This invention generally relates to a dual exhaust system for a vehicle including at least one valve within each exhaust path wherein the valves are controlled independently of each other.
A dual exhaust system, which is typical for V8 or V6 engines, includes two parallel exhaust paths with a local interconnection that links the exhaust paths together. In a standard configuration, one exhaust path is associated with one set of engine cylinders (one set of 3 (V6) or 4 (V8) cylinders) and the other exhaust path is associated with the other set of engine cylinders (the other 3 (V6) or 4 (V8) cylinders). Each exhaust path extends from the respective set of cylinders at the engine to a separate muffler, i.e. each exhaust path extends to its own muffler. Exhaust gases exit the system through one or more outlet tailpipes. The local interconnection between the two exhaust paths is typically a balance pipe that is used to link the two paths together at a position upstream of the mufflers.
In some configurations, each exhaust path has a valve that is used to vary exhaust flow for acoustic purposes and/or for operating efficiency of the exhaust system or engine. One valve is associated with each exhaust path. The valves are of the same design and are controlled together. This type of configuration does not effectively operate to provide sufficient noise control for varying applications.
A dual exhaust system includes first and second exhaust paths that are different from each other. Each exhaust path has at least one valve that is operated independently of the other to vary exhaust flow and provide sufficient noise control for varying applications.
In one example, a first exhaust component defines the first exhaust path and a second exhaust component defines the second exhaust path. The first and second exhaust paths can be symmetrical or asymmetrical relative to each other. A first valve is positioned within the first exhaust path and a second valve is positioned within the second exhaust path. The first and second exhaust valves are independently operable of each other.
At least one of the first and second valves is an actively controlled valve. In one example, one of the first and second valves comprises an actively controlled valve and the other of the first and second valves comprises a passive valve. In another example, both the first and second valves comprise actively controlled valves. The actively controlled valves can comprise continuously variable position valves moveable between an infinite number of positions and/or can comprise valves that are movable between a discrete number of positions.
In one example, a controller is associated with the actively controlled valves and is used to control movement between various operational positions. In certain applications, the controller identifies when an engine is operating in a full operational mode with all engine cylinders being operational or in a deactivated mode where a reduced number of engine cylinders are operational. In one example, the controller is configured to actively vary valve position in full and deactivated modes to influence sound quality in addition to controlling a balance of sound attenuation versus noise reduction when operating in a deactivated mode.
These and other features of the present invention can be best understood from the following specification and drawings, the following of which is a brief description.
A conventional dual exhaust system 10 is shown in
A first set of exhaust pipes 24 of the first exhaust path 20 extend from the engine 12 to a first muffler 26. A second set of exhaust pipes 28 of the second exhaust path 22 extend from the engine to a second muffler 30. The first muffler 26 includes at least one tailpipe 32 and the second muffler 30 includes at least one tailpipe 34. An interconnection pipe 38 connects the first 20 and second 22 exhaust paths.
In the example of
A more effective dual exhaust system 40, which provides an improved sound quality, is shown in
A first set of exhaust pipes 54 of the first exhaust path 50 extend from the engine 42 to a first muffler 56. A second set of exhaust pipes 58 of the second exhaust path 52 extend from the engine 42 to a second muffler 60. The first muffler 56 includes at least one tailpipe 62 and the second muffler 60 includes at least one tailpipe 64; however each muffler could also include an additional tailpipe or tailpipes. Further, it should be understood that additional exhaust components could be connected to the first 54 or second 58 sets of exhaust pipes and located along the first and/or second exhaust paths. An interconnection pipe 68 connects the first 50 and second 52 exhaust paths at a location upstream of the first 56 and second 60 mufflers. The interconnection pipe 68 is also referred to as a balance pipe.
A first valve 70 is associated with the first exhaust path 50 and a second valve 72 is associated with the second exhaust path 52. At least one of the first 70 and second 72 valves comprises an actively controlled valve. The other of the first 70 and second 72 valves can comprise either an actively or passively controlled valve depending upon the application. A controller 80 is associated with the actively controlled valves and generates control signals that control movement between various operational positions, which include at least an open position and a closed position. In the example shown in
In one example shown in
The controller 80 generates a first control signal 74 that controls operation of the first valve 70 and generates a second control signal 76 that controls operation of the second valve 72. The controller 80 generates the control signals 74, 76 to control movement and position of the first valve 70 independent of the second valve 72. The controller 80 can generate the control signals 74, 76 simultaneously or sequentially; however, in either situation, the first control signal 76 moves the first valve 70 to a desired position that is independent of a position of the second valve 72 and the second control signal 78 moves the second valve 72 to a desired position that is independent of the position of the first valve 70. The controller 80 independently operates position/movement of the first 70 and second 72 valves from each other to provide optimization of sound quality.
In another example, one of the first 70 and second 72 valves in
In another example shown in
A first set of exhaust pipes 154 of the first exhaust path 150 extend from the engine 142 to a first muffler 156. A second set of exhaust pipes 158 of the second exhaust path 152 extend from the engine 142 to a second muffler 160. The first muffler 156 includes at least one tailpipe 162 and the second muffler 160 includes at least one tailpipe 164; however each muffler could also include an additional tailpipe. Further, it should be understood that additional exhaust components could be connected to the first 154 or second 158 sets of pipes and located along the first and/or second exhaust paths.
In the example shown in
A first valve 170 is associated with the first exhaust path 150 and a second valve 172 is associated with the second exhaust path 152. At least one of the first 170 and second 172 valves comprises an actively controlled valve. The other of the first 170 and second 172 valves can comprise either an actively or passively controlled valve (see
A controller 180 is associated with the actively controlled valves and is used to control movement between various operational positions, which include at least an open position and a closed position. In the example shown in
In one example, the first valve 170 in the primary exhaust path 150 comprises an actively controlled valve, such as a throttling continuously variable position valve for example, while the second valve 172 in the secondary exhaust path 152 comprises an actively controlled valve that is moveable between a discrete number of positions. The controller generates control signals 174, 176 to control movement/position of each valve independent of a position of the other valve. In one example configuration, the first valve 170 controls exhaust noise levels vs. restriction while the second valve 172 can be moved to open and close the secondary exhaust path 152 for increased flow and modulated exhaust sound.
An application of the asymmetrical valve layout such as that of
The controller 180 can be incorporated as part of an engine control unit (ECU) that controls the operation of the engine in either the full or deactivated operational mode, or can comprise a separate controller 180 receives input from the ECU. In either configuration, the controller 180 can identify which operational mode the engine is operating in and can subsequently control a position of one or more of the valve(s) 170, 172 as needed to optimize sound quality.
In one example, the position of the continuously variable valve can be varied in full and deactivated modes to influence sound quality, and can beneficially control balance of sound attenuation vs. noise reduction in the cylinder deactivation mode. The second valve 172 is open in full cylinder operation such that exhaust gas flow can pass down both inter-pipes as would occur in a conventional parallel/symmetrical V8 system. The second valve 172 is closed for reduced cylinder operation, e.g. cylinder deactivation mode, where all flow must flow through the inter-pipe of the primary exhaust path.
It should be understood that while a V8 engine is shown, the subject exhaust system could also be used with other engines having different cylinder configurations, such as a V6 configuration for example. Further, the above described method of control is just one example of a control strategy, and other control strategies could also be used.
In one example, active control of the electrically actuated valves is based on the concept of providing improved fuel economy without adversely affecting noise levels. Such a control configuration is set forth in U.S. application Ser. No. 12/195,759 filed on Aug. 21, 2008, and which is owned by the owner of the present application and herein incorporated by reference.
Although a preferred embodiment of this invention has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.
This application claims priority to U.S. Provisional Application No. 61/090,676, which was filed on Aug. 21, 2008.
Number | Date | Country | |
---|---|---|---|
61090676 | Aug 2008 | US |