The subject matter herein generally relates to wireless communication, to antennas with dual-frequency and dual-polarization.
In communication engineering, broadcast technology, radar technology, navigation technology, etc., radio wave signals can be transmitted through an antenna. The antenna is an important element of a wireless communication device, antenna technology has improved the development of science and technology.
At present, fifth-generation (5G) communication is fast, and relevant applications are also widely used. Most of 5G communication antennas are patch antennas with simple structures. An impedance bandwidth of the patch antenna is narrow, and forming a dual-polarization antenna, and a multi-array antenna is problematic.
Implementations of the present technology will now be described, by way of example only, with reference to the attached figures.
In order to understand the application, features and advantages of the application, and a detailed description of the application are described through the embodiments and the drawings. It should be noted that, the embodiments of the application and the features in the embodiments can be combined with each other.
Many details are described in the following descriptions, but the embodiments described are only part of the embodiments of the application, not the entirety of embodiments.
Unless defined otherwise, all technical or scientific terms used herein have the same meaning as those normally understood by technicians in the technical field. The following technical terms are used to describe the application, the description is not to be considered as limiting the scope of the embodiments herein.
The dual-frequency and dual-polarization antenna array 100 comprises a first substrate 10, N*M dual-frequency and dual-polarization antennas, and a second substrate 30. N and M are positive integers. In
Each of the dual-frequency and dual-polarization antennas 20a, 20b, 20c, and 20d can comprise a first polarization antenna 2a and a second polarization antenna 2b. The first polarization antenna 2a can comprise a first radiation portion 21 and a second radiation portion 22. The first radiation portion 21 is disposed on a first surface of the first substrate 10, and the second radiation portion 22 is disposed on a second surface of the first substrate 10. The second polarization antenna 2b can comprise a third radiation portion 23 and a fourth radiation portion 24. The third radiation portion 23 is disposed on the first surface of the first substrate 10, and the fourth radiation portion 24 is disposed on the second surface of the first substrate 10.
The second substrate 30 is located in a side of the second surface of the first substrate 10, and a surface of the second substrate 30 close to the first substrate 10 is copper-clad. In layout, the first polarization antenna 2a and the second polarization antenna 2b are orthogonal to each other in the first substrate 10. The dual-frequency and dual-polarization antennas 20a, 20b, 20c, and 20d have the same operating frequency band. For example, in an application scenario of 5G communication, the operating frequency bands of the dual-frequency and dual-polarization antennas 20a, 20b, 20c, and 20d can comprise 28 GHz and 38 GHz frequency bands.
In one embodiment, a distance between two adjacent dual-frequency and dual-polarization antennas 20a and 20b in a horizontal direction is equal to a wavelength 1 of the operating frequency band. For example, the wavelength k of the 28 GHz frequency band in air is 10.5 mm, and the distance between the two adjacent dual-frequency and dual-polarization antennas 20a and 20b in the horizontal direction can be set as 10.5 mm.
In one embodiment, the distance between the two adjacent dual-frequency and dual-polarization antennas 20a and 20b in the horizontal direction is less than a distance between two adjacent dual-frequency and dual-polarization antennas 20a and 20c in a vertical direction. For example, the vertical distance between the two adjacent dual-frequency and dual-polarization antennas 20a and 20c can be set as 13 mm.
In one embodiment, the horizontal direction and the vertical direction can be defined as a predetermined rule, for example, the horizontal direction and the vertical direction can be defined based on the current orientation of the first substrate 10.
In
In one embodiment, a layout direction of the first polarization antenna 2a is the horizontal direction, a layout direction of the second polarization antenna 2b is the vertical direction. The first polarization antenna 2a and the second polarization antenna 2b are orthogonally arranged 90 degrees apart, so that each of the dual-frequency and dual-polarization antennas 20a, 20b, 20c, and 20d operate both vertically and horizontally at the same time, reducing the number of antennas and loss in feed while matching antenna isolation requirement. Each of the dual-frequency and dual-polarization antennas 20a, 20b, 20c, and 20d can simultaneously perform a dual working mode of signal transmitting and signal receiving. The surface of the second substrate 30 close to the first substrate 10 is a copper-clad surface, the second substrate 30 can work as a reflecting board, increasing broadside antenna gain.
In one embodiment, the second substrate 30 can be grounded as a barrier between the dual-frequency and dual-polarization antenna array 100 and other circuit elements (for example a transmitter or a transceiver), to shield and restrict the dual-frequency and dual-polarization antenna array 100 against noise.
In one embodiment, there can be an extended arrangement of the dual-frequency and dual-polarization antenna array 100, and the dual-frequency and dual-polarization antenna array 100 can be expanded to 4*4 or more. The dual-frequency and dual-polarization antennas do not affect impedance matching with each other, and each dual-frequency and dual-polarization antenna is well isolated between the horizontally polarized antenna (for example first polarization antenna 2a) and the vertically polarized antenna (for example second polarization antenna 2b).
In one embodiment, a material of the first substrate 10 can be Roges R04003C, a dielectric constant of the first substrate 10 can be 3.55, and a dielectric loss of the first substrate 10 can be 0.0027. A length (L1) and a width (W1) of the first substrate 10 can be 80 mm*80 mm, and a thickness of the first substrate 10 can be 0.5 mm. A material of the second substrate 30 can be FR-4 epoxy glass cloth, a dielectric constant of the second substrate 30 may be 4.4, and a dielectric loss of the second substrate 30 may be 0.02. A length and a width of the second substrate 30 may be 80 mm*80 mm, and a thickness of the second substrate 30 may be 0.8 mm.
In one embodiment, the length, the width, and the thickness of the first substrate 10 or the second substrate 30 can also be set to other dimensions according to an actual application need.
In one embodiment, each of the dual-frequency and dual-polarization antennas 20a, 20b, 20c, and 20d can further comprise two signal feeding lines to provide current signals. The signal feeding lines can be radio frequency (RF) coaxial cable or other type of cable.
Referring to
In one embodiment, the second substrate 30 comprises a first through hole 31 and a second through hole 32, the first signal feeding line 50a can pass through the first through hole 31, and the second signal feeding line 50b can pass through the second through hole 32. Then, the first signal feeding line 50a and the second signal feeding line 50b pass through the second substrate 30 through the first through hole 31 and the second through hole 32, to reduce feed loss. The first signal feeding line 50a and the second signal feeding line 50b can be RF microwave coaxial cables.
In one embodiment, structures of the dual-frequency and dual-polarization antennas 20b, 20c, and 20d are the same as that of the dual-frequency and dual-polarization antennas 20a, and structural descriptions of the dual-frequency and dual-polarization antennas 20b, 20c, and 20d are omitted here.
The second substrate 30 can also be configured as a circuit board of other elements (for example transmitters and phase shifters), for reducing loss when feeding current signals to the dual-frequency and dual-polarization antenna array 100.
Referring to
For example, the phase angles of the current output by the transmitter 200 are changed by the phase shifter 300, so that the current signals feeding into each polarization antenna has a predetermined phase angle difference. The predetermined phase angle difference can be set according to an actual application need. For example, the predetermined phase angle difference is 15 degrees. The eight polarization antennas comprise eight feed sources, and each feed source differs by 15 degrees. For example, phase angles of the eight polarization antennas can be set to 0°, 15°, 30°, 45°, 60°, 75°, 90°, and 105°. If the dual-frequency and dual-polarization antenna array 100 is expanded to 16*16 or higher antenna array, the phase angle difference can be adjusted according to the actual application need.
In one embodiment, the phase shifter 300 can be controlled by a predetermined control element (for example a microcontroller), and a superposition of phase-shifted signals causes a variable direction of radio beam to achieve a wide range of main lobe beam scanning angles.
In one embodiment, a phase angle difference of feed sources between the same polarization antenna can be set as 15 degrees, or a phase angle difference of feed sources between the same dual-frequency and dual-polarization antenna can be set as 15 degrees.
Referring to
In one embodiment, the first radiation portion 21 can comprise a first square portion 211 and a first rectangular portion 212. The first rectangular portion 212 is extended from a corner of the first square portion 211. The second radiation portion 22 comprises a second square portion 221.
In one embodiment, the third radiation portion 23 comprises a third square portion 231, and the fourth radiation portion 24 comprises a fourth square portion 241 and a second rectangular portion 242. The second rectangular portion 242 is extended from a corner of the fourth square portion 241. Sizes of the first square portion 211, the second square portion 221, the third square portion 231, and the fourth square portion 241 may be the same, all having a diagonal length of 5 mm. Sizes of the first rectangular portion 212 and the second rectangular portion 242 may be the same, and both have a length of 7 mm and a width of 0.7 mm.
In one embodiment, the third radiation portion 23 further comprises a convex portion 232, and the convex portion 232 is disposed on a side of the third radiation portion 23 close to the fourth radiation portion 24. In this embodiment, the third radiation portion 23 can comprise two convex portions 232, and the two convex portions 232 are respectively disposed on a middle portion of two sides of the third radiation portion 23 close to the fourth radiation portion 24. By arranging the convex portion 232, a path of current passing through the third radiation portion 23 is changed, and a bandwidth excited by the second polarization antenna 2b can be adjusted.
In one embodiment, the convex portion 232 is an isosceles right triangle, a long side of the convex portion 232 is attached to a side of the third radiation portion 23, and a length of the long side of the convex portion 232 is less than a side length of the third radiation portion 23. In this embodiment, two convex portions 232 are included, lengths of short sides of the convex portion 232 are 1 mm, and the two convex portions 232 are respectively disposed on the middle portions of two sides of the third radiation portion 23 close to the fourth radiation portion 24.
In one embodiment, the thickness Th1 of the first substrate 10 may be 0.5 mm, and the thickness Th2 of the second substrate 30 may be 0.8 mm. A distance Sd1 between the first substrate 10 and the second substrate 30 is equal to a quarter of the wavelength of the operating frequency band of the dual-frequency and dual-polarization antennas 20a. For a 5G band wireless signal of 28 GHz, a wavelength of the 5G band wireless signal in air is about 10.5 mm, the distance between the first substrate 10 and the second substrate 30 can be defined as 2.6 mm, and the distance between the first substrate 10 and the second substrate 30 is equal to a quarter of the wavelength. Then, a phase angle of reflected wave of antenna can be the same to converge the waves, and a radio beam of the converged waves can be radiated very broadly.
Referring to
The exemplary embodiments shown and described above are only examples. Many such details are neither shown nor described. Even though numerous characteristics and advantages of the present technology have been set forth in the foregoing description, together with details of the structure and function of the present disclosure, the disclosure is illustrative only, and changes may be made in the detail, including in matters of shape, size, and arrangement of the parts within the principles of the present disclosure, up to and including the full extent established by the broad general meaning of the terms used in the claims. It will therefore be appreciated that the exemplary embodiments described above may be modified within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
202110866620.3 | Jul 2021 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
4454514 | Itoh | Jun 1984 | A |
5926137 | Nealy | Jul 1999 | A |
5959594 | Wu | Sep 1999 | A |
7084830 | Suh | Aug 2006 | B1 |
8766743 | Mohamadi | Jul 2014 | B2 |
9502780 | Chau | Nov 2016 | B2 |
10819041 | Kee | Oct 2020 | B1 |
11005190 | Lin | May 2021 | B1 |
11527829 | Chiang | Dec 2022 | B1 |
11923611 | Hu | Mar 2024 | B2 |
20030103007 | Chiu | Jun 2003 | A1 |
20040027291 | Zhang | Feb 2004 | A1 |
20050012665 | Runyon | Jan 2005 | A1 |
20050179611 | Holly | Aug 2005 | A1 |
20170062952 | Sundararajan | Mar 2017 | A1 |
20170214140 | Thill | Jul 2017 | A1 |
20180198191 | So | Jul 2018 | A1 |
20180309198 | Yu | Oct 2018 | A1 |
20190267710 | Jenwatanavet | Aug 2019 | A1 |
20190393729 | Contopanagos | Dec 2019 | A1 |
20200052403 | Hong | Feb 2020 | A1 |
20200203835 | Wu | Jun 2020 | A1 |
20210066817 | Tehran | Mar 2021 | A1 |
20220013884 | Zhao | Jan 2022 | A1 |
20220209398 | Chiang | Jun 2022 | A1 |
20220393368 | Li | Dec 2022 | A1 |
20230051826 | Hu | Feb 2023 | A1 |
20230076013 | Moallem | Mar 2023 | A1 |
20230208049 | Hu | Jun 2023 | A1 |
Number | Date | Country |
---|---|---|
201699130 | Jan 2011 | CN |
109103574 | Dec 2018 | CN |
110829004 | Feb 2020 | CN |
112582790 | Mar 2021 | CN |
112993570 | Jun 2021 | CN |
113113762 | Jul 2021 | CN |
113383464 | Sep 2021 | CN |
115117608 | Sep 2022 | CN |
WO-2020237692 | Dec 2020 | WO |
WO-2021212277 | Oct 2021 | WO |
Number | Date | Country | |
---|---|---|---|
20230051826 A1 | Feb 2023 | US |