5 percent for a static seal. (See page 17 of the Apple Rubber Products Seal Design Catalog, portions of which are included in the Information Disclosure Statement filed concurrently herewith).
Referring to
Referring to
In
After the valve 10 has been opened and wellbore fluids, sometimes at pressures as much as 20,000 psi are stored in the sample collection bottle, the downhole tool is removed from the hole. At the surface, pressure on the outside of the tool at seal level is one atmosphere, but the pressure in the sample collection bottle will still be at wellbore pressure, perhaps 20,000 psi. For this reason the seal assembly 36 must be bi-directional and be able to seal when function pressure from the sample collection bottle exceeds ambient pressures surrounding the downhole tool.
In
O-rings 166 and 168 are squeezed axially more than the amount recommended by the manufacturers because the O-rings 166 and 168 perform actual purpose. First, the O-rings 166 and 168 act as springs and second, they act as seals. At low pressures, it is important to ensure that first seal cup 160 engages first seal plate 42 at low pressures. Because O-ring 166 is squeezed axially, it exerts force against the seal cup 160 like a spring to ensure contact. However, sealing between seal cup 160 and seal plate 42, at higher pressure, is due to forces exerted on the rear 240 of the seal cup 160 by either supply or function pressure.
Likewise it is important to ensure that second seal cup 162 engages second seal plate 50 at low pressures. Because O-ring 168 is squeezed axially, it exerts force against the seal cup 162 like a spring to ensure contact. However sealing between seal cup 162 and seal plate 50, at higher pressures, is due to forces exerted on the rear 242 of the seal cup 162 by either supply or function pressure.
In
The back-up rings 301 are generally triangularly shaped, having surfaces 320 for engagement with the respective surface 240, 242 of the seal cups 160, 162, respectively. Each of the rings 301 has a second surface 322 for engagement with the surface defining the bore 34. The rings 302 thereby bridge the gap between the seal carrier 16 and the respective seal cups 160, 162. When an O-ring 166, 168 is pressurized or its inner perimeter is moved to an outer or expanded condition as shown in
Each of the O-rings 166, 168 is compressed axially by its respective seal cup 160 and 162 and their respective pair of back-up rings 301, 302 against the collar 202. The collar 202 has generally oppositely facing surfaces that engage the O-rings. The surfaces of the collar 202 engaging the O-rings may be generally normal (0°) to the longitudinal axis of the axle 200 or may be inclined toward the center of the collar 202 at an angle of up to 10°. When the O-rings are compressed between the respective seal cup and collar 202 and their respective back-up rings 301 and 302, the O-rings act not only as seals but as springs urging the seal cups 160, 162 into contact with the opposing seal plates 42 and 52.
The O-rings 166, 168 move radially inwardly and outwardly depending upon the source of pressure. When the source of pressure is in the direction of the arrows seen in
When the seal assembly is exposed to supply pressure, as discussed above, and as seen in
Thus, the seal arrangement shown in the embodiment of
This is a Continuation-in-Part of application Ser. No. 10/017,097 filed Dec. 14, 2001, now U.S. Pat. No. 6,702,024, and entitled Dual Energized Hydroseal.
Number | Name | Date | Kind |
---|---|---|---|
2358228 | Hoof | Sep 1944 | A |
2445505 | Ashton | Jul 1948 | A |
2485504 | Morgan | Oct 1949 | A |
2506111 | Saint | May 1950 | A |
2647810 | McCulstion | Aug 1953 | A |
3654962 | Fredd et al. | Apr 1972 | A |
3917220 | Gilmore | Nov 1975 | A |
4253481 | Sarlls, Jr. | Mar 1981 | A |
4266614 | Fredd | May 1981 | A |
4793590 | Watson | Dec 1988 | A |
4856557 | Watson | Aug 1989 | A |
4903765 | Zunkel | Feb 1990 | A |
5058674 | Schultz et al. | Oct 1991 | A |
5103906 | Schultz et al. | Apr 1992 | A |
5337822 | Massie et al. | Aug 1994 | A |
5410919 | Carpenter et al. | May 1995 | A |
5464036 | Tomkins et al. | Nov 1995 | A |
5662166 | Shammal | Sep 1997 | A |
5771931 | Watson | Jun 1998 | A |
5901749 | Watson | May 1999 | A |
6029744 | Baird | Feb 2000 | A |
6186477 | McCombs et al. | Feb 2001 | B1 |
6702024 | Neugebauer | Mar 2004 | B1 |
20030090067 | Morvant | May 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20040262007 A1 | Dec 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10017097 | Dec 2001 | US |
Child | 10796546 | US |