Dual-flange prosthetic valve frame

Information

  • Patent Grant
  • 11730596
  • Patent Number
    11,730,596
  • Date Filed
    Friday, December 18, 2020
    4 years ago
  • Date Issued
    Tuesday, August 22, 2023
    a year ago
Abstract
A method of replacing the function of a native heart valve is achieved by inserting a distal end portion of a delivery apparatus into a patient's body, wherein a prosthetic valve is disposed along the distal end portion of the delivery apparatus. The prosthetic valve includes a collapsible and expandable annular body having a network of struts interconnected at a plurality of nodes to form a plurality of open cells. Atrial and ventricular flanges are coupled to the annular body and extend radially away from the annular body. The annular body includes three commissure support posts of fixed length that extend substantially the entire length of the annular body. A valve member is secured to the commissure support posts. The annular body is radially expanded within the native heart valve and the atrial and ventricular flanges are deployed on opposite sides of the native heart valve.
Description
FIELD

The present disclosure relates to implantable devices and, more particularly, to prosthetic valves for implantation into body ducts, such as native-heart-valve annuluses.


BACKGROUND

The human heart can suffer from various valvular diseases, which can result in significant malfunctioning of the heart and ultimately require replacement of the native heart valve with an artificial valve. There are a number of known artificial valves and a number of known methods of implanting these artificial valves in humans.


One method of implanting an artificial heart valve in a human patient is via open-chest surgery, during which the patient's heart is stopped and the patient is placed on cardiopulmonary bypass (using a so-called “heart-lung machine”). In one common surgical procedure, the diseased native valve leaflets are excised and a prosthetic valve is sutured to the surrounding tissue at the native valve annulus. Because of the trauma associated with the procedure and the attendant duration of extracorporeal blood circulation, some patients do not survive the surgical procedure or die shortly thereafter. It is well known that the risk to the patient increases with the amount of time required on extracorporeal circulation. Due to these risks, a substantial number of patients with defective native valves are deemed inoperable because their condition is too frail to withstand the procedure.


Because of the drawbacks associated with conventional open-chest surgery, percutaneous and minimally-invasive surgical approaches are in some cases preferred. In one such technique, a prosthetic valve is configured to be implanted in a much less invasive procedure by way of catheterization. For instance, U.S. Pat. Nos. 7,393,360, 7,510,575, and 7,993,394 describe collapsible transcatheter prosthetic heart valves that can be percutaneously introduced in a compressed state on a catheter and expanded to a functional size at the desired position by balloon inflation or by utilization of a self-expanding frame or stent.


SUMMARY

In some embodiments, an implantable prosthetic valve comprises a radially collapsible and radially expandable, annular, main body defining a lumen therethrough, a first flange coupled to the main body and extending radially away from the main body, the first flange comprising a plurality of radially extending first protrusions, a second flange coupled to the main body and extending radially away from the main body, the second flange comprising a plurality of radially extending second protrusions, and a valve member supported within the lumen of the frame, wherein the first flange and the second flange are closer to one another when the main body is in a radially expanded configuration than when the main body is in a radially collapsed configuration, and wherein each of the first protrusions and each of the second protrusions comprise a first radial strut coupled to a first node of the main body and extending radially away from the main body, a second radial strut coupled to a second node of the main body and extending radially away from the main body, a first angled strut coupled at an angle to the first radial strut, and a second angled strut coupled at an angle to the second radial strut and coupled to the first angled strut.


In some embodiments, the valve member defines an inlet end and an outlet end of the implantable prosthetic valve, and the first flange and the second flange are coupled to the main body at locations located closer to the inlet end than to the outlet end of the implantable prosthetic valve. In some embodiments, the valve member defines an inlet end and an outlet end of the implantable prosthetic valve, and the first flange and the second flange are coupled to the main body at locations located closer to the outlet end than to the inlet end of the implantable prosthetic valve. In some embodiments, the distance between the first flange and the second flange when the prosthetic valve is in the radially collapsed configuration is larger than the thickness of the native human mitral valve annulus, and the distance between the first flange and the second flange when the prosthetic valve is in the radially expanded configuration is smaller than the thickness of the native human mitral valve annulus. In some embodiments, the first protrusions are angularly offset from the second protrusions.


In some embodiments, the main body has a first end and a second end, and comprises a network of struts interconnected at a plurality of nodes to form a plurality of open cells; the first protrusions are coupled to first nodes of the main body at the first end of the main body; and the second protrusions are coupled to second nodes of the main body, which are displaced toward the second end of the main body from the first end of the main body by the smallest increment available. In some embodiments, the main body has a first end and a second end, and comprises a network of struts interconnected at a plurality of nodes to form a plurality of open cells; the first protrusions are coupled to first nodes of the main body at the first end of the main body; and the second protrusions are coupled to second nodes of the main body, the second nodes being the closest nodes in the network of struts to the first nodes. In some embodiments, the main body has a first end and a second end, and comprises a network of struts interconnected at a plurality of nodes to form a plurality of open cells; the first protrusions are coupled to first nodes of the main body at the first end of the main body; and the second protrusions are coupled to second nodes of the main body, the first nodes and the second nodes being situated in a single circumferential row of open cells.


In some embodiments, the first flange extends radially away from the main body such that an angle between a side of the main body and the first flange is between about 70° and about 110°, and the second flange extends radially away from the main body such that an angle between a side of the main body and the second flange is between about 70° and about 110°. In some embodiments, the first flange extends radially away from the main body such that an angle between a side of the main body and the first flange is between about 80° and about 100°, and the second flange extends radially away from the main body such that an angle between a side of the main body and the second flange is between about 80° and about 100°. In some embodiments, the first flange extends radially away from the main body such that an angle between a side of the main body and the first flange is about 90°, and the second flange extends radially away from the main body such that an angle between a side of the main body and the second flange is about 90°.


In some embodiments, the first flange extends radially away from the main body parallel to the second flange. In some embodiments, the first flange and the second flange extend radially away from the main body in directions converging toward one another such that an angle between the radially extending flanges is less than about 10°. In some embodiments, the first flange and the second flange extend radially away from the main body in directions diverging away from one another such that an angle between the radially extending flanges is less than about 10°.


In some embodiments, a method of implanting a prosthetic apparatus at the native mitral valve region of a heart comprises delivering the prosthetic apparatus to the native mitral valve region within a delivery apparatus, and deploying the prosthetic apparatus from the delivery apparatus, wherein the prosthetic apparatus comprises a main body, a first flange coupled to the main body and extending radially away from the main body perpendicular to a side of the main body, and a second flange coupled to the main body and extending radially away from the main body perpendicular to the side of the main body, and wherein deploying the prosthetic apparatus from the delivery apparatus allows the prosthetic apparatus to radially expand, such that a distance between the first flange and the second flange decreases and the first flange and the second flange pinch a native mitral valve annulus between them.


In some embodiments, the prosthetic apparatus has an inlet end and an outlet end, and the first flange and the second flange are coupled to the main body at locations located closer to the inlet end than to the outlet end of the prosthetic apparatus. In some embodiments, the prosthetic apparatus has an inlet end and an outlet end, and the first flange and the second flange are coupled to the main body at locations located closer to the outlet end than to the inlet end of the prosthetic apparatus. In some embodiments, the main body has a first end and a second end, and comprises a network of struts interconnected at a plurality of nodes to form a plurality of open cells; the first flange is coupled to first nodes of the main body at the first end of the main body; and the second flange is coupled to second nodes of the main body, which are displaced toward the second end of the main body from the first end of the main body by the smallest increment available. In some embodiments, the main body has a first end and a second end, and comprises a network of struts interconnected at a plurality of nodes to form a plurality of open cells; the first flange is coupled to first nodes of the main body at the first end of the main body; and the second flange is coupled to second nodes of the main body, the second nodes being the closest nodes in the network of struts to the first nodes. In some embodiments, the main body has a first end and a second end, and comprises a network of struts interconnected at a plurality of nodes to form a plurality of open cells; the first flange is coupled to first nodes of the main body at the first end of the main body; and the second flange is coupled to second nodes of the main body, the first nodes and the second nodes being situated in a single circumferential row of open cells.


The foregoing and other objects, features, and advantages of the invention will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates an exemplary prosthetic heart valve frame.



FIG. 2 illustrates the exemplary prosthetic heart valve frame of FIG. 1 from a different angle.



FIG. 3 illustrates the exemplary prosthetic heart valve frame of FIG. 1 from a ventricular end view.



FIG. 4 illustrates an exemplary prosthetic heart valve frame, in an expanded configuration, from a side view.



FIG. 5 illustrates the exemplary prosthetic heart valve frame of FIG. 4, in a compressed configuration, from a side view.



FIG. 6 illustrates the exemplary prosthetic heart valve frame of FIG. 4, in an expanded configuration, from an end view.



FIG. 7 illustrates the exemplary prosthetic heart valve frame of FIG. 4, in a compressed configuration, from an end view.



FIG. 8 illustrates an outer sheath of an exemplary delivery system.



FIG. 9 illustrates a slotted sheath of an exemplary delivery system.



FIG. 10 illustrates a nosecone of an exemplary delivery system.



FIG. 11 illustrates an inner pusher shaft of an exemplary delivery system.



FIGS. 12A, 13A, 14A, 15A, and 16A illustrate an exemplary delivery sequence of an exemplary prosthetic heart valve frame using the delivery system of FIGS. 8-11.



FIGS. 12B, 13B, 14B, 15B, and 16B illustrate an exemplary delivery sequence of an exemplary prosthetic heart valve frame.



FIG. 17A illustrates a slotted sheath having a retaining element.



FIGS. 17B-17C illustrate an alternative retaining element.



FIGS. 17D-17E illustrate another alternative retaining element.



FIG. 18 illustrates a transventricular delivery approach.



FIG. 19 illustrates a transfemoral delivery approach.



FIG. 20 illustrates a transseptal delivery approach.



FIG. 21 illustrates a transatrial delivery approach.





DETAILED DESCRIPTION

Frames for Use in Prosthetic Valves


The frames described herein can be used to provide structure to prosthetic valves designed to be implanted within the vasculature of a patient. The frames described herein can be particularly advantageous for use in prosthetic valves to be implanted within a patient's native mitral valve, but can be used in prosthetic valves to be implanted in various other portions of a patient's vasculature (e.g., another native valve of the heart, or various other ducts or orifices of the patient's body). When implanted, the frames described herein can provide structural support to a leaflet structure and/or other components of a prosthetic valve such that the prosthetic valve can function as a replacement for a native valve, allowing fluid to flow in one direction through the prosthetic valve from an inlet end to an outlet end, but not in the other or opposite direction from the outlet end to the inlet end. Details of various prosthetic valve components can be found in U.S. Pat. Nos. 6,730,118, 7,393,360, 7,510,575, and 7,993,394, which are hereby incorporated herein by reference in their entireties.


The frames described herein can be configured to be radially collapsible to a collapsed or crimped state for introduction into the body on a delivery catheter and radially expandable to an expanded state for implanting a prosthetic valve at a desired location in the body (e.g., the native mitral valve). The frames can be made of a plastically-expandable material that permits crimping of the prosthetic valve to a smaller profile for delivery and expansion of the prosthetic valve using an expansion device such as the balloon of a balloon catheter. Suitable plastically-expandable materials that can be used to form the frames include, without limitation, stainless steel, cobalt-chromium, nickel-based alloy (e.g., a nickel-cobalt-chromium alloy), polymers, or combinations thereof. In particular embodiments, the frames are made of a nickel-cobalt-chromium-molybdenum alloy, such as MP35N® alloy (SPS Technologies), which is equivalent to UNS R30035 (covered by ASTM F562-02). MP35N® alloy/UNS R30035 comprises 35% nickel, 35% cobalt, 20% chromium, and 10% molybdenum, by weight. It has been found that the use of MP35N® alloy to form a frame provides superior structural results over stainless steel. In particular, when MP35N® alloy is used as the frame material, less material is needed to achieve the same or better performance in radial and crush force resistance, fatigue resistances, and corrosion resistance. Moreover, since less material is required, the crimped profile of the frames can be reduced, thereby providing a lower profile prosthetic valve assembly for percutaneous delivery to the treatment location in the patient's body.


Alternatively, any of the frames described herein can be a so-called self-expanding frame wherein the frame is made of a self-expanding material such as nitinol. A prosthetic valve incorporating a self-expanding frame can be crimped to a smaller profile and held in the crimped state with a restraining device such as a sheath covering the prosthetic valve. When the prosthetic valve is positioned at or near a target site within the patient's vasculature, the restraining device can be removed to allow the prosthetic valve to self-expand to its expanded, functional size.



FIGS. 1-3 illustrate an exemplary prosthetic heart valve frame 100. Frame 100 includes a main body 102, a first flange 104, and a second flange 106. The main body 102 can be formed from a plurality of struts 108 coupled to one another at a plurality of nodes 110 to form a network of struts 108 defining a plurality of open cells 112. The cells 112 are arranged to form a plurality of rows of open cells including a first circumferentially extending row of cells defining an inlet end of the main body and a second circumferentially extending row of cells defining an outlet end of the main body. The main body 102 can have a first end portion 118, which can be referred to as an atrial end portion 118 or an inlet end portion 118, and a second end portion 120, which can be referred to as a ventricular end portion 120 or an outlet end portion 120, and can include three commissure attachment posts 114, each including a plurality of openings 116 to allow other components such as prosthetic valve leaflets to be coupled (e.g., stitched) to the frame 100. Each commissure attachment post, or commissure support post, can extend from the first row of cells to the second row of cells. Suitable components and methods for coupling the other components to the frame 100 are known in the art. The first flange 104 can be referred to as the atrial flange 104, and the second flange 106 can be referred to as the ventricular flange 106, due to their relative locations with respect to one another and the left atrium and the left ventricle when the frame is implanted in the native mitral valve.


In an alternative embodiment, the first end portion 118 is a ventricular, outlet end portion, the second end portion 120 is an atrial, inlet end portion, the first flange 104 is a ventricular flange, and the second flange 106 is an atrial flange 106.


The main body 102 and flanges 104, 106 have generally circular shapes in the illustrated embodiment. In alternative embodiments, the main body and flanges of a prosthetic mitral valve frame can have non-circular shapes, for example, to accommodate the non-circular shape of the native mitral valve annulus. In certain embodiments, the main body and flanges of a prosthetic mitral valve frame can be generally oval-shaped, ellipse-shaped, kidney-shaped, or D-shaped.


In the illustrated embodiment, the atrial flange 104 and the ventricular flange 106 are coupled to the main body 102 at respective locations located nearer to the atrial end 118 of the main body 102 than to the ventricular end 120. More specifically, the atrial flange 104 is coupled to the nodes 110A of the main body 102 which are closest to the atrial end portion 118 of the main body 102. The ventricular flange 106 is coupled to the nodes 110B of the main body 102 which are displaced toward the ventricular end 120 of the main body 102 from the atrial flange 104 by the smallest increment available. That is, the nodes 110B are the closest nodes 110 in the network of struts 108 to the nodes 110A. In other embodiments, the nodes 110B are not the closest nodes 110 to the nodes 110A, for example, the second closest or third closest nodes, or another set of nodes. In alternative embodiments, the atrial and ventricular flanges 104, 106 can be coupled to the main body 102 at any suitable locations, which need not be at nodes 110. For example, one or both of the flanges 104, 106 can be coupled to the mid-points of struts 108 of the main body 102 rather than to nodes 110.


As shown in FIG. 3, in the illustrated configuration, the atrial flange 104 comprises nine atrial protrusions 122, and the ventricular flange 106 comprises nine ventricular protrusions 124. In alternative embodiments, the atrial flange can comprise more than or fewer than nine atrial protrusions and the ventricular flange can comprise more than or fewer than nine ventricular protrusions. In some embodiments, the atrial and/or the ventricular flange can include at least three, at least four, at least five, at least six, at least seven, at least eight, at least nine, at least ten, at least twelve, at least fifteen, or at least twenty protrusions. In the illustrated embodiment, the atrial protrusions 122 are slightly larger than the ventricular protrusions 124. In alternative embodiments, the protrusions 122, 124 can be about the same size, or the ventricular protrusions 124 can be larger than the atrial protrusions 122. In the illustrated embodiment, the atrial protrusions 122 are angularly offset from the ventricular protrusions 124. In alternative embodiments, the protrusions 122, 124 can be angularly aligned with one another. Other embodiments include at least one set of protrusions 122, 124 that is angularly aligned and at least one set of protrusions 122, 124 that is not angularly aligned. Each atrial protrusion 122 comprises a first radial strut 126 coupled to a node 110A (FIG. 1) and extending radially outward from the main body 102, and a second radial strut 128 coupled to a node 110A and extending radially outward from the main body 102. Each protrusion 122 further comprises a first angled strut 130 coupled to the first radial strut 126 at a node 132, and a second angled strut 134 coupled to the second radial strut 128 at a node 136. Each first angled strut 130 is coupled to each second angled strut 134 at a respective radial node 138.


Each ventricular protrusion 124 similarly comprises a first radial strut 140 coupled to a node 110B (FIG. 1) and extending radially outward from the main body 102, and a second radial strut 142 coupled to a node 110B and extending radially outward from the main body 102. Each protrusion 124 further comprises a first angled strut 144 coupled to the first radial strut 140 at a node 146, and a second angled strut 148 coupled to the second radial strut 142 at a node 150. Each first angled strut 144 is coupled to each second angled strut 148 at a respective radial node 152. Thus, the protrusions 122 and 124 each comprise a series of struts forming a loop coupled to and extending radially away from the main body 102.


The nodes 138 and 152 of the protrusions 122 and 124, respectively, comprise generally U-shaped crown structures or crown portions. Crown structures can each include a horizontal portion extending between and connecting the adjacent ends of the struts such that a gap is defined between the adjacent ends and the crown structure connects the adjacent ends at a location offset from the struts' natural point of intersection. The nodes 132 and 136, and 146 and 150 of the protrusions 122 and 124, respectively, also comprise stepped portions that are shaped to connect the adjacent ends of the struts at a location offset from the struts' natural point of intersection. Crown structures and stepped portions, both individually and in combination, can significantly reduce strain on the frame 100 during crimping and expanding of the frame 100. Further details regarding crown structures are available in U.S. Pat. No. 7,993,394.


Also shown in FIG. 3 are three prosthetic valve leaflets 154 coupled to the frame 100 at the commissure attachment posts 114. FIG. 3 also illustrates that a prosthetic valve can include a first fabric layer 156 covering the ventricular protrusions 124 and a second fabric layer 158 covering the atrial protrusions 122, as well as a third fabric layer 160 covering the main body 102 of the frame 100. The fabric layers can improve the seal formed between the prosthetic valve and the surrounding native tissues of a native heart valve when the prosthetic valve is implanted. The fabric layers 156, 158, 160 can also reduce trauma to native tissues caused by the implantation of the prosthetic valve, and can help to promote tissue ingrowth into the prosthetic valve. The fabric layers 156, 158, 160 can be made from any of various suitable fabrics, including polyethylene terephthalate (PET).


In the illustrated embodiment, the commissure attachment posts 114 are coupled to radial struts 140, 142 of ventricular protrusions 124, but not to radial struts 126, 128 of atrial protrusions 122. Also in the illustrated embodiment, the commissure attachment posts 114 are angularly aligned about a central longitudinal axis of the frame 100 with radial nodes 138 of atrial protrusions 122, but not with radial nodes 152 of ventricular protrusions 124. In alternative embodiments, the commissure attachment posts 114 can be coupled to radial struts 126, 128 of atrial protrusions 122, and angularly aligned about the central longitudinal axis with radial nodes 152 of ventricular protrusions 124.


As explained above, a prosthetic valve frame can be radially collapsible to a collapsed or crimped state for introduction into the body, and radially expandable to an expanded state for implantation at a desired location in the body. FIGS. 4-7 illustrate a frame 200 from side views (FIGS. 4 and 5) and atrial end views (FIGS. 6 and 7) with a main body 202 of the frame 200 in expanded (FIGS. 4 and 6) and crimped (FIGS. 5 and 7) configurations. Frame 200 includes main body 202, an atrial flange 204, and a ventricular flange 206. The main body 202 has a diameter D1 in the expanded configuration and a diameter D2 in the crimped configuration. The flanges 204, 206 have a diameter or width W1 in the expanded configuration of the main body and a diameter or width W2 in the crimped configuration of the main body. In the illustrated embodiments, the flanges 204, 206 have the same widths W1 and W2; as discussed above, in other embodiments, the flanges 204, 206 have different widths. The flanges 204, 206 are spaced apart from one another by a spacing S1 in the expanded configuration and by a spacing S2 in the crimped configuration.


In some embodiments, S1 can be between about 2 mm and about 20 mm, with about 6 mm being one possible specific dimension. In some embodiments, S2 can be between about 4 mm and about 30 mm, with about 12 mm being one possible specific dimension. In some embodiments, W1 can be between about 30 mm and about 75 mm, with about 55 mm being one possible specific dimension. In some embodiments, W2 can be between about 10 mm and about 60 mm, with about 45 mm being one possible specific dimension. In some embodiments, D1 can be between about 25 mm and about 50 mm, with about 29 mm being one possible specific dimension. In some embodiments, D2 can be between about 4 mm and about 10 mm, with about 6.5 mm being one possible specific dimension.


As illustrated in FIGS. 4-7, as the main body of the frame 200 collapses from the expanded configuration to the crimped configuration, the diameter of the main body 202 decreases significantly (from D1 to D2), the width of the flanges 204, 206 decreases (from W1 to W2), and the spacing between the flanges 204, 206 increases (from S1 to S2). Further, as the main body of the frame 200 collapses from the expanded configuration to the crimped configuration, the protrusions making up the flanges 204, 206 are compressed angularly such that they transition from a series of relatively wide-and-short radially-extending protrusions to a series of relatively narrow-and-long radially-extending protrusions. As shown in FIGS. 4, 5, and 6, an angle between the main body 202 and the radially extending flanges 204, 206 can be about 90° so that a tip of each of the atrial protrusions of the atrial flange 204 points in a direction that is substantially orthogonal to a central axis of the body and a tip of each of the ventricular protrusions of the ventricular flange 206 points in a direction that is substantially orthogonal to the central axis of the body. In alternative embodiments, an angle between the side of the main body 202 and the radially extending flanges 204, 206, can be between about 80° and about 100°, or between about 70° and about 110°, or between about 60° and about 120°.


As shown in FIGS. 4 and 5, the radially extending flanges 204, 206 can extend away from the main body 202 in directions generally parallel to one another. In alternative embodiments, the radially extending flanges 204, 206 can extend away from the main body 202 in directions converging toward one another such that an angle between the radially extending flanges is less than about 1°, or less than about 2°, or less than about 5°, or less than about 10°, or less than about 15°, or less than about 20°, or less than about 25°, or less than about 30°. In other embodiments, the radially extending flanges 204, 206 can extend away from the main body 202 in directions diverging away from one another such that an angle between the radially extending flanges is less than about 1°, or less than about 2°, or less than about 5°, or less than about 10°, or less than about 15°, or less than about 20°, or less than about 25°, or less than about 30°.


The frame 200 can be used as the frame of a prosthetic valve to be implanted at the native mitral valve of a human heart. As shown in FIG. 18, the native mitral valve 300 of the human heart connects the left atrium 302 to the left ventricle 304. The native mitral valve 300 includes a native mitral valve annulus 308, which is an annular portion of native tissue surrounding the native mitral valve orifice, and a pair of leaflets 306 coupled to the native mitral valve annulus 308 and extending ventricularly from the annulus 308 into the left ventricle 304. As described in more detail below, in one exemplary method, a prosthetic valve including the frame 200 can be compressed to a crimped configuration, loaded into a delivery system, and introduced into the region of the native mitral valve of a patient's heart. With the frame in the crimped configuration and thus the spacing between the atrial and ventricular flanges 204, 206 maximized, the prosthetic valve can be positioned so that the native mitral valve annulus 308 is situated between the flanges 204, 206 such that the commissure support posts extend below the native valve and the ventricular flange 206 within the left ventricle of the heart (see FIG. 4). The prosthetic valve can then be expanded to the expanded configuration such that the spacing between the flanges 204, 206 is reduced to less than the native thickness of the native mitral valve annulus 308. The flanges 204, 206 can then retain the prosthetic valve in place in the native mitral valve by compressing or pinching the annulus 308 (see FIG. 4). By pinching the native mitral valve annulus, the flanges 204, 206 can also maintain a continuous seal between the native tissue and the prosthetic valve around the exterior of the prosthetic valve, thereby preventing blood from flowing between the outside of the prosthetic valve and the surrounding annulus, and allowing the prosthetic valve to control the flow of blood between the left atrium and the left ventricle.


This method takes advantage of the relative movement of the nodes of the prosthetic valve frame in a direction aligned with the central longitudinal axis of the prosthetic valve. In particular, as a prosthetic valve frame such as frame 100 or frame 200 is radially expanded, nodes aligned with one another along an axis parallel to the central longitudinal axis move toward one another. Thus, by coupling a pair of flanges such as flanges 104 and 106, or flanges 204 and 206 to nodes spaced apart from each other axially, the flanges can be made to approach one another as the prosthetic valve expands.


Delivery Systems and Methods



FIGS. 8-11 illustrate components of an exemplary delivery system 400 (FIGS. 12A-16A) which can be used to deliver a prosthetic valve including a frame such as frame 100 or frame 200 to a native heart valve. FIG. 8 illustrates an outer sheath 402 of the delivery system 400. Outer sheath 402 is a hollow sheath which surrounds the remaining components of the delivery system 400 and the prosthetic valve being delivered. FIG. 9 illustrates a slotted sheath 404 of the delivery system 400. Slotted sheath 404 includes a plurality of distal extensions 406 separated by a plurality of distal slots 408. In some embodiments, the slotted sheath 404 can include at least three, at least four, at least five, at least six, at least seven, at least eight, at least nine, at least ten, at least twelve, at least fifteen, or at least twenty slots 408. In some embodiments, the number of slots 408 in the slotted sheath 404 can correspond to a number of atrial protrusions, and/or a number of ventricular protrusions in a frame of a prosthetic valve, and/or a sum of the number of atrial protrusions and the number of ventricular protrusions. Slotted sheath 404 has an outside diameter slightly smaller than the inside diameter of the outer sheath 402 so that the slotted sheath 404 can fit within the outer sheath 402.



FIG. 10 illustrates a nosecone 410 coupled to an inner shaft 412 of the delivery system 400. The nosecone is hollow and includes an inner recess 414. The nosecone 410 can have an outer diameter matching that of the outer sheath 402, and the recess 414 can have a diameter slightly larger than the outer diameter of the slotted sheath 404 so that a distal end portion of the slotted sheath 404 can fit within the recess 414. FIG. 11 illustrates an inner pusher shaft 416 of the delivery system 400. The pusher shaft 416 can have an outside diameter smaller than an inside diameter of the slotted sheath 404 so that the pusher shaft 416 can fit within the slotted sheath 404. The pusher shaft 416 can also have an internal lumen 418 through which the inner shaft 412 can fit. When assembled, the delivery system 400 can include, from center to exterior, the inner shaft 412, the pusher shaft 416, the slotted sheath 404, and the outer sheath 402.



FIGS. 12A, 13A, 14A, 15A, and 16A illustrate an exemplary delivery sequence of a radially self-expanding prosthetic heart valve frame 420 from delivery system 400. FIG. 12A illustrates the delivery system 400 in a closed, delivery configuration in which the frame 420 is retained within the system 400 (the prosthetic valve can be retained in a radially compressed state within an annular space defined between the slotted sheath 404 and the inner shaft 412 and the nosecone 410). As shown in FIG. 13A, the outer sheath 402 can be retracted proximally to expose the distal extensions 406 of the slotted sheath 404. As shown in FIG. 14A, the inner shaft 412 and nosecone 410 can be extended distally to expose the distal end portion of the slotted sheath 404.


As shown in FIG. 15A, the inner shaft 412 and nosecone 410 can be further extended distally to provide sufficient space for the prosthetic valve frame 420 to be pushed out of the slotted sheath 404. The pusher shaft 416 can then be extended distally while the slotted sheath 404 is retracted proximally so that the prosthetic valve frame 420 is pushed distally through the slotted sheath 404 until the prosthetic valve frame 420 becomes partially exposed and begins to radially self-expand. As shown in FIG. 16A, the inner shaft 412 and nosecone 410 can be further extended distally to provide additional space for the prosthetic valve frame 420 to be pushed out of the slotted sheath 404. The pusher shaft 416 can then be further extended distally while the slotted sheath 404 is further retracted proximally so that the prosthetic valve frame 420 is pushed distally through the slotted sheath 404 until the prosthetic valve frame 420 becomes completely exposed from the system 400 and radially self-expands to a fully expanded configuration.


In an alternative embodiment, the protrusions of a flange of a prosthetic valve frame, such as the protrusions of flanges 104, 106, 204, or 206, or protrusions 422 of prosthetic valve frame 420, can fit within or extend through the distal slots 408 of the slotted sheath 404. As described above, as prosthetic valve frames 100, 200, 420 are compressed to a crimped configuration, the respective protrusions are compressed angularly such that they transition from a series of relatively wide and short, radially-extending protrusions to a series of relatively narrow and long, radially-extending protrusions. Thus, the protrusions can be configured to fit within the distal slots 408 when a frame is in the crimped configuration. In this embodiment, loading a prosthetic valve into a delivery system can include crimping the prosthetic valve to a compressed configuration, inserting the compressed prosthetic valve into the slotted sheath 404 such that the angularly compressed protrusions fit within the distal slots 408 of the slotted sheath 404, and then adjusting the protrusions so they lie flat against the outside of the slotted sheath 404, or so they lie flat within the slots 408 and against the outside of the main body of the prosthetic valve, so the prosthetic valve and slotted sheath 404 can be contained within the outer sheath 402 and recess 414 of the nosecone 410. The protrusions of one of the flanges can be contained within the nosecone 410, and the protrusions of the other flange can be contained within the outer sheath 402. Adjusting the protrusions so they lie flat against the outside of the slotted sheath, or so they lie flat within the slots 408 and against the outside of the main body of the prosthetic valve, can include bending the protrusions of the atrial flange so they point either toward or away from the protrusions of the ventricular flange, and bending the protrusions of the ventricular flange so they point either toward or away from the protrusions of the atrial flange.



FIGS. 12B, 13B, 14B, 15B, and 16B illustrate an exemplary delivery sequence of the prosthetic heart valve frame 420 from the delivery system 400. FIG. 12B shows the frame 420 in a compressed configuration with protrusions 422A and 422B lying flat against a main body 424 of the frame 420, such that the frame 420 can be situated within the delivery system 400 in the configuration shown in FIG. 12A. FIG. 13B shows the main body 424 of the frame 420 in a compressed configuration with protrusions 422B lying flat against the main body 424 of the frame 420, and with the protrusions 422A extending radially outward from the main body 424 of the frame 420, such that the frame 420 can be situated within the delivery system 400 and the protrusions 422A can extend through the slots 408 of the delivery system 400 in the configuration shown in FIG. 13A. FIG. 14B shows the main body 424 of the frame 420 in a compressed configuration with protrusions 422A and the protrusions 422B extending radially outward from the main body 424 of the frame 420, such that the frame 420 can be situated within the delivery system 400 and the protrusions 422A, 422B can extend through the slots 408 of the delivery system 400 in the configuration shown in FIG. 14A.



FIG. 15B shows the main body 424 of the frame 420 in a partially expanded configuration in which a first end 426 of the frame 420 is in a compressed configuration and a second end 428 of the frame 420 is in an expanded configuration, such that the frame 420 can be situated within the delivery system 400 in the configuration shown in FIG. 15A. FIG. 16B shows the main body 424 of the frame 420 in a fully expanded configuration in which the first end 426 and the second end 428 are in expanded configurations, such that the frame 420 can be situated on the delivery system 400 in the configuration shown in FIG. 16A.



FIG. 17A illustrates an exposed distal end portion of a slotted sheath 500 having a plurality of distal extensions 506, an outer sheath 502, and a retaining element 504. Small holes extend through the distal extensions 506 so that the retaining element 504, which can be wire, string, and/or suture, can be threaded through the holes. In some cases, the retaining element 504 can extend from a proximal end portion of the outer sheath 502, where it can be controlled by a physician, along the length of the outer sheath 502, and into a first hole through a first distal extension 506A. The retaining element 504 can then be threaded through the holes of successive distal extensions 506 in a coiled or helical configuration until it extends out of a final hole through a final distal extension 506B. In an alternative embodiment, a retaining element can extend into the first hole of the first distal extension 506A, extend through the holes of successive distal extensions 506 in a plurality of circles, and extend out of the final hole of the final distal extension 506B. In some cases, a tension force can be applied to the retaining element 504. The retaining element 504 can help to restrain the distal extensions 506 against radial expansion from the expansion force of a prosthetic valve retained within the extensions 506.



FIGS. 17B-17C illustrate an alternative retaining element 510 which can be used in combination with the outer sheath 502, slotted sheath 500, and distal extensions 506, either in place of, or in addition to, the retaining element 504. Retaining element 510 includes a sheath 511 having a distal end portion comprising a plurality of teeth 512 and a plurality of gaps 514 between the teeth 512. In use in a delivery system including outer sheath 502, slotted sheath 500, and distal extensions 506, as shown in FIG. 17C, the retaining element 510 can be situated between the outer sheath 502 and the slotted sheath 500. The teeth 512 can have a one-to-one correspondence with the distal extensions 506, and each tooth 512 can be rotationally offset with respect to a respective distal extension 506 so as to form a protrusion-receiving opening 516.


Loading a prosthetic valve including a frame such as frame 100, frame 200, or frame 420 into the delivery system can proceed according to similar methods, but is described herein with reference to frame 420 for convenience. Loading a prosthetic valve including frame 420 into the delivery system can include crimping the prosthetic valve to a compressed configuration, in which the protrusions 422A, 422B of the frame are angularly compressed, as described above. The compressed prosthetic valve can then be inserted into the slotted sheath 500 such that the angularly compressed protrusions 422A, 422B fit within slots 507 between the extensions 506, such that the protrusions 422A are proximal to the protrusions 422B, and such that the proximal set of angularly compressed protrusions 422A extend through the slots 507 and the openings 516. The retaining element 510 can then be rotated in the opposite direction shown by arrow 518, so as to pinch the proximal set of angularly compressed protrusions 422A between the teeth 512 and the extensions 506. The angularly compressed protrusions 422A and 422B can then be adjusted so they lie flat against the outside of the slotted sheath 500, or so they lie flat within the slots 507 and against the outside of the main body 424 of the prosthetic valve frame 420. The outer sheath 502 can then be actuated to move distally with respect to the slotted sheath 500 to enclose the slotted sheath 500, the retaining element 510, and the prosthetic valve.


Deployment of the prosthetic valve from the delivery system can generally progress as described above with reference to FIGS. 12A-16A and 12B-16B, and can include proximally retracting the outer sheath 502 with respect to the slotted sheath 500 to reveal the slotted sheath 500 and the prosthetic valve, such that the angularly compressed protrusions 422A, 422B extend radially outward through the slots 507 between the extensions 506 and the proximal angularly compressed protrusions 422A extend radially through the openings 516. A pusher shaft of the delivery system can then be actuated to push the prosthetic valve distally through the slotted sheath 500, and the retaining element 510 can be actuated to move distally over the slotted sheath 500 with the prosthetic valve. In this way, the proximal set of angularly compressed protrusions 422A can remain pinched between the teeth 512 and the extensions 506 as the prosthetic valve is deployed. When the prosthetic valve approaches the distal end of the extensions 506, the retaining element 510 can be rotated, for example, in the direction shown by the arrow 518 (FIG. 17C), such that it no longer pinches or holds (e.g., it releases) the proximal protrusions 422A. In some cases, releasing the proximal protrusions 422A in this way allows the proximal protrusions 422A to more fully radially extend outward through the openings 516. Thus, while the distal and proximal protrusions 422B, 422A are deployed, the main body 424 remains in a radially compressed state within the slotted sheath 500. In some cases, the retaining element 510 can then be retracted proximally with respect to the prosthetic valve to allow a controlled expansion of the prosthetic valve and a controlled release of the prosthetic valve from the extensions 506. As the main body 424 is deployed, the distal and proximal protrusions 422B, 422A can slide axially in the distal direction through the distal openings 509 of the slots 507.


The retaining element 510 can provide substantial benefits to the delivery system. For example, the retaining element 510 can help to restrain the distal extensions 506 against radial expansion from the expansion force of the prosthetic valve retained within the extensions 506. In particular, as the prosthetic valve moves distally through the extensions 506, the extensions 506 can tend to splay farther and farther apart. The retaining element can help to reduce this effect by maintaining a ring of material (e.g., the distal end portion of the sheath 511) in proximity to the proximal end of the prosthetic valve as the prosthetic valve moves through the extensions 506. This can provide an operator with a greater degree of control over the delivery system and the deployment of the prosthetic valve therefrom.



FIGS. 17D-17E illustrate an alternative retaining element 520 which can be used in combination with the outer sheath 502, slotted sheath 500, and distal extensions 506, either in place of, or in addition to, the retaining element 504. Retaining element 520 includes a sheath 521 having a distal end portion comprising a plurality of L-shaped teeth 522 and gaps 524 between the teeth 522. The L-shaped teeth 522 can include a longitudinal portion 522A, a corner portion 522B, and a circumferential portion 522C. In use in a delivery system including outer sheath 502, slotted sheath 500, and distal extensions 506, as shown in FIG. 17E, the retaining element 520 can be situated between the outer sheath 502 and the slotted sheath 500. The teeth 522 can have a one-to-one correspondence with the distal extensions 506, and each tooth 522 can be rotationally offset with respect to a respective distal extension 506 so as to form an enclosed, protrusion-receiving opening 526.


Loading a prosthetic valve including a frame such as frame 100 or frame 200 into the delivery system can generally progress as described above, and such that a proximal set of angularly compressed protrusions 422A of a prosthetic valve frame fit within the openings 526. The retaining element 520 can be rotated in the opposite direction shown by arrow 528 so as to capture the proximal set of angularly compressed protrusions 422A in the enclosed openings 526. Deployment of the prosthetic valve from the delivery system can generally progress as described above. When the prosthetic valve approaches the distal end of the extensions 506, the retaining element 520 can be rotated in the direction shown by the arrow 528 such that it no longer captures or constrains (e.g., it releases) the proximal protrusions 422A.


The retaining element 520 can provide substantial benefits to the delivery system, as described above with regard to retaining element 510. In some cases, the retaining element 510 can be easier to manufacture than the retaining element 520. In some cases, the retaining element 520 provides better performance than the retaining element 510 because the teeth form enclosed openings and capture the proximal protrusions rather than pinching the proximal protrusions.


Delivery Approaches



FIGS. 18-21 illustrate delivery approaches by which the delivery system 400 can be used to deliver a prosthetic valve to a patient's native mitral valve. FIGS. 18 and 19 illustrate that delivery from the ventricular side of the native mitral annulus 308 can be accomplished via transventricular and transfemoral approaches, respectively. To deliver a prosthetic valve including frame 100 to a patient's native mitral valve from the ventricular side of the native mitral annulus 308, the prosthetic valve can be loaded into the delivery system 400 so that the atrial end portion 118 of the frame is positioned nearer to the distal end of the delivery system 400 than the ventricular end portion 120 of the frame is. In this embodiment, when the prosthetic valve is delivered to and deployed within the native mitral valve, the atrial end portion 118 is situated within the left atrium 302 and the ventricular end portion 120 is situated within the left ventricle 304.


In some embodiments, a prosthetic valve including protrusions fitted within the distal slots of a slotted sheath such as slotted sheath 404 can be deployed from a delivery system incorporating a retaining element such as retaining element 504, retaining element 510, or retaining element 520, approaching the native mitral valve from the ventricular side of the native mitral valve annulus 308. The prosthetic valve can be compressed to a crimped configuration and loaded into the delivery system such that the protrusions of an atrial flange are retained within the nosecone 410 of the delivery system and the protrusions of a ventricular flange are retained within the outer sheath 402 of the delivery system. The delivery system can then advance the prosthetic valve to the native mitral valve from the ventricular side of the native mitral valve annulus via either a transventricular or a transfemoral approach. In the transventricular approach, the delivery system desirably is inserted through a surgical incision made on the bare spot on the lower anterior ventricle wall.


As shown in FIG. 18, the outer sheath 402 can then be retracted to expose the protrusions 124 of the ventricular flange 106 within the left ventricle 304, and the delivery system can be advanced until the ventricular flange 106 is in contact with the native valve leaflets 306 and adjacent the ventricular side of the native mitral valve annulus 308. The nosecone 410 can then be extended to deploy the protrusions 122 of the atrial flange 104 into the left atrium 302, across the native mitral valve annulus 308 from the protrusions of the ventricular flange 106. In cases where retaining element 504 is used, any tension force applied to the retaining element 504 can be removed, and the retaining element 504 can be actuated (e.g., pulled proximally) so that the retaining element 504 migrates through the holes in the distal extensions 406 of the delivery system until the retaining element 504 is no longer situated within the holes. A pusher shaft 416 of the delivery system can then be extended distally while the slotted sheath 404 is retracted proximally so that the prosthetic valve is deployed from the delivery system and allowed to radially expand within the native mitral valve. In some cases, retaining element 510 or retaining element 520 can be used to help restrain the distal extensions of the slotted sheath 404 against radial expansion during this step. As the prosthetic valve radially expands within the native mitral valve, the spacing between the atrial and ventricular flanges 122, 124, respectively, decreases and they compress the native mitral valve annulus 308. As the prosthetic valve radially expands, the protrusions also angularly expand to their expanded configuration. The delivery system can then be removed from the patient's vasculature, leaving the prosthetic valve in place in the native mitral valve.



FIGS. 20 and 21 illustrate that delivery from the atrial side of the native mitral annulus 308 can be accomplished via transeptal or transatrial approaches. To deliver a prosthetic valve including frame 100 to a patient's native mitral valve from the atrial side of the native mitral annulus 308, the prosthetic valve can be loaded into the delivery system 400 so that the ventricular end portion 120 of the frame is positioned nearer to the distal end of the delivery system 400 than the atrial end portion 118 of the frame is. In this embodiment, when the prosthetic valve is delivered to and deployed within the native mitral valve, the atrial end portion 118 is situated within the left atrium 302 and the ventricular end portion 120 is situated within the left ventricle 304.


In some embodiments, a prosthetic valve including protrusions fitted within the distal slots of a slotted sheath such as slotted sheath 404 can be deployed from a delivery system incorporating a retaining element such as retaining element 504, retaining element 510, or retaining element 520, approaching the native mitral valve from the atrial side of the native mitral valve annulus 308. The prosthetic valve can be compressed to a crimped configuration and loaded into the delivery system such that the protrusions 124 of a ventricular flange 106 are retained within the nosecone 410 of the delivery system and the protrusions 122 of an atrial flange 104 are retained within the outer sheath 402 of the delivery system. The delivery system can then advance the prosthetic valve to the native mitral valve from the atrial side of the native mitral valve annulus via either a transeptal or a transatrial approach.


The nosecone 410 can then be extended to deploy the protrusions 124 of the ventricular flange 106 within the left ventricle 304, and the delivery system can be retracted until the ventricular flange 106 is in contact with the native valve leaflets 306 and adjacent the ventricular side of the native mitral valve annulus 308. The outer sheath 402 can then be retracted to deploy the protrusions 122 of the atrial flange 104 into the left atrium 302, across the native mitral valve annulus 308 from the protrusions of the ventricular flange 106. In cases where retaining element 504 (FIG. 17A) is used, any tensile force applied to the retaining element 504 can be removed, and the retaining element 504 can be actuated so that the retaining element 504 migrates through the holes in the distal extensions 406 of the delivery system until the retaining element 504 is no longer situated within the holes. The outer sheath 402 and slotted sheath 404 can then be retracted while a pusher shaft 416 of the delivery system is held stationary so that the prosthetic valve is exposed from the delivery system and allowed to radially expand within the native mitral valve. In some cases, retaining element 510 or retaining element 520 can be used to help restrain the distal extensions of the slotted sheath 404 against radial expansion during this step. As the prosthetic valve radially expands within the native mitral valve, the spacing between the atrial and ventricular flanges 104, 106 decreases and they compress the native mitral valve annulus 308. As the prosthetic valve radially expands, the protrusions also angularly expand to their expanded configuration. The delivery system can then be removed from the patient's vasculature, leaving the prosthetic valve in place in the native mitral valve.


In embodiments in which protrusions of the frame of a prosthetic valve extend through the distal slots 408 of the slotted sheath 404, the angular compression of the protrusions makes them narrower, and thus easier to navigate to the native mitral valve. For example, the native mitral valve can include chordae tendineae 310 (FIG. 18), which tether the leaflets 306 to the walls of the left ventricle 304. The chordae tendineae 310 can interfere with delivery of a prosthetic valve to the native mitral valve (particularly from the ventricular side of the native mitral annulus 308), and angularly compressing the protrusions can facilitate the navigation of the protrusions through the chordae tendineae 310.


For purposes of this description, certain aspects, advantages, and novel features of the embodiments of this disclosure are described herein. The disclosed methods, apparatuses, and systems should not be construed as limiting in any way. Instead, the present disclosure is directed toward all novel and nonobvious features and aspects of the various disclosed embodiments, alone and in various combinations and sub-combinations with one another. The methods, apparatuses, and systems are not limited to any specific aspect or feature or combination thereof, nor do the disclosed embodiments require that any one or more specific advantages be present or problems be solved.


Although the operations of some of the disclosed methods are described in a particular, sequential order for convenient presentation, it should be understood that this manner of description encompasses rearrangement, unless a particular ordering is required by specific language. For example, operations described sequentially may in some cases be rearranged or performed concurrently. Moreover, for the sake of simplicity, the attached figures may not show the various ways in which the disclosed methods can be used in conjunction with other methods. As used herein, the terms “a”, “an” and “at least one” encompass one or more of the specified element. That is, if two of a particular element are present, one of these elements is also present and thus “an” element is present. The terms “a plurality of” and “plural” mean two or more of the specified element.


As used herein, the term “and/or” used between the last two of a list of elements means any one or more of the listed elements. For example, the phrase “A, B, and/or C” means “A”, “B”, “C”, “A and B”, “A and C”, “B and C”, or “A, B and C.” As used herein, the term “coupled” generally means physically coupled or linked and does not exclude the presence of intermediate elements between the coupled items absent specific contrary language.


In view of the many possible embodiments to which the principles of the disclosed invention may be applied, it should be recognized that the illustrated embodiments are only preferred examples of the invention and should not be taken as limiting the scope of the invention. Rather, the scope of the invention is defined by the following claims. We therefore claim as our invention all that comes within the scope and spirit of these claims.

Claims
  • 1. A method of replacing the function of a native heart valve between an atrium and a ventricle of the heart, comprising: inserting a distal end portion of a delivery apparatus into a patient's body, wherein a prosthetic valve is disposed along the distal end portion of the delivery apparatus in a radially compressed state, the prosthetic valve comprising: a radially collapsible and expandable annular body defining a central axis and a lumen extending therethrough from an inlet to an outlet of the annular body, the annular body comprising a network of struts interconnected at a plurality of nodes to form a plurality of open cells, the annular body further comprising three circumferentially spaced, longitudinally extending commissure support posts of fixed length extending in parallel with each other, wherein the commissure support posts extend substantially the entire length of the annular body, wherein the plurality of open cells are arranged in a plurality of circumferentially extending rows of open cells, wherein each commissure support post is connected to another commissure support post by open cells of each row;an atrial flange coupled to the annular body and extending radially away from the annular body;a ventricular flange coupled to the annular body and extending radially away from the annular body; anda valve member comprising three leaflets coupled to the commissure support posts;positioning the prosthetic valve adjacent the native heart valve;radially expanding the annular body within the native heart valve;deploying the atrial flange on an atrial side of the native heart valve; anddeploying the ventricular flange on a ventricular side of the native heart valve;wherein, following deployment of the atrial flange and the ventricular flange, the commissure support posts extend below the native heart valve and the ventricular flange.
  • 2. The method of claim 1, wherein the ventricular flange comprising a plurality of radially extending ventricular protrusions coupled to the annular body and the atrial flange comprising a plurality of radially extending atrial protrusions coupled to the annular body.
  • 3. The method of claim 2, wherein the atrial protrusions are connected to a first set of nodes of the plurality of nodes and the ventricular protrusions are connected to a second set of nodes of the plurality of nodes, wherein the first set of nodes is axially spaced from the second set of nodes.
  • 4. The method of claim 2, wherein a tip of each of the atrial protrusions points in a direction that is substantially orthogonal to the central axis.
  • 5. The method of claim 2, wherein the atrial protrusions are angularly offset from the ventricular protrusions.
  • 6. The method of claim 1, wherein the commissure support posts have upper end portions connected to an annulus portion of the annular body positioned between the atrial flange and the ventricular flange, and wherein radially expanding the annular body causes the annulus portion to be positioned within an annulus of the native heart valve.
  • 7. The method of claim 1, wherein the atrial flange and the ventricular flange press against the atrial and ventricular sides of the native heart valve, thereby retaining the prosthetic valve in place.
  • 8. The method of claim 1, wherein the commissure support posts have a plurality of openings for stitching the leaflets to the commissure support posts.
  • 9. A method of replacing the function of a native heart valve between an atrium and a ventricle of the heart, comprising: inserting a distal end portion of a delivery apparatus into a patient's body, wherein a prosthetic valve is disposed along the distal end portion of the delivery apparatus in a radially compressed state, the prosthetic valve comprising: a radially collapsible and expandable annular body defining a central axis and a lumen extending therethrough from an inlet to an outlet of the annular body, the annular body comprising a network of struts interconnected at a plurality of nodes to form a plurality of open cells, the annular body further comprising three circumferentially spaced, longitudinally extending commissure support posts of fixed length extending in parallel with each other, wherein the commissure support posts extend substantially the entire length of the annular body;an atrial flange coupled to the annular body and extending radially away from the annular body;a ventricular flange coupled to the annular body and extending radially away from the annular body;wherein the ventricular flange comprises a plurality of radially extending ventricular protrusions coupled to the annular body and the atrial flange comprises a plurality of radially extending atrial protrusions coupled to the annular body; anda valve member comprising three leaflets coupled to the commissure support posts;positioning the prosthetic valve adjacent the native heart valve;radially expanding the annular body within the native heart valve;deploying the atrial flange on an atrial side of the native heart valve; anddeploying the ventricular flange on a ventricular side of the native heart valve;wherein, following deployment of the atrial flange and the ventricular flange, the commissure support posts extend below the native heart valve and the ventricular flange;wherein a tip of each of the ventricular protrusions points in a direction that is substantially orthogonal to the central axis.
  • 10. A method of replacing the function of a native heart valve between an atrium and a ventricle of the heart, comprising: inserting a distal end portion of a delivery apparatus into a patient's body, wherein a prosthetic valve is disposed along the distal end portion of the delivery apparatus in a radially compressed state, the prosthetic valve comprising: a radially collapsible and expandable annular body defining a central axis and a lumen extending therethrough from an inlet to an outlet of the annular body, the annular body comprising a plurality of struts arranged to form a plurality of circumferentially extending rows of open cells, the annular body further comprising three circumferentially spaced, longitudinally extending commissure support posts of fixed length extending in parallel with each other, wherein each commissure support post is connected to another commissure support post by open cells of each row, wherein the plurality of rows of open cells includes a first circumferentially extending row of cells defining an inlet end of the annular body and a second circumferentially extending row of cells defining an outlet end of the annular body, and wherein each commissure support post extends from the first row of cells to the second row of cells;an atrial flange coupled to the annular body and extending radially away from the annular body;a ventricular flange coupled to the annular body and extending radially away from the annular body; anda valve member comprising three leaflets coupled to the commissure support posts;positioning the prosthetic valve adjacent the native heart valve;radially expanding the annular body within the native heart valve;deploying the atrial flange on an atrial side of the native heart valve; anddeploying the ventricular flange on a ventricular side of the native heart valve;wherein, following deployment of the atrial flange and the ventricular flange, the commissure support posts extend below the native heart valve and the ventricular flange.
  • 11. The method of claim 10, wherein the commissure support posts have a plurality of openings for stitching the leaflets to the commissure support posts.
  • 12. The method of claim 10, wherein the ventricular flange comprising a plurality of radially extending ventricular protrusions coupled to the annular body and the atrial flange comprising a plurality of radially extending atrial protrusions coupled to the annular body.
  • 13. The method of claim 10, wherein the commissure support posts have upper end portions connected to an annulus portion of the annular body positioned between the atrial flange and the ventricular flange, and wherein radially expanding the annular body causes the annulus portion to be positioned within an annulus of the native heart valve.
  • 14. The method of claim 10, wherein the atrial flange and the ventricular flange press against the atrial and ventricular sides of the native heart valve, thereby retaining the prosthetic valve in place.
  • 15. The method of claim 10, wherein the annular body is cylindrical.
  • 16. The method of claim 10, further comprising advancing the distal end portion of the delivery apparatus and the prosthetic valve into a right atrium and across an atrial septum into a left atrium to position the prosthetic valve adjacent a native mitral valve and then implanting the prosthetic valve within the native mitral valve.
  • 17. The method of claim 16, wherein the ventricular flange is deployed from the delivery apparatus on the ventricular side of the native mitral valve before the atrial flange is deployed from the delivery apparatus on the atrial side of the native mitral valve.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. application Ser. No. 16/104,015, filed Aug. 16, 2018, now U.S. Pat. No. 10,881,512, which is a continuation of U.S. application Ser. No. 14/830,347, filed Aug. 19, 2015, now U.S. Pat. No. 10,058,424, which claims the benefit of U.S. Provisional Application No. 62/040,099, filed Aug. 21, 2014, which is incorporated herein by reference.

US Referenced Citations (300)
Number Name Date Kind
3409013 Berry Nov 1968 A
3472230 Fogarty Oct 1969 A
3548417 Kisher Dec 1970 A
3587115 Shiley Jun 1971 A
3657744 Ersek Apr 1972 A
3671979 Moulopoulos Jun 1972 A
3714671 Edwards et al. Feb 1973 A
3755823 Hancock Sep 1973 A
4035849 Angell et al. Jul 1977 A
4056854 Boretos et al. Nov 1977 A
4106129 Carpentier et al. Aug 1978 A
4222126 Boretos et al. Sep 1980 A
4265694 Boretos et al. May 1981 A
4297749 Davis et al. Nov 1981 A
4339831 Johnson Jul 1982 A
4343048 Ross et al. Aug 1982 A
4345340 Rosen Aug 1982 A
4373216 Klawitter Feb 1983 A
4406022 Roy Sep 1983 A
4470157 Love Sep 1984 A
4535483 Klawitter et al. Aug 1985 A
4574803 Storz Mar 1986 A
4592340 Boyles Jun 1986 A
4605407 Black et al. Aug 1986 A
4612011 Kautzky Sep 1986 A
4643732 Pietsch et al. Feb 1987 A
4655771 Wallsten Apr 1987 A
4692164 Dzemeshkevich et al. Sep 1987 A
4733665 Palmaz Mar 1988 A
4759758 Gabbay Jul 1988 A
4762128 Rosenbluth Aug 1988 A
4777951 Cribier et al. Oct 1988 A
4787899 Lazarus Nov 1988 A
4787901 Baykut Nov 1988 A
4796629 Grayzel Jan 1989 A
4829990 Thuroff et al. May 1989 A
4851001 Taheri Jul 1989 A
4856516 Hillstead Aug 1989 A
4878495 Grayzel Nov 1989 A
4878906 Lindemann et al. Nov 1989 A
4883458 Shiber Nov 1989 A
4922905 Strecker May 1990 A
4966604 Reiss Oct 1990 A
4979939 Shiber Dec 1990 A
4986830 Owens et al. Jan 1991 A
4994077 Dobben Feb 1991 A
5007896 Shiber Apr 1991 A
5026366 Leckrone Jun 1991 A
5032128 Alonso Jul 1991 A
5037434 Lane Aug 1991 A
5047041 Samuels Sep 1991 A
5059177 Towne et al. Oct 1991 A
5080668 Bolz et al. Jan 1992 A
5085635 Cragg Feb 1992 A
5089015 Ross Feb 1992 A
5108370 Walinsky Apr 1992 A
5152771 Sabbaghian et al. Oct 1992 A
5163953 Vince Nov 1992 A
5167628 Boyles Dec 1992 A
5192297 Hull Mar 1993 A
5232446 Arney Aug 1993 A
5266073 Wall Nov 1993 A
5282847 Trescony et al. Feb 1994 A
5295958 Shturman Mar 1994 A
5332402 Teitelbaum Jul 1994 A
5360444 Kusuhara Nov 1994 A
5370685 Stevens Dec 1994 A
5397351 Pavcnik et al. Mar 1995 A
5411055 Kane May 1995 A
5411522 Trott May 1995 A
5411552 Andersen et al. May 1995 A
5443446 Shturman Aug 1995 A
5480424 Cox Jan 1996 A
5500014 Quijano et al. Mar 1996 A
5545209 Roberts et al. Aug 1996 A
5545214 Stevens Aug 1996 A
5549665 Vesely et al. Aug 1996 A
5554185 Block et al. Sep 1996 A
5571175 Vanney et al. Nov 1996 A
5591185 Kilmer et al. Jan 1997 A
5599305 Hermann et al. Feb 1997 A
5607464 Trescony et al. Mar 1997 A
5609626 Quijano et al. Mar 1997 A
5639274 Fischell et al. Jun 1997 A
5665115 Cragg Sep 1997 A
5716417 Girard et al. Feb 1998 A
5728068 Leone et al. Mar 1998 A
5749890 Shaknovich May 1998 A
5756476 Epstein et al. May 1998 A
5769812 Stevens et al. Jun 1998 A
5800508 Goicoechea et al. Sep 1998 A
5840081 Andersen et al. Nov 1998 A
5855597 Jayaraman Jan 1999 A
5855601 Bessler et al. Jan 1999 A
5855602 Angell Jan 1999 A
5906619 Olson et al. May 1999 A
5925063 Khosravi Jul 1999 A
5957949 Leonhardt et al. Sep 1999 A
5968068 Dehdashtian et al. Oct 1999 A
6027525 Suh et al. Feb 2000 A
6042607 Williamson, IV et al. Mar 2000 A
6132473 Williams et al. Oct 2000 A
6168614 Andersen et al. Jan 2001 B1
6171335 Wheatley et al. Jan 2001 B1
6174327 Mertens et al. Jan 2001 B1
6210408 Chandrasekaran et al. Apr 2001 B1
6217585 Houser et al. Apr 2001 B1
6221091 Khosravi Apr 2001 B1
6231602 Carpentier et al. May 2001 B1
6245040 Inderbitzen et al. Jun 2001 B1
6245102 Jayaraman Jun 2001 B1
6287339 Vazquez et al. Sep 2001 B1
6299637 Shaolian et al. Oct 2001 B1
6302906 Goecoechea et al. Oct 2001 B1
6306141 Jervis Oct 2001 B1
6312465 Griffin et al. Nov 2001 B1
6350277 Kocur Feb 2002 B1
6379372 Dehdashtian et al. Apr 2002 B1
6425916 Garrison et al. Jul 2002 B1
6440164 Di Matteo et al. Aug 2002 B1
6454799 Schreck Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6461382 Cao Oct 2002 B1
6468660 Ogle et al. Oct 2002 B2
6482228 Norred Nov 2002 B1
6488704 Connelly et al. Dec 2002 B1
6527979 Constantz Mar 2003 B2
6569196 Vesely May 2003 B1
6575959 Sarge et al. Jun 2003 B1
6582462 Andersen et al. Jun 2003 B1
6605112 Moll et al. Aug 2003 B1
6730118 Spenser et al. May 2004 B2
6733525 Yang et al. May 2004 B2
6790229 Berreklouw Sep 2004 B1
6830584 Seguin Dec 2004 B1
6893460 Spenser et al. May 2005 B2
6908481 Cribier Jun 2005 B2
6974476 McGuckin, Jr. et al. Dec 2005 B2
7018406 Seguin et al. Mar 2006 B2
7198646 Figulla et al. Apr 2007 B2
7201772 Schwammenthal et al. Apr 2007 B2
7276078 Spenser et al. Oct 2007 B2
7276084 Yang et al. Oct 2007 B2
7318278 Zhang et al. Jan 2008 B2
7338520 Bailey et al. Mar 2008 B2
7374571 Pease et al. May 2008 B2
7381210 Zarbatany et al. Jun 2008 B2
7393360 Spenser et al. Jul 2008 B2
7429269 Schwammenthal et al. Sep 2008 B2
7442204 Schwammenthal et al. Oct 2008 B2
7462191 Spenser et al. Dec 2008 B2
7524330 Berreklouw Apr 2009 B2
7530253 Spenser et al. May 2009 B2
7579381 Dove Aug 2009 B2
7585321 Cribier Sep 2009 B2
7618446 Andersen et al. Nov 2009 B2
7621948 Herrmann et al. Nov 2009 B2
7704222 Wilk et al. Apr 2010 B2
7736327 Wilk et al. Jun 2010 B2
7892281 Seguin et al. Feb 2011 B2
7914575 Guyenot et al. Mar 2011 B2
7993394 Hariton et al. Aug 2011 B2
8007992 Tian et al. Aug 2011 B2
8029556 Rowe Oct 2011 B2
8092521 Figulla et al. Jan 2012 B2
8118866 Herrmann et al. Feb 2012 B2
8167932 Bourang May 2012 B2
8206437 Bonhoeffer et al. Jun 2012 B2
8216174 Wilk et al. Jul 2012 B2
8317858 Straubinger et al. Nov 2012 B2
8398704 Straubinger et al. Mar 2013 B2
8416643 Magee Apr 2013 B2
8449599 Chau et al. May 2013 B2
8460370 Zakay Jun 2013 B2
8579964 Lane et al. Nov 2013 B2
9173737 Hill et al. Nov 2015 B2
9393111 Ma et al. Jul 2016 B2
20010021872 Bailey et al. Sep 2001 A1
20020032481 Gabbay Mar 2002 A1
20020173842 Buchanan Nov 2002 A1
20030023300 Bailey et al. Jan 2003 A1
20030050694 Yang et al. Mar 2003 A1
20030100939 Yodfat et al. May 2003 A1
20030158597 Quiachon et al. Aug 2003 A1
20030212454 Scott et al. Nov 2003 A1
20040039436 Spenser et al. Feb 2004 A1
20040092858 Wilson et al. May 2004 A1
20040133263 Dusbabek et al. Jul 2004 A1
20040186563 Lobbi Sep 2004 A1
20040186565 Schreck Sep 2004 A1
20040260389 Case et al. Dec 2004 A1
20050137688 Salahieh et al. Jun 2005 A1
20050137690 Salahieh et al. Jun 2005 A1
20050137698 Salahieh et al. Jun 2005 A1
20050203617 Forster et al. Sep 2005 A1
20050234546 Nugent et al. Oct 2005 A1
20050288766 Plain et al. Dec 2005 A1
20060025857 Bergheim et al. Feb 2006 A1
20060058872 Salahieh et al. Mar 2006 A1
20060142837 Haverkost et al. Jun 2006 A1
20060149350 Patel et al. Jul 2006 A1
20060161249 Realyvasquez et al. Jul 2006 A1
20060195134 Crittenden Aug 2006 A1
20060229719 Marquez et al. Oct 2006 A1
20060241745 Solem Oct 2006 A1
20060259135 Navia et al. Nov 2006 A1
20060259137 Artof et al. Nov 2006 A1
20060276874 Wilson et al. Dec 2006 A1
20070005131 Taylor Jan 2007 A1
20070010877 Salahieh et al. Jan 2007 A1
20070027534 Bergheim et al. Feb 2007 A1
20070066863 Rafiee et al. Mar 2007 A1
20070088431 Bourang et al. Apr 2007 A1
20070100439 Cangialosi et al. May 2007 A1
20070112422 Dehdashtian May 2007 A1
20070142906 Figulla et al. Jun 2007 A1
20070156224 Cioanta et al. Jul 2007 A1
20070203503 Salahieh et al. Aug 2007 A1
20070203575 Forster et al. Aug 2007 A1
20070213813 Von Segesser et al. Sep 2007 A1
20070270943 Solem et al. Nov 2007 A1
20080065011 Marchand et al. Mar 2008 A1
20080071361 Tuval et al. Mar 2008 A1
20080071362 Tuval et al. Mar 2008 A1
20080071363 Tuval et al. Mar 2008 A1
20080071366 Tuval et al. Mar 2008 A1
20080071368 Tuval et al. Mar 2008 A1
20080071369 Tuval et al. Mar 2008 A1
20080082166 Styrc et al. Apr 2008 A1
20080114442 Mitchell et al. May 2008 A1
20080125853 Bailey et al. May 2008 A1
20080154355 Benichou et al. Jun 2008 A1
20080161911 Revuelta et al. Jul 2008 A1
20080208328 Antocci et al. Aug 2008 A1
20080208332 Lamphere et al. Aug 2008 A1
20080221672 Lamphere et al. Sep 2008 A1
20080255660 Guyenot et al. Oct 2008 A1
20080255661 Straubinger et al. Oct 2008 A1
20080281411 Berreklouw Nov 2008 A1
20090005863 Goetz et al. Jan 2009 A1
20090054968 Bonhoeffer et al. Feb 2009 A1
20090054974 McGuckin, Jr. et al. Feb 2009 A1
20090076598 Salahieh et al. Mar 2009 A1
20090112309 Jaramillo et al. Apr 2009 A1
20090138079 Tuval et al. May 2009 A1
20090157175 Benichou Jun 2009 A1
20090164005 Dove et al. Jun 2009 A1
20090171432 Von Segesser et al. Jul 2009 A1
20090171447 Von Segesser et al. Jul 2009 A1
20090171456 Kveen et al. Jul 2009 A1
20090216310 Straubinger et al. Aug 2009 A1
20090216313 Straubinger et al. Aug 2009 A1
20090216322 Le et al. Aug 2009 A1
20090222076 Figulla et al. Sep 2009 A1
20090234443 Ottma et al. Sep 2009 A1
20090240320 Tuval et al. Sep 2009 A1
20090276040 Rowe et al. Nov 2009 A1
20090281619 Le et al. Nov 2009 A1
20090287299 Tabor et al. Nov 2009 A1
20090292350 Eberhardt Nov 2009 A1
20090319037 Rowe et al. Dec 2009 A1
20100016958 St. Goar et al. Jan 2010 A1
20100036479 Hill et al. Feb 2010 A1
20100049313 Alon et al. Feb 2010 A1
20100131054 Tuval et al. May 2010 A1
20100137979 Tuval et al. Jun 2010 A1
20100174362 Straubinger et al. Jul 2010 A1
20100204781 Alkhatib Aug 2010 A1
20100217382 Chau et al. Aug 2010 A1
20100262231 Tuval et al. Oct 2010 A1
20110015616 Straubinger et al. Jan 2011 A1
20110015729 Jimenez et al. Jan 2011 A1
20110029072 Gabbay Feb 2011 A1
20110137397 Chau et al. Jun 2011 A1
20110208290 Straubinger et al. Aug 2011 A1
20110208297 Tuval et al. Aug 2011 A1
20110208298 Tuval et al. Aug 2011 A1
20110238159 Guyenot et al. Sep 2011 A1
20110288634 Tuval et al. Nov 2011 A1
20110319989 Lane et al. Dec 2011 A1
20120035722 Tuval Feb 2012 A1
20120046741 Tuval et al. Feb 2012 A1
20120046742 Tuval et al. Feb 2012 A1
20120101570 Tuval et al. Apr 2012 A1
20120123529 Levi et al. May 2012 A1
20120185039 Tuval et al. Jul 2012 A1
20120197386 Von Segesser et al. Aug 2012 A1
20120209374 Bonhoeffer et al. Aug 2012 A1
20120283823 Bonhoeffer et al. Nov 2012 A1
20120296418 Bonyuet et al. Nov 2012 A1
20120310336 Figulla et al. Dec 2012 A1
20130035759 Gross et al. Feb 2013 A1
20130073035 Tuval et al. Mar 2013 A1
20130079869 Straubinger et al. Mar 2013 A1
20130144381 Quadri et al. Jun 2013 A1
20130190862 Pintor et al. Jul 2013 A1
20130197622 Mitra et al. Aug 2013 A1
20140194979 Seguin et al. Jul 2014 A1
20140277390 Ratz et al. Sep 2014 A1
20140330371 Gloss et al. Nov 2014 A1
Foreign Referenced Citations (67)
Number Date Country
2246526 Mar 1973 DE
19532846 Mar 1997 DE
19546692 Jun 1997 DE
19857887 Jul 2000 DE
19907646 Aug 2000 DE
10010074 Oct 2001 DE
10049812 Apr 2002 DE
10049813 Apr 2002 DE
10049814 Apr 2002 DE
10049815 Apr 2002 DE
102006052564 Dec 2007 DE
0103546 Mar 1984 EP
0144167 Jun 1985 EP
0592410 Apr 1994 EP
0597967 May 1994 EP
0850607 Jul 1998 EP
1057460 Dec 2000 EP
1088529 Apr 2001 EP
1469797 Oct 2004 EP
1570809 Sep 2005 EP
1653888 May 2006 EP
3294221 Mar 2018 EP
2788217 Jul 2000 FR
2815844 May 2002 FR
2056023 Mar 1981 GB
1271508 Nov 1986 SU
9117720 Nov 1991 WO
9217118 Oct 1992 WO
93001768 Feb 1993 WO
9724080 Jul 1997 WO
9829057 Jul 1998 WO
9933414 Jul 1999 WO
9940964 Aug 1999 WO
9947075 Sep 1999 WO
0018333 Apr 2000 WO
0041652 Jul 2000 WO
0047139 Aug 2000 WO
0128459 Apr 2001 WO
0135878 May 2001 WO
0149213 Jul 2001 WO
0154624 Aug 2001 WO
0154625 Aug 2001 WO
0162189 Aug 2001 WO
0164137 Sep 2001 WO
0176510 Oct 2001 WO
0222054 Mar 2002 WO
0236048 May 2002 WO
0241789 May 2002 WO
0243620 Jun 2002 WO
0247575 Jun 2002 WO
0249540 Jun 2002 WO
03047468 Jun 2003 WO
2005034812 Apr 2005 WO
2005087140 Sep 2005 WO
2006014233 Feb 2006 WO
2006034008 Mar 2006 WO
06108090 Oct 2006 WO
2006111391 Oct 2006 WO
2006138173 Dec 2006 WO
2005102015 Apr 2007 WO
2008005405 Jan 2008 WO
2008035337 Mar 2008 WO
2008147964 Dec 2008 WO
2008150529 Dec 2008 WO
09024859 Feb 2009 WO
09116041 Sep 2009 WO
2010127041 Nov 2010 WO
Non-Patent Literature Citations (25)
Entry
Al-Khaja, N., et al., “Eleven Years' Experience with Carpentier-Edwards Biological Valves in Relation to Survival and Complications,” European Journal of Cardiothoracic Surgery 3:305-311, Jun. 30, 2009.
Almagor, M.D., Yaron, et al., “Balloon Expandable Stent Implantation in Stenotic Right Heart Valved Conduits,” Journal of the American College of Cardiology, vol. 16, No. 6, pp. 1310-1314, Nov. 1, 1990; ISSN 0735-1097.
Al Zaibag, Muayed, et al., “Percutaneous Balloon Valvotomy in Tricuspid Stenosis,” British Heart Journal, Jan. 1987, vol. 57, No. 1, pp. 51-53.
Andersen, et al., “Transluminal implantation of artificial heart valves. Description of a new expandable aortic valve and initial results with implantation by catheter technique in closed chest pigs.” European Heart Journal (1992), 13, 704-708.
Andersen, Henning Rud, “History of Percutaneous Aortic Valve Prosthesis,” Herz 34 2009 Nr. 5, Urban & Vogel, pp. 343-346, Skejby University Hospital Department of Cardiology, Aarhus, Denmark.
Benchimol, Alberto, et al., “Simultaneous Left Ventricular Echocardiography and Aortic Blood Velocity During Rapid Right Ventricular Pacing in Man,” The American Journal of the Medical Sciences, Jan.-Feb. 1977 vol. 273, No. 1, pp. 55-62.
Dake, Transluminal Placement of Endovascular Stent-Grafts for the Treatment of Descending Thoracic Aortic Aneurysms, New Engl.J.Med., 1994; 331:1729 34.
Dotter, M.D., Charles T., “Transluminal Treatment of Arteriosclerotic Obstruction,” University of Oregon's Minthorn Memorial Laboratory for Cardiovascular Research through Radiology, Circulation, vol. XXX, Nov. 1964, pp. 654-670.
Kolata, Gina, “Device That Opens Clogged Arteries Gets a Failing Grade in a New Study,” nytimes.com, http://www.nytimes.com/1991/01/03/health/device-that-opens-clogged-arteries-gets-a-faili . . . , Jul. 29, 2009, 2 pages.
Inoue, M.D., Kanji, et al., “Clinical Application of Transvenous Mitral Commissurotomy by a New Balloon Catheter,” The Journal of Thoracic and Cardiovascular Surgery 87:394-402, 1984.
Lawrence, Jr., M.D., David D., “Percutaneous Endovascular Graft: Experimental Evaluation,” Radiology 1897; 163: 357-360.
Pavcnik, M.D., Ph.D., Dusan, et al. “Development and Initial Experimental Evaluation of a Prosthetic Aortic Valve for Transcatheter Placement,” Cardiovascular Radiology 1992; 183:151-154.
Porstmann, W., et al., “Der Verschluß des Ductus Arteriosus Persistens ohne Thorakotomie,” Thoraxchirurgie Vaskuläre Chirurgie, Band 15, Heft 2, Stuttgart, im Apr. 1967, pp. 199-203.
Rashkind, M.D., William J., “Creation of an Atrial Septal Defect Withoput Thoracotomy,” the Journal of the American Medical Association, vol. 196, No. 11, Jun. 13, 1966, pp. 173-174.
Rashkind, M.D., William J., “Historical Aspects of Interventional Cardiology: Past, Present, Future,” Texas Heart Institute Journal, Interventional Cardiology, pp. 363-367.
Rösch, M.D., Josef, “The Birth, Early Years and Future of Interventional Radiology,” J Vasc Interv Radiol 2003; 14:841-853.
Ross, F.R.C.S., D.N., “Aortic Valve Surgery,” Guy's Hospital, London, pp. 192-197, approximately 1968.
Sabbah, Ph.D., Hani N., et al., “Mechanical Factors in the Degeneration of Porcine Bioprosthetic Valves: An Overview,” Journal of Cardiac Surgery, vol. 4, No. 4, pp. 302-309, Dec. 1989; ISSN 0886-0440.
Selby, M.D., J. Bayne, “Experience with New Retrieval Forceps for Foreign Body Removal in the Vascular, Urinary, and Biliary Systems,” Radiology 1990; 176:535-538.
Serruys, P.W., et al., “Stenting of Coronary Arteries. Are we the Sorcerer's Apprentice?,” European Heart Journal (1989) 10, 774-782, pp. 37-45, Jun. 13, 1989.
Sigwart, Ulrich, “An Overview of Intravascular Stents: Old and New,” Chapter 48, Textbook of Interventional Cardiology, 2nd Edition, W.B. Saunders Company, Philadelphia, PA, © 1994, 1990, pp. 803-815.
Uchida, Barry T., et al., “Modifications of Gianturco Expandable Wire Stents,” AJR:150, May 1988, Dec. 3, 1987, pp. 1185-1187.
Urban, M.D., Philip, “Coronary Artery Stenting,” Editions Médecine et Hygiène, Genève, 1991, pp. 5-47.
Watt, A.H., et al. “Intravenous Adenosine in the Treatment of Supraventricular Tachycardia; a Dose-Ranging Study and Interaction with Dipyridamole,” British Journal of Clinical Pharmacology (1986), 21, 227-230.
Wheatley, M.D., David J., “Valve Prostheses,” Rob & Smith's Operative Surgery, Fourth Edition, pp. 415-424, Butterworths 1986.
Related Publications (1)
Number Date Country
20210128300 A1 May 2021 US
Provisional Applications (1)
Number Date Country
62040099 Aug 2014 US
Continuations (2)
Number Date Country
Parent 16104015 Aug 2018 US
Child 17247676 US
Parent 14830347 Aug 2015 US
Child 16104015 US