The present disclosure relates to cam phasers, and more specifically to dual-equal cam phasers with variable overlap.
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
Engine assemblies may include a cam phaser that is coupled to an engine camshaft to adjust timing of intake and/or exhaust valve opening and closing events. Adjusting valve timing based on engine operating conditions may provide increased engine performance, such as increased power output, increased combustion stability, reduced fuel consumption, and/or reduced engine emissions. Modifying the range over which the intake and exhaust cam lobes may be advanced or retarded may provide for increased performance gains.
A cam phaser assembly may include a drive plate assembly, a cavity plate, and a driven plate assembly. The drive plate assembly may include a drive plate and a first vane fixed for rotation with the drive plate. The cavity plate may be rotationally driven by the drive plate and may define first and second chambers. The first vane may extend into the first chamber. The driven plate assembly may be rotationally driven by the drive plate assembly and may include a driven plate and a second vane fixed for rotation with the driven plate that extends into the second chamber.
An engine assembly may include an engine structure, a cam phaser assembly supported on the engine structure, and a concentric camshaft assembly supported on the engine structure. The cam phaser assembly may include a drive plate assembly, a cavity plate, and a driven plate assembly. The drive plate assembly may include a drive plate and a first vane fixed for rotation with the drive plate. The cavity plate may be rotationally driven by the drive plate assembly and may define first and second chambers. The first vane may extend into the first chamber. The driven plate assembly may be rotationally driven by the drive plate assembly and may include a driven plate and a second vane fixed for rotation with the driven plate that extends into the second chamber. The concentric camshaft assembly may include first and second shafts that are rotatable relative to one another. The first shaft may be fixed for rotation with the cavity plate and the second shaft may be fixed for rotation with the driven plate.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.
Referring now to
The intake valve lift mechanisms 22 may each include a pushrod 30 and a rocker arm 32. The exhaust valve lift mechanisms 24 may each include a pushrod 30 and a rocker arm 32 as well. The camshaft 26 may be supported by an engine structure such as an engine block. The pushrods 30 may be engaged with the camshaft 26 to actuate the rocker arms 32 and open the intake and exhaust valves 18, 20. While the engine assembly 10 is illustrated as a pushrod engine assembly, it is understood that the present disclosure may be applicable to a variety of other engine configurations as well, such as overhead cam engines, where the camshaft 26 is supported by a cylinder head.
With reference to
With reference to
The cavity plate 58 may be located axially between the drive plate assembly 56 and the driven plate assembly 60. With additional reference to
The driven plate assembly 60 may include a driven plate 74 and a series of vanes 76. The vanes 76 are shown exploded from the driven plate 74 in
The first shaft 34 may be fixed for rotation with the cavity plate 58 and the second shaft 36 may be fixed for rotation with the driven plate assembly 60. Therefore, when the first set of lobe members 38, 39, 40, 41, 42, 43, 44, 46 form an intake lobe set and the second set of lobe members 48, 49, 50, 51, 52, 53, 54, 55 form an exhaust lobe set, the intake lobe set may be fixed for rotation with the cavity plate 58 and the exhaust lobe set may be fixed for rotation with the driven plate assembly 60. Alternatively, the first shaft 34 may be fixed for rotation with the driven plate assembly 60 and the second shaft 36 may be fixed for rotation with the cavity plate 58.
During operation, pressurized fluid, such as engine oil, may be supplied to the first and second chambers 70, 72 to provide a hydraulic engagement between the vanes 66, 76 and the cavity plate 58. The hydraulic engagement may transfer rotation of the drive plate assembly 56 to the cavity plate 58 and to the driven plate assembly 60 to drive rotation of the camshaft 26. More specifically, the drive plate assembly 56 may drive rotation of the cavity plate 58 and the cavity plate 58 may drive rotation of the driven plate assembly 60. Thus, the drive plate assembly 56 may indirectly drive rotation of the driven plate assembly 60.
Based on the pressurized fluid supplied to the first and second chambers 70, 72, the cavity plate 58 and the driven plate assembly 60 may each be rotated relative to the drive plate assembly 56. More specifically, the cavity plate 58 may be rotated relative to the drive plate assembly 56 based on the pressurized fluid within the first chambers 70 being applied to the vanes 66. The driven plate assembly 60 may rotate with the cavity plate 58. Alternatively, the cavity plate 58 and the driven plate assembly 60 may be rotated relative to one another. The driven plate assembly 60 may be rotated relative to the cavity plate 58 based on the pressurized fluid within the second chambers 72 being applied to the vanes 76.
Therefore, since the first and second shafts 34, 36 may be fixed for rotation with the cavity plate 58 and the driven plate assembly 60, each of the first and second shafts 34, 36 may be rotatable relative to the drive plate assembly 56. Additionally, due to the engagement between the driven plate assembly 60 and the cavity plate 58, rotation of the cavity plate 58 relative to the drive plate assembly 56 may result in rotation of the driven plate assembly 60 relative to the drive plate assembly 56. In the arrangement where the exhaust cam lobe set is fixed for rotation with the driven plate assembly 60 and the intake lobe set is fixed for rotation with the cavity plate 58, the exhaust cam lobe set may be rotatable relative to the drive plate assembly 56 and the cavity plate 58 to the same degree as the driven plate assembly 60. The intake cam lobe set may be rotatable relative to the drive plate assembly 56 to the same degree as the cavity plate 58.