Field of the Invention
Certain embodiments disclosed herein relate generally to a heating assembly for use in a gas appliance. Certain embodiments can include a selector valve for a heating assembly to determine a flow path based on fuel type and/or pressure. Aspects of certain embodiments may be particularly adapted for single fuel, dual fuel or multi-fuel use. The gas appliance can include, but is not limited to: heaters, boilers, dryers, washing machines, ovens, fireplaces, stoves, etc.
Description of the Related Art
Many varieties of devices, such as heaters, boilers, dryers, washing machines, ovens, fireplaces, stoves, and other heat-producing devices utilize pressurized, combustible fuels for heating. However, such devices and certain components thereof have various limitations and disadvantages.
According to some embodiments a heating assembly can include any number of different components such as a selector valve, a reset switch, a pressure regulator, a control valve, a burner nozzle, a burner, a pilot, and/or an oxygen depletion sensor. In addition, a heating assembly can be a single fuel, dual fuel or multi-fuel heating system. For example, the heating assembly can be configured to be used with one or more of natural gas, liquid propane, well gas, city gas, and methane. The heating assembly can be used on any number of different devices, including heaters, boilers, dryers, washing machines, ovens, fireplaces, stoves, and grills.
A dual fuel heating assembly can be configured for use with either a first fuel or a second fuel different from the first. The heating assembly can comprise an inlet housing, a first orifice; a second orifice; and a selector switch (SS). The inlet housing can include first and second pressure regulators configured to regulate a flow of fuel within respective first and second predetermined pressure ranges. The inlet housing has a first housing outlet downstream of the first and second pressure regulators. Each of the first and second orifices are configured for the combustion of regulated fuel received from the first housing outlet. The inlet housing may also include a second housing outlet downstream of the first and second pressure regulators. A selector switch (SS) can comprise an SS inlet configured to receive a flow of regulated fuel; a first SS outlet fluidly coupled to the first orifice; a second SS outlet fluidly coupled to the second orifice; an SS valve member and a corresponding SS valve seat; and a diaphragm. The second housing outlet can be fluidly coupled to the diaphragm such that a portion of regulated fuel flow acts on a backside of the diaphragm and wherein a pressure of the regulated fuel acting on the backside of the diaphragm determines whether the SS valve member is engaged with or disengaged from the SS valve seat, thereby determining whether regulated fuel entering the SS inlet is directed to one or both of the first orifice and the second orifice.
According to some embodiments, the heating assembly may further comprise a burner and a pilot light comprising a first pilot orifice, a second pilot orifice, and a thermocouple; the burner and pilot light being in fluid communication with the first housing outlet. The SS can be configured to direct a flow of regulated fuel to one or both of the burner and the pilot. The first orifice and the second orifice can be part of a burner nozzle or a pilot light. Where the SS directs flow to the burner, the system may further comprise a pilot selector switch having first and second pilot selector valves mechanically coupled to the SS valve member, and configured such that the position of the first and second pilot selector valves determine whether regulated fuel flows to one or both of the first pilot orifice and the second pilot orifice. The SS can also direct flow to the pilot and a burner selector switch can be coupled to the SS.
According to some embodiments, the heating assembly may further comprise a gas valve configured to receive regulated fuel flow from either the first or the second pressure regulator through the first housing outlet and to controllably direct regulated fuel flow downstream to the SS inlet.
The heating assembly can further comprise a reset switch and the selector switch can be a locking valve configured such that if the pressure of the regulated fuel acting on the backside of the diaphragm exceeds a set threshold pressure, the SS valve member will engage with the SS valve seat and a second SS valve member will disengage from a second SS valve seat, and the locking valve will secure the first and second SS valve members in this position until the reset switch is actuated.
In some embodiments, the heating assembly can further comprise a fuel selector switch, the fuel selector switch positioned within the inlet housing and between an inlet of the inlet housing and the first pressure regulator, the fuel selector switch comprising a normally closed valve configured to open at a set pressure, the set pressure being above a pressure setting of the second pressure regulator. A manual override switch can also be included, wherein the manual override switch is positioned in a flow path between the inlet and the first housing outlet and configured to prevent fuel from flowing from the inlet to the first pressure regulator and then out of the first housing outlet.
A dual fuel heating assembly according to some embodiments can be for used with either a first fuel or a second fuel different from the first. The heating assembly can include an inlet housing, a gas valve, a pilot light, and a pilot selector switch (PSS). The inlet housing can comprise a first pressure regulator configured to regulate a flow of fuel within a first predetermined pressure range; a second pressure regulator configured to regulate a flow of fluid within a second predetermined pressure range different from the first predetermined pressure range; a first housing outlet downstream of the first and second pressure regulators; and a second housing outlet downstream of the first and second pressure regulators. The gas valve can be configured to receive regulated fuel flow from either the first or the second pressure regulator through the first housing outlet and to controllably direct regulated fuel flow downstream. The pilot light can comprise a first pilot orifice, a second pilot orifice, and at least one thermocouple. Each of the first and second pilot orifices can direct a flame at the at least one thermocouple through combustion of regulated fuel. The pilot selector switch (PSS) can include a PSS inlet configured to receive a flow of regulated fuel, a first PSS outlet fluidly coupled to the first pilot orifice, a second PSS outlet fluidly coupled to the second pilot orifice, first and second PSS valve members and corresponding first and second PSS valve seats, and a diaphragm. One of the first and second PSS valve members or the first and second PSS valve seats being connected to thereby move together so that when the first PSS valve member is engaged with the first PSS valve seat, the second PSS valve member is disengaged from the second PSS valve seat, the first PSS valve member positioned within a first flow path between the PSS inlet and the first PSS outlet and the second PSS valve seat positioned between the PSS inlet and the second PSS outlet. The second housing outlet can be fluidly coupled to the diaphragm such that a portion of regulated fuel flow acts on a backside of the diaphragm and wherein a pressure of the regulated fuel acting on the backside of the diaphragm determines whether the first PSS valve member is engaged with or disengaged from the first PSS valve seat.
A heating assembly can include a locking valve with a reset switch which can include certain pressure sensitive features. These features can be configured to change from a first position to a second position based on a pressure of a fuel flowing into the valve. The valve can be used with either a first fuel or a second fuel different from the first. The valve can become locked or be held in either the first or the second position. For example, a set fuel pressure can cause the valve to move to a closed position and the valve can become locked or held in that position. If the pressure decreases, the valve can remain in the locked position. Actuation of the reset switch can allow the valve to move to a new position, such as an open position.
Various embodiments are depicted in the accompanying drawings for illustrative purposes, and should in no way be interpreted as limiting the scope of the inventions, in which like reference characters denote corresponding features consistently throughout similar embodiments.
Many varieties of heaters, boilers, dryers, washing machines, ovens, fireplaces, stoves, and other heat-producing devices utilize employ combustible fluid fuels, such as liquid propane and natural gas. The term “fluid,” as used herein, is a broad term used in its ordinary sense, and includes materials or substances capable of fluid flow, such as, for example, one or more gases, one or more liquids, or any combination thereof. Fluid-fueled units, such as those listed above, generally are designed to operate with a single fluid fuel type at a specific pressure or within a range of pressures. For example, some fluid-fueled heaters that are configured to be installed on a wall or a floor operate with natural gas at a pressure in a range from about 3 inches of water column to about 6 inches of water column, while others are configured to operate with liquid propane at a pressure in a range from about 8 inches of water column to about 12 inches of water column. Similarly, some gas fireplaces and gas logs are configured to operate with natural gas at a first pressure, while others are configured to operate with liquid propane at a second pressure that is different from the first pressure. As used herein, the terms “first” and “second” are used for convenience, and do not connote a hierarchical relationship among the items so identified, unless otherwise indicated.
Certain advantageous embodiments disclosed herein reduce or eliminate various problems associated with devices having heating sources that operate with only a single type of fuel source. Furthermore, although certain of the embodiments described hereafter are presented in a particular context, the apparatus and devices disclosed and enabled herein can benefit a wide variety of other applications and appliances.
The heater 100 can comprise a housing 200. The housing 200 can include metal or some other suitable material for providing structure to the heater 100 without melting or otherwise deforming in a heated environment. In the illustrated embodiment, the housing 200 comprises a window 220, one or more intake vents 240 and one or more outlet vents 260. Heated air and/or radiant energy can pass through the window 220. Air can flow into the heater 100 through the one or more intake vents 240 and heated air can flow out of the heater 100 through the outlet vents 260.
Within the housing 200, the heater 100, or other gas appliance, can include a heating assembly 10. A heating assembly 10 can include at least one or more of the components described herein.
With reference to
In some embodiments, including the illustrated embodiment, the heater 100 comprises a burner 190. The ODS 180 can be mounted to the burner 190, as shown. The nozzle 160 can be positioned to discharge a fluid, which may be a gas, liquid, or combination thereof into the burner 190. For purposes of brevity, recitation of the term “gas or liquid” hereafter shall also include the possibility of a combination of a gas and a liquid.
Where the heater 100 is a dual fuel heater, either a first or a second fluid is introduced into the heater 100 through the regulator 120. Still referring to
For example, turning to
Different fuels are generally run at different pressures.
As shown in the chart, city gas can be a combination of one or more different gases. As an example, city gas can be the gas typically provided to houses and apartments in China, and certain other countries. At times, and from certain sources, the combination of gases in city gas can be different at any one given instant as compared to the next.
Because each fuel has a typical range of pressures that it is delivered at, these ranges can advantageously be used in a heating assembly to make certain selections in a pressure sensitive manner. Further, certain embodiments may include one or more pressure regulators and the pressure of the fluid flow downstream of the pressure regulator can be generally known so as to also be able to make certain selections or additional selections in a pressure sensitive manner.
As illustrated, the fuel selector valve 110 of
In the various embodiments, there can be one or more valves, gates, or doors 12, 14 that can function in different ways, as well as one or more channels 16, 18 within the housing 24. The gates, doors or valves 12, 14 can work in many different ways to open or close and to thereby establish or deny access to a channel 16, 18. The channels 16, 18 can direct fluid flow to an appropriate flow passage, such as to the appropriate pressure regulator 20, 22, if pressure regulators are included in the heating assembly (
The shown fuel selector valve 110 of
For example, the front portions 30, 40 can be threadedly received into the channels 16, 18. This can allow a user to adjust the position of the front portions 30, 40 within the channels and thereby adjust the compression on the spring, as can best be seen in
Fluid pressure acting on the valve 12, 14, such as through the holes 42 can force the valve to open.
In some embodiments, the fuel selector valve 110 can be used in a dual fuel appliance, such as an appliance configured to use with NG or LP. In this situation, the first threshold pressure to open valve 14 may be set to be between about 3 to 8 inches of water column, including all values and sub-ranges therebetween. In some embodiments, the first threshold pressure is about: 3, 4, 5, 6, 7 or 8 inches of water column. The second threshold pressure to close valve 14 may be set to be between about 5 to 10 inches of water column, including all values and sub-ranges therebetween. The third threshold pressure to open valve 12 can be set to be between about 8 to 14 inches of water column, including all values and sub-ranges therebetween. In some embodiments, the third threshold pressure is about: 8, 9, 10, 11, 12, 13 or 14 inches of water column. In a preferred embodiment, the first and second threshold pressures are between about 3 to 8 inches of water column, where the second is greater than the first and the third threshold pressure is between about 10 to 12 inches of water column. In this embodiment, as in most dual fuel embodiments, the ranges do not overlap.
Returning now to calibration, for certain springs; as the spring is compressed it can require a greater force to further compress the spring. Thus, moving the front portion 30, 40 away from the respective valve 12, 14 would decrease the force required to initially compress the spring, such as to move the valve 14 from a closed position (
In some embodiments, a spring can be used in the fuel selection valve that has a linear spring force in the desired range of movement, compression or extension. The spring force for a particular use of a particular spring can be based on many different factors such as material, size, range of required movement, etc.
Turning now to
The front 30, 40 and rear 36, 38 portions can be used to position the valve 12, 14 within the housing 24. For example, the rear portions 36, 38 can surround a central region of the valve and the valve can move or slide within the rear portion. Further the spring 32, 34 can be between the valve and the rear portion. The front portions 30, 40 can have one or more holes 42 passing therethrough. Fluid pressure acting on the valve 12, 14, such as through the holes 42 can force the valve to open. In some embodiments, the front portions 30, 40 can have a channel 50. The channel 50 can be used to guide movement of the valve. In addition, the channel can direct fluid flow at the valve to open the valve. Because there are no exits in the channel, fluid flow does not pass around the valve but rather remains constantly acting against the valve as long as there is flow through the fuel selector valve 110.
In other embodiments, the front and/or rear portions can be permanently or integrally attached to the housing 24. Some embodiments do not have either or both of a front or rear portion.
It will be understood that any of the pressure sensitive valves described herein, whether as part of a fuel selector valve, nozzle, or other component of the heating assembly, can function in one of many different ways, where the valve is controlled by the pressure of the fluid flowing through the valve. For example, many of the embodiments shown herein comprise helical or coil springs. Other types of springs, or devices can also be used in the pressure sensitive valve. Further, the pressure sensitive valves can operate in a single stage or a dual stage manner. Many valves described herein both open and close the valve under the desired circumstances (dual stage), i.e. open at one pressure for a particular fuel and close at another pressure for a different fuel. Single stage valves may also be used in many of these applications. Single stage valves may only open or close the valve, or change the flow path through the valve in response to the flow of fluid. Thus for example, the fuel selector valve 110 shown in
As discussed previously, the fuel selector valve 110 can be used to determine a particular fluid flow path for a fluid at a certain pressure or in a pressure range. Some embodiments of heating assembly can include first and second pressure regulators 20, 22. The fuel selector valve 110 can advantageously be used to direct fluid flow to the appropriate pressure regulator without separate adjustment or action by a user.
In some embodiments, the first and second pressure regulators 20, 22 are separate and in some embodiments, they are connected in a regulator unit 120, as shown in
The pressure regulators 20, 22 can function in a similar manner to those discussed in U.S. application Ser. No. 11/443,484, filed May 30, 2006, now U.S. Pat. No. 7,607,426, incorporated herein by reference and made a part of this specification; with particular reference to the discussion on pressure regulators at columns 3-9 and FIGS. 3-7 of the issued patent.
The first and second pressure regulators 20, 22 can comprise spring-loaded valves or valve assemblies. The pressure settings can be set by tensioning of a screw that allows for flow control of the fuel at a predetermined pressure or pressure range and selectively maintains an orifice open so that the fuel can flow through spring-loaded valve or valve assembly of the pressure regulator. If the pressure exceeds a threshold pressure, a plunger seat can be pushed towards a seal ring to seal off the orifice, thereby closing the pressure regulator.
The pressure selected depends at least in part on the particular fuel used, and may desirably provide for safe and efficient fuel combustion and reduce, mitigate, or minimize undesirable emissions and pollution. In some embodiments, the first pressure regulator 20 can be set to provide a pressure in the range from about 3 to 6 inches of water column, including all values and sub-ranges therebetween. In some embodiments, the threshold or flow-terminating pressure is about: 3, 4, 5, or 6 inches of water column. In some embodiments, the second pressure regulator 22 can be configured to provide a second pressure in the range from about 8 to 12 inches of water column, including all values and sub-ranges therebetween. In some embodiments, the second threshold or flow-terminating pressure is about: 8, 9, 10, 11 or 12 inches of water column.
The pressure regulators 20, 22 can be pre-set at the manufacturing site, factory, or retailer to operate with selected fuel sources. In many embodiments, the regulator 120 includes one or more caps to prevent consumers from altering the pressure settings selected by the manufacturer. Optionally, the heater 100 and/or the regulator unit 120 can be configured to allow an installation technician and/or user or customer to adjust the heater 100 and/or the regulator unit 120 to selectively regulate the heater unit for a particular fuel source.
Returning now to
The control valve 130 can control the amount of fuel flowing through the control valve to various parts of the heating assembly. The control valve 130 can manually and/or automatically control when and how much fuel is flowing. For example, in some embodiments, the control valve can divide the flow into two or more flows or branches. The different flows or branches can be for different purposes, such as for an oxygen depletion sensor (ODS) 180 and for a burner 190. In some embodiments, the control valve 130 can output and control an amount of fuel for the ODS 180 and an amount of fuel for the burner 190.
Looking now to
Advantageously, the selector switch 140 housing can have a single inlet and one or two outlets. The inlet can be a fuel hook-up designed to connect to a fuel source. In some embodiments, a threaded connection can be made between the fuel source and the fuel hook-up. Having a single fuel hook-up connection simplifies the connection process and allows the user or installer to rely on the pressure sensitive features of the selector switch 140 to select the correct flow path through the selector switch 140, including through the pressure regulators 20, 22. In some embodiments, there may be additional inlets/outlets and additional flow paths through the selector switch 140, but preferably there is only one fuel hook-up designed to connect to a fuel source (such as a propane tank, gas line, etc.) separate from the heating assembly.
As mentioned, the illustrated selector switch 140 has two primary paths through it. Flow through the first primary flow path, the normally closed valve 12 and the first pressure regulator 20 is shown in
Each of the valves 12, 14 can include a diaphragm, a spring and a valve member. The valves can be similar to the pressure regulators, though they can be on/off valves rather than regulating valves. This can be achieved by directing the flow through the valve from the diaphragm side and out by the valve member away from the diaphragm, rather than in through the valve member and towards the diaphragm as in the pressure regulator.
Looking at
Flow through the selector switch 140 will now be described with reference to a first fuel in
If a second fuel, such as LP, is delivered at a higher pressure the fuel may flow through the selector switch 140 as shown in
Along the second primary flow path, the second fuel can flow to the second pressure regulator 22 and then to the normally open valve 14. As mentioned, fluid from the first pressure regulator 20 can flow into the normally open valve 14 on a backside of the diaphragm. This can close the normally open valve 14 to prevent fluid from leaving the second primary flow path.
As will be understood, the selector switch 140 can be set to allow a first fuel at a first pressure to flow through the second primary flow path and a second fuel at the second higher pressure to flow through the first primary flow path. The selector switch 140 can also prevent the wrong fuel from flowing through the selector switch 140 through the wrong path. For example, LP may flow through the NG pressure regulator, but this flow will not leave the selector switch 140, while the properly regulated flow of LP will flow through the LP pressure regulator and will be able to leave the selector switch 140.
In some embodiments the normally closed switch 12 can be set to open at a set pressure such as 11 inches of water column. In addition, the pressure regulators can be set to regulate the fuel within a range of 11-14 inches of water column and 4-9 inches of water column. In addition, the normally open switch 14 can be set to close at a set pressure such as 4-5 inches of water column. It will be understood that other ranges and set pressures can be used such as those previously described herein with respect to the selector valve 110.
It can also be seen that the selector switch 140 can include a by-pass valve 76. In some embodiments, the by-pass valve 76 can be a screw positioned to prevent or allow flow through a bypass channel. As illustrated, the bypass is a channel in the housing that can be used to allow gas or other fluid to flow between certain areas of the housing. For example, the housing of the selector switch 140 can have a bypass channel machined in the housing and a screw hole can be machined to pass through the bypass channel. The position or presence of the screw can determine whether or not flow can pass through the bypass channel. In other embodiments, a valve can be positioned with bypass channel. The valve can be a manual valve, such as a rotary valve, or an electronic valve.
In some, generally limited instances, it may be desirable to bypass the functioning of the normally open switch 14. For example, a certified installer may realize that the fluid pressure at the particular location is greater than (or less than) the typical range which may be causing the normally open switch 14 to close when this is not desirable or correct. Thus, for example, NG can be provided to a heater and connected to the selector switch 140, but because the fluid pressure is outside of an expected range, it may be flowing through the LP regulator and closing flow from the NG regulator. Opening the illustrated bypass with the by-pass valve 76 can allow the heater to function normally, even though the fluid pressure is outside of the normal range.
Thus, the installer can open the valve 76, such as by backing off the screw 76 positioned within the bypass channel. Once the valve is open, fluid can flow between the inlet and the outlet of the selector switch 140 along the second primary flow path. Where the selector switch 140 has two outlets, one leading to components configured for LP and the other to NG components, running NG through both outlets will not generally create any issues or problems. At the same time, running LP through the NG components may provide a flame that is undesirably large and a fire hazard. Thus, the by-pass valve is preferably on the NG side, but there is not a corresponding by-pass valve on the LP side.
As shown in
With continued reference to
As illustrated, current from the electrode and the ignition control 187 is also passed to the control valve 130. When a flame is present to generate current the control valve 130 can be maintained in an open position to allow fuel to flow to the burner nozzle 160 and to the burner 190.
The burner nozzle 160 can be a pressure sensitive nozzle with at least two nozzle orifices 2, 4. In a LP/NG system, one nozzle orifice can be an LP orifice 2 and the other can be an NG orifice 4. One nozzle orifice 2, such as the LP orifice, can always be open to flow while the second nozzle orifice 4 can be opened and closed dependent on the pressure of the fuel flow. For example, a normally open valve 14 can be utilized to provide the flow path control to the various orifices 2, 4. Thus, when a low pressure fluid flows through the valve, the fluid can flow to both orifices 2, 4. But, a higher pressure fluid can close the valve, so that the flow only goes to one orifice 2. It will be noted the all of the valves shown in this embodiment are schematic and may not represent the actual position of the valve member with respect to the valve seat of the actual valve. In other embodiments, the valve can open one flow path, while closing the other. Thus, the fluid pressure can determine whether the fluid flows to one of a first orifice 2 or a second orifice 4, while flow is prevented to the other.
The pressure sensitive nozzle 160 can function in a similar manner to those discussed in U.S. application Ser. No. 13/310,664, filed Dec. 2, 2011, published as U.S. 2012/0255536 on Oct. 11, 2012, incorporated herein by reference and made a part of this specification; with particular reference to the discussion on pressure sensitive nozzles at paragraphs [0188]-[0193] and FIGS. 42A-B, as well as [0130]-[0135], [0144]-[0156], [0178]-[0187] and FIGS. 23-24B, 28A-34B, 39A-40C of the published application.
The pilot 180 can also utilize a pilot selector switch 150 which can function similar to the selector switch 140 previously described without the pressure regulators. The pilot selector switch 150 can have one, two, or more inlets that can lead to two primary paths through the pilot selector switch 150 to one, two, or more outlets. As illustrated, in the first primary flow path between the inlet(s) and outlet(s), a normally closed valve 12 is positioned in front of or upstream from the first pilot nozzle 6. In the second primary flow path between the inlet(s) and outlet(s), a normally open valve 14 is positioned in front of or upstream from the second pilot nozzle 8.
It can also be seen that fluid from the normally closed valve 12 can flow into the normally open valve 14 on a backside of the diaphragm. If the pressure created from this flow exceeds the spring pressure and the pressure on the front side of the diaphragm, the normally open valve 14 will close. Each of the valves 12, 14 can include a diaphragm, a spring and a valve member.
A first fuel, such as NG, can enter the inlet of the pilot selector switch 150 and begin to flow down the two primary flow paths. The first fuel can be delivered at a lower pressure which can be insufficient to open the normally closed valve 12. Thus, the first fuel would not proceed further along the first primary flow path. Along the second primary flow path, the first fuel can flow to the normally open valve 14 and then proceed through to the second pilot nozzle.
If a second fuel, such as LP, is delivered at a higher pressure the fuel may flow through the inlet and begin to flow down the two primary flow paths. The second fuel can be delivered at a pressure sufficient to open the normally closed valve 12. Thus, the second fuel could proceed along the first primary flow path to the first pilot nozzle. The second fuel can also flow to the backside of the diaphragm of the normally open valve 14. This can close the normally open valve 14 to prevent fluid from leaving the second primary flow path.
As will be understood, the pilot selector switch 150 can be set to allow a first fuel at a first pressure to flow through the second primary flow path and a second fuel at the second higher pressure to flow through the first primary flow path. The pilot selector switch 150 can also prevent the wrong fuel from flowing through the pilot selector switch 150 along the wrong path to the wrong pilot nozzle.
Moving now to
In
Looking to
A heating assembly can include a fuel selector switch which can include certain pressure sensitive features. These features can be configured to change from a first position to a second position based on a pressure of a fuel flowing into the feature. The fuel selector switch can be for use with either a first fuel or a second fuel different from the first. The fuel selector switch can comprise a first primary flow path and a second primary flow path. A first valve and a first pressure regulator can be positioned in the first primary flow path. A second valve and a second pressure regulator can be positioned in the second primary flow path.
In some embodiments, a fuel selector switch can be used with either a first fuel or a second fuel different from the first. The fuel selector switch can include a housing having an inlet, an outlet, a first primary flow path between the inlet and the outlet and a second primary flow path between the inlet and the outlet. The fuel selector switch may further include a first valve and a first pressure regulator positioned in the first primary flow path, and a second valve and a second pressure regulator positioned in the second primary flow path. The first valve can comprise a first valve body and a first valve seat, the first valve configured to have a closed position wherein the first valve body is engaged with the first valve seat and an open position wherein the first valve body is disengaged from the first valve seat. The first pressure regulator can be configured to regulate the flow of fluid within a first predetermined pressure range. The second valve can comprise a diaphragm, a second valve body, and a second valve seat; the second valve can be configured to have a closed position wherein the second valve body is engaged with the second valve seat and an open position wherein the second valve body is disengaged from the second valve seat. The second pressure regulator can be configured to regulate the flow of fluid within a second predetermined pressure range, different from the first. The fuel selector switch can be configured such that a fluid pressure of the fuel following through the fuel selector switch determines whether the first primary flow path and the second primary path is open or closed as predetermined threshold fluid pressures determine the position of the respective first and second valves.
In certain further embodiments, the housing further comprises a feedback flow path between the second primary flow path and a backside of the diaphragm of the second valve to influence a position of the diaphragm and second valve body of the second valve. The second valve may be downstream of the second pressure regulator in the second primary flow path. The first valve may be downstream of the first pressure regulator in the first flow path. Additionally, the first valve may be a normally closed valve and the second valve may be a normally open valve. The fuel selector switch can further include a by-pass valve and a by-pass channel connected to the second primary flow path such that when the by-pass valve is in an open position it allows fluid flow to bypass the second valve.
According to some embodiments, a fuel selector switch for use with either a first fuel or a second fuel different from the first can comprise a housing, a first valve, a second valve, a first pressure regulator and a second pressure regulator. The housing can have an inlet, an outlet, a first primary flow path between the inlet and the outlet and a second primary flow path between the inlet and the outlet. The first valve can be positioned in the first primary flow path. The first valve can comprise a first valve body and a first valve seat, the first valve configured to have a normally closed position wherein the first valve body is engaged with the first valve seat and an open position wherein the first valve body is disengaged from the first valve seat. The first pressure regulator can be positioned in the first primary flow path downstream from the first valve, the first pressure regulator configured to regulate the flow of fluid within a first predetermined pressure range. The second valve can be positioned in the second primary flow path, the second valve comprising a diaphragm, a second valve body, a second valve seat, the second valve configured to have a closed position wherein the second valve body is engaged with the second valve seat and a normally open position wherein the second valve body is disengaged from the second valve seat. The second pressure regulator can be positioned in the second primary flow path upstream from the second valve, the second pressure regulator configured to regulate the flow of fluid within a second predetermined pressure range, different from the first. The housing can further comprise a feedback flow path between the second primary flow path and a backside of the diaphragm of the second valve to influence a position of the diaphragm and second valve body of the second valve. The fuel selector switch can be configured such that a fluid pressure of the fuel following through the fuel selector switch determines whether the first primary flow path and the second primary path is open or closed as predetermined threshold fluid pressures determine the position of the respective first and second valves.
Now turning to
Numerical reference to components is the same as previously described. Where such references occur, it is to be understood that the components are the same or substantially similar to previously-described components. It should be understood that the illustrated piloted heater system 10 includes each of the features designated by the numbers used herein. However, as emphasized repeatedly herein, these features need not be present in all embodiments.
Comparing
For most piloted heater systems the pilot 180 of the heater assembly 10 needs to be proven before fuel can flow to the burner 190. In this initial stage, as shown in
Along the second primary flow path, the fuel can flow to the pressure regulator 22 and then to the normally open valve 14. From the normally open valve 14 the fuel can leave the selector switch out of one of the two outlets. As can be seen, each outlet is connected to a separate pilot nozzle 6, 8 of the pilot 180. With the correct fuel at the correct pilot nozzle, the pilot can be proven, allowing the control valve 130 to provide fuel to the burner 190.
The illustrated primary regulator 52 can work together with an auxiliary regulator 54. The auxiliary regulator 54 can bleed fuel onto the backside of a diaphragm of the primary regulator 52. In this way, the auxiliary regulator 54 can change the pressure setting of the primary regulator 52 dependent on the type of fuel flowing to the regulators as will be discussed in more detail below.
Two labeled bleed-lines are also shown. These bleed-lines can be finely metered capillaries that do not release a significant amount of gas to reduce the main flow. The bleed line bypassing the primary regulator 52 can provide a slight pressure differential on the downstream side so that when there is an equal pressure on both sides of the diaphragm, the valve will bias towards an open position. The bleed line to the auxiliary regulator 54 can have a similar affect.
The primary regulator 52 and auxiliary regulator 54 can function similar to the regulator system with auxiliary regulators described in U.S. application Ser. No. 13/791,772, filed Mar. 8, 2013, published as U.S. 2013/0299022 on Nov. 14, 2013, incorporated herein by reference and made a part of this specification.
Turning now to
In the second primary flow path, the fuel can flow to the pressure regulator 22 and then to the normally open valve 14. As previously discussed, fuel from the first flow path can also flow into the normally open valve. The increased pressure on the backside of a diaphragm can close this valve, preventing fuel from flowing to the second pilot nozzle 8. It can also be seen that fuel flow from the first flow path can also flow to the backside of a diaphragm of the auxiliary regulator 54.
Moving now to
As mentioned, fuel flow from the first flow path of the selector switch 140 adjacent the pilot light 180 can flow to the backside of the diaphragm of the auxiliary regulator 54. This increased pressure can allow fuel to flow through the auxiliary regulator 54 to the backside of the primary regulator 52 changing the relationship between the valve member and the valve seat within the primary regulator 52.
As has been previously discussed, a by-pass valve 76 can be included to bypass the functioning of the normally open switch 14. For example, a certified installer may realize that the fluid pressure at the particular location is less than or greater than the typical range which may be causing the normally open switch 14 to close when this is not desirable or correct. Thus, for example, NG can be provided to a heater and to the selector switch 140, but because the fluid pressure is outside of an expected range, it may be flowing through the LP regulator and closing flow from the NG regulator. Opening the illustrated bypass channel with the by-pass valve 76 can allow the heater to function normally, even though the fluid pressure is outside of the normal range. In addition, the by-pass 76 can include two by-pass valves. The second by-pass valve can be on the LP fuel line before the pilot nozzle and can close the flow path so that NG does not flow to the LP pilot nozzle. The two valves 76 can be electrically or mechanically linked. In addition, as previously discussed, the by-pass valve(s) 76 can also be a cutoff valve 76 positioned along the first primary flow path before the bleed line to the valve 14. The cutoff valve 76 can stop flow through the first primary flow path and prevent flow from reaching both the backside of the diaphragm of the valve 14 and the pilot nozzle 6.
According to some embodiments, a heating assembly can be used with either a first fuel or a second fuel different from the first. The heating assembly can comprise a control valve, a pilot light, a burner, a burner nozzle and a fuel selector switch. The control valve can have an inlet, a pilot flow control, and a burner flow control. The pilot light can have a first pilot nozzle and a second pilot nozzle, the pilot light configured to receive fuel flow from the pilot flow control of the control valve. The burner nozzle can be configured to receive fuel flow from the burner flow control of the control valve and to direct the fuel flow to the burner. A fuel selector switch can be positioned in a first flow path between the pilot flow control and the pilot light and configured to allow fuel flow to one of a first pilot nozzle and a second pilot nozzle while preventing fuel flow to the other of the first pilot nozzle and the second pilot nozzle. The fuel selector switch can be pressure sensitive and can include first and second valves. The first valve can have a first valve body, a first valve seat, and a first outlet fluidly connected to the first pilot nozzle. The second valve can have a diaphragm, a second valve body, a second valve seat and a second outlet fluidly connected to the second pilot nozzle. Further, a backside of the diaphragm of the second valve can be fluidly connected to the first outlet of the first valve to influence a position of the diaphragm and second valve body of the second valve.
In some embodiments, the fuel selector switch further comprises a first pressure regulator and a second pressure regulator, each pressure regulator configured to regulate the flow of fluid within a different predetermined pressure range. The second valve can be downstream of the second pressure regulator. The first valve can be upstream or downstream of the first pressure regulator. When it is upstream, fuel flow from the first outlet is configured to pass through the first valve before flowing to the backside of the diaphragm. The first valve can be a normally closed valve and the second valve can be a normally open valve.
In some embodiments, the heating assembly can further comprise one or more of the following. A by-pass valve and a by-pass channel and when the by-pass valve is in an open position being configured to allow fuel flow to bypass the second valve. A primary regulator valve can be positioned in a second flow path between the burner flow control and the burner nozzle. An auxiliary regulator fluidly coupled to a backside of a diaphragm of the primary regulator valve. The nozzle can be a pressure sensitive nozzle configured to always allow fuel flow to a first burner orifice and to selectively allow fuel flow to a second burner orifice.
In certain embodiments, a heating assembly can be used with either a first fuel or a second fuel different from the first. The heating assembly can comprise a control valve, a pilot light, a burner, a burner nozzle and a fuel selector switch. The control valve can have an inlet, a pilot flow control, and a burner flow control. The pilot light can have a first pilot nozzle and a second pilot nozzle, the pilot light configured to receive fuel flow from the pilot flow control of the control valve. The burner nozzle can be configured to receive fuel flow from the burner flow control of the control valve and to direct the fuel flow to the burner. A fuel selector switch can be positioned in a first flow path between the pilot flow control and the pilot light and configured to allow fuel flow to one of a first pilot nozzle and a second pilot nozzle while preventing fuel flow to the other of the first pilot nozzle and the second pilot nozzle. The fuel selector switch can be pressure sensitive and can include first and second valves, and first and second pressure regulators. The first valve can have a first valve body, a first valve seat, and a first outlet fluidly connected to the first pilot nozzle. The first pressure regulator can be configured to regulate fuel flow within a first predetermined pressure range, the first pressure regulator fluidly positioned in series with the first valve. The second valve can have a diaphragm, a second valve body, a second valve seat and a second outlet fluidly connected to the second pilot nozzle. The second pressure regulator can be configured to regulate fuel flow within a second different predetermined pressure range, the second first pressure regulator fluidly positioned in series with the second valve. A backside of the diaphragm of the second valve can be fluidly connected to the first outlet of the first valve to influence a position of the diaphragm and second valve body of the second valve.
Turning now to
Numerical reference to components is the same as previously described. Where such references occur, it is to be understood that the components are the same or substantially similar to previously-described components. It should be understood that the illustrated piloted heater system 10 includes each of the features designated by the numbers used herein. However, as emphasized repeatedly herein, these features need not be present in all embodiments. In addition, it will be understood that the selector switch shown can be used in other types of heater systems.
The illustrated selector switch 140 includes an electrically powered switch 78 that can control the position of the first and/or second valve 12, 14 within the selector switch 140. In addition, or alternatively, the electrically powered switch 78 can provide or interrupt a signal to the control valve 130 to control or influence a valve in the control valve. For example, the control valve can include a solenoid valve that can control fuel flow to the burner.
The electrically powered switch 78 can be a relay switch in some embodiments. A thermopile or other thermo-generator 80 can be used to generate a current to power the electrically powered switch 78.
As previously discussed, the pilot 180 of the heater assembly 10 generally needs to be proven before fuel can flow to the burner 190. In this initial stage, as shown in
A small flame is formed at the first pilot nozzle 6 that is insufficient to heat the thermopile 80 or the first thermocouple 182. At the same time, a large flame at the second pilot nozzle 8 is able to prove the second thermocouple 182. In the illustrated example, NG is used which is the correct fuel for the second pilot nozzle 8.
Once the pilot is proven, the control valve 130 can allow fuel to flow to the burner nozzle 160 as shown in
In addition, the control valve can close valve V1 so that the only flow to the pilot 180 is from the selector switch 140. This effectively turns off the flame at the first pilot nozzle 6. Though it is generally not required to turn off this flame due to its small size, it may confuse consumers and so is preferably turned off.
Looking now to
A large flame is formed at both the first and second pilot nozzles 6, 8. The large flame at the first pilot nozzle 6 can heat the thermopile 80 and the first thermocouple 182. At the same time, a large flame at the second pilot nozzle 8 may also heat the second thermocouple 182, though in some embodiments, the large flame may angle upwards away from the second thermocouple.
Turning now to
Once the pilot is proven, the control valve 130 can allow fuel to flow to the burner nozzle, as shown in
In addition, the control valve can close valve V1 so that the only flow to the pilot 180 is from the selector switch 140. In this instance, as the first valve 12 is open, this does not affect the flame at the first pilot nozzle 6.
As has been previously discussed, a by-pass valve 76 can be included to correct a wrong gas running above typical pressures. For example, a certified installer may realize that the fluid pressure at the particular location is greater than the typical range. This may cause NG to flow through the LP lines. A bypass valve 76 can close the flow to the LP pilot nozzle 6. This in turn prevents heating of the thermopile 80 and the first thermocouple 182. The second thermocouple 182 will then be proven, and the NG will run through the correct lines.
A dual fuel heating assembly can include first and second nozzles, a fuel selector switch, a thermopile, and first and second pressure regulators. The fuel selector switch can include a first valve and an electrically powered switch to control the position of the first valve. The pressure regulators can regulate different fuels within different predetermined pressure ranges. The first pressure regulator can direct fuel flow to the first nozzle. The second pressure regulator can selectively receive fuel flow from the fuel selector switch and direct fuel flow to the second nozzle. The thermopile positioned adjacent the first nozzle is electrically coupled to the electrically powered switch. Heat from combustion at the first nozzle can generate a current at the thermopile so that at a predetermined set point the electrically powered switch closes the first valve to prevent fuel flow to the second pressure regulator and the second nozzle.
In some embodiments, a heating assembly can be used with either a first fuel or a second fuel different from the first. The heating assembly can comprise a housing having an inlet; a first nozzle; a second nozzle; a fuel selector switch configured to receive fuel flow from the inlet; first and second pressure regulators and a thermopile. The fuel selector switch can comprise a first valve having a first valve body and a first valve seat and an electrically powered switch configured to control the position of the first valve. The first pressure regulator can be configured to regulate fuel flow within a first predetermined pressure range, the first pressure regulator configured to receive fuel flow from the inlet and to direct fuel flow to the first nozzle. The second pressure regulator can be configured to regulate fuel flow within a second different predetermined pressure range, the second pressure regulator configured to selectively receive fuel flow from the fuel selector switch and to direct fuel flow to the second nozzle. The thermopile can be positioned adjacent the first nozzle and be electrically coupled to the electrically powered switch. Heat from combustion at the first nozzle can generate a current at the thermopile, the thermopile and electrically powered switch can be configured such that when the current reaches a predetermined set point the electrically powered switch closes the first valve to prevent fuel flow to the second pressure regulator and the second nozzle.
In some embodiments, the fuel selector switch further comprises a second valve having a second valve body and a second valve seat, the second valve configured to selectively allow fuel flow from the fuel selector switch to the first pressure regulator. The heating assembly may include first and second thermocouples. The first nozzle can be a first pilot nozzle configured to direct a flame towards the first thermocouple and the second nozzle can be a second pilot nozzle configured to direct a flame towards the second thermocouple. The electrically powered switch can comprise a normally closed relay switch electrically coupled to the second thermocouple. A control valve can be electrically coupled to the first and second thermocouples and configured to control fuel flow through the heating assembly.
In further embodiments, the heating assembly can further include a primary regulator valve positioned in a flow path between the inlet and the burner nozzle. An auxiliary regulator may also be used fluidly coupled to a backside of a diaphragm of the primary regulator valve. A pressure sensitive nozzle having first and second burner orifices may be used in certain embodiments. The pressure sensitive nozzle can be configured to always allow fuel flow to the first burner orifice and to selectively allow fuel flow to the second burner orifice.
According to some embodiments, a dual fuel heating assembly can include a control valve having an inlet, a pilot flow control, and a burner flow control; a pilot light having a first pilot nozzle and a second pilot nozzle, the pilot light configured to receive fuel flow from the pilot flow control of the control valve; a burner; a burner nozzle configured to receive fuel flow from the burner flow control of the control valve and to direct the fuel flow to the burner; a fuel selector switch configured to receive fuel flow from the pilot flow control of the control valve; a first pressure regulator configured to regulate fuel flow within a first predetermined pressure range, the first pressure regulator configured to receive fuel flow from the pilot flow control of the control valve and to direct fuel flow to the first pilot nozzle; a second pressure regulator configured to regulate fuel flow within a second different predetermined pressure range, the second pressure regulator configured to selectively receive fuel flow from the fuel selector switch and to direct fuel flow to the second pilot nozzle; and a thermopile adjacent the first pilot nozzle and electrically coupled to the electrically powered switch. The fuel selector switch can comprise a first valve having a first valve body and a first valve seat and an electrically powered (e.g. relay) switch configured to control the position of the first valve. Heat from combustion at the first pilot nozzle can generate a current at the thermopile, the thermopile and electrically powered switch can be configured such that when the current reaches a predetermined set point the electrically powered switch closes the first valve to prevent fuel flow to the second pressure regulator and the second pilot nozzle.
In some embodiments, a heating assembly can be used with either a first fuel or a second fuel different from the first. The heating assembly can comprise a housing having an inlet, a first nozzle, a second nozzle, a fuel selector switch configured to receive fuel flow from the inlet, and a thermopile. The fuel selector switch can include a first valve having a first valve body and a first valve seat, a second valve having a second valve body and a second valve seat, and an electrically powered switch configured to control the position of the first and second valves such that when one valve is open, the other is closed. The thermopile can be adjacent the first nozzle and electrically coupled to the electrically powered switch. Heat from combustion at the first nozzle can generate a current at the thermopile, the thermopile and electrically powered switch configured such that when the current reaches a predetermined set point the electrically powered switch closes the first valve to prevent fuel flow to the second pressure regulator and the second nozzle and opens the second valve.
Further embodiments can include a first pressure regulator and a second pressure regulator. The pressure regulators can be configured to regulate fuel flow within a predetermined pressure range. The first pressure regulator can be configured to receive fuel flow from the inlet and selectively from the fuel selector switch and to direct fuel flow to the first nozzle. The second pressure regulator can be configured to selectively receive fuel flow from the fuel selector switch and to direct fuel flow to the second nozzle. Still further embodiments can include a control valve to control fuel flow to the first and second nozzles.
Turning now to
A heating assembly can include a locking valve with a reset switch which can include certain pressure sensitive features. These features can be configured to change from a first position to a second position based on a pressure of a fuel flowing into the valve. The valve can be used with either a first fuel or a second fuel different from the first. The valve can become locked or be held in either the first or the second position. For example, a predetermined fuel pressure can cause the valve to move to a closed position and the valve can become locked or held in that position. If the pressure decreases, the valve can remain in the locked position. Actuation of the reset switch can allow the valve to move to a new position, such as an open position.
Such a locking valve with a reset switch can be used to set a valve member position with respect to a valve seat independent of a later fluid pressure condition. For example, when the heating assembly 10 is connected to a tank fuel source, the supply pressure may decrease as the tank empties. This may result in the tank supplying the heating assembly with fuel at a pressure lower than the initial pressure when the tank was full or fuller.
In order to prevent a fuel from passing through the heating assembly in the wrong manner, the locking valve 92 with reset switch 90 can be used. In some examples, the locking valve 92 with reset switch 90 can be set for selection between LP and NG. When LP is used, the locking valve 92 can be configured such that the valve member will move to a closed position. As per the illustrated embodiment, this can prevent fuel from flowing to one of the burner orifices 4 of the nozzle 160. The valve can then be held or locked in this position. If the fluid pressure falls, such as because of a reduction in pressure within a fuel source tank, the reduction in pressure will not adversely affect the system. Rather, the valve 92 will be maintained in the proper closed position.
If a different source of fuel is later connected to the heating assembly the reset switch can be actuated to release the valve 92 from the locked position. It will be understood, that the locking valve 92 with reset switch 90 can be used at various locations within a heater assembly. The locking valve 92 with reset switch 90 is illustrated as a orifice selector valve 92 for a burner nozzle 160, though it can also be used with a pilot 180, with a pressure regulator 20, 22, selector switch 140, etc. For example, any of the locking valves 92 with reset switch 90 of
Looking at
Fluid pressure can be used to change the position of the valve member. The fluid pressure can be from the fluid flowing through the valve, such as between the valve member and the valve seat, or from fluid acting on a backside of a diaphragm 94, or from pressure acting on some other feature. For example, pre-regulated fuel, fuel directly from the fuel supply, or fuel post regulation can be in communication with a backside or frontside of a diaphragm 94.
The valve member can be connected to or in close proximity to the reset switch and associated locking feature. The locking feature of the reset switch of the illustrated embodiments includes (1) a magnet 91 and magnetic plate 93, (
In
The reset switch 90 can include a knob (proximity detent release) 101 and a spring. A user can pull the knob 101 to force the magnet 91 away from the magnetic plate 93, which will allow the magnetic plate to move away from the magnet if there are no counter acting forces on the backside of the diaphragm 94. In other embodiments, the reset switch 90 can include a preferably non-magnetic rod and the user can push on the knob to advance the rod to separate the magnetic plate and the magnet 91 if, again, there are not counter acting forces on the backside of the diaphragm 94. In other embodiments, the reset switch 90 can include a preferably non-magnetic rod and the user can pull up (or on) the knob to advance the magnet 91 away from the rod or plate to separate them if, again, there are not counter acting forces on the backside of the diaphragm 94.
In
The reset switch 90 can include a knob 101 to contact the invertible membrane 95. A user can pull or push the knob 101 to force the invertible membrane 95 to change positions, thereby also forcing the valve member to change positions. The knob 101 can be connected to the invertible membrane 95, or may simply contact the invertible membrane when the invertible membrane is in its closest position to the knob and the knob is advanced towards the invertible membrane. The invertible membrane 95 can be positioned within the locking valve in a chamber separated from fluid flow. In this way the fluid flow can be prevented from moving or biasing the invertible membrane 95 to a particular position. The other embodiments of locking mechanism can be similarly situated.
In
Pressing or pulling the reset switch 99 can allow air to enter the air chamber 97, equalizing the pressure with the environment and allowing the valve member to move back to the initial position.
Though three embodiments of locking valve 92 with reset switch 90 are shown, it will be understood that the many other systems can be used to serve the same or similar purposes, especially as regards to the locking and resetting features.
It will be understood that any type of locking system can be used. The locking valve 92 can hold the valve 12 in the open position and the valve 14 in the closed position as shown in
The locking valve 92 of
Moving now to
Looking first at the selector switch 140 of
The locking valve 92 is shown with the magnetic plate and magnet locking system of
The locking valve 92 can include a valve member, a valve seat, and a biasing member. The biasing member can comprise one or more of a spring and a diaphragm 94. The biasing member can bias the valve member to an open or closed position with respect to the valve seat. As shown in
Fluid pressure can be used to change the position of the valve member. The fluid pressure can be from the fluid flowing through the valve, such as between the valve member and the valve seat, or from fluid acting on a backside of a diaphragm 94, or from pressure acting on some other feature. This is shown by the high pressure feedback path illustrated as a dotted line running from the valve 12 to the area between to two diaphragms 94. As illustrated, pre-regulated fuel after passing through the valve 12 can provide a signal pressure in communication with a backside of the diaphragm 94. It will be understood that the pre-regulated fuel pressure will be greater than the post regulated pressure flowing through the valve and acting on the front side of the diaphragm 94.
In this way, the orifice selector valve 92 can control whether fuel flows to one or two burner nozzles 2, 4 of the nozzle 160 to the burner 190. In addition, as previously discussed, the locked valve can hold the valve member in the closed position if a higher pressure fuel, such as LP is provided to the system 10.
As can be seen, the pre-regulated fuel after passing through the valve 12 can provide a signal pressure in communication with a backside of a diaphragm 94 of the valve 14, in addition to the locking valve 92.
Flow through the piloted heater system 10 of
From the selector switch 140, fuel can flow to the control valve 130. The control valve 130 can selectively provide fuel to both the burner 190 and to the pilot 180. As has been previously discussed with respect to other embodiments, the pilot 180 is first proven, prior to fuel flowing to the burner 190. As can be seen, the pilot 180 can include different pilot nozzles for the different fuels, such as an LP pilot nozzle 6 and an NG pilot nozzle 8. Each pilot nozzle 6, 8 can have a dedicated thermocouple, or they can be directed to a single thermocouple 182 as shown. In addition, in some embodiments, the nozzles can direct heat to different parts of the same thermocouple.
In order to prove the pilot 180, the control valve 130 directs fuel flow to the pilot selector switch 150. The pilot selector switch 150 can function similar to the selector switch 140 previously described without the pressure regulators. As shown, the pilot selector switch 150 has one inlet that leads to two primary paths through the pilot selector switch 150 to two outlets. A normally closed valve 12 is positioned in front of or upstream from the first pilot nozzle 6 and a normally open valve 14 is positioned in front of or upstream from the second pilot nozzle 8. These two valves are linked by member 96 so that one is closed while the other is open.
The first fuel, such as NG, can enter the inlet of the pilot selector switch 150 and begin to flow down the two primary flow paths. The first fuel can be delivered at a lower pressure which can be insufficient to open the normally closed valve 12. Thus, the first fuel can flow to the normally open valve 14 and then proceed through to the second pilot nozzle 8 to prove the pilot.
Once the pilot is proven, the control valve 130 can allow fuel to flow to the locking valve 92 with reset switch 90 that is part of the selector valve 140. Fuel can also flow directly to one of the orifices 2 of the burner nozzle 160 and then to the burner 190.
At the locking valve 92, as the fuel is at a lower pressure it can be insufficient to close the locking valve 92. In addition, it will be understood that as valve 12 of the selector valve remains closed, there is no unregulated fuel flowing to the backside of the diaphragm 94 of the locking valve 92. Thus, fuel is allowed to flow through the locking valve 92 to the second orifice 4 of the burner nozzle 160 and to the burner 190. Thus, when a low pressure fluid flows from the control valve 130, desirably the fluid can flow to both nozzle orifices 2, 4.
Looking now to
In addition, the pre-regulated fuel after passing through the valve 12 can provide a signal pressure in communication with a backside of the diaphragms 94 of the valve 14 and the valve of the locking valve 90. This is shown by the high pressure feedback path illustrated as a dotted line running from the valve 12 to the area between to the two diaphragms 94. The higher pressure fuel can cause the locking valve 90 to close. The locking feature can engage to secure the valve in a locked position until the reset mechanism is pressed 90.
Once the fuel leaves the first pressure regulator 20 and the outlet of the selector valve 140 it can flow to the control valve 130. The control valve 130 can selectively provide fuel to both the burner 190 and to the pilot 180. In order to prove the pilot 180, the control valve 130 directs fuel flow to the pilot selector switch 150.
The second fuel, such as LP, can enter the inlet of the pilot selector switch 150 and begin to flow down the two primary flow paths. The second fuel can be delivered at a higher pressure which can open the normally closed valve 12. As the valves 12 and 14 are linked, this also closes valve 14. Thus, the second fuel can flow to the normally closed valve 12 and then proceed through to the first pilot nozzle 6 to prove the pilot 180.
Once the pilot is proven, the control valve 130 can allow fuel to flow to the locking valve 92 with reset switch 90 that is part of the selector valve 140. Fuel can also flow directly to one of the orifices 2 of the burner nozzle 160 and then to the burner 190.
As has been mentioned, the pre-regulated fuel at the higher pressure after passing through the valve 12 can cause the locking valve 92 to close. Thus, fuel is prevented from passing through the locking valve 92 and as a result, fuel does not flow to the second orifice 4. As a result, when a high pressure fluid flows from the control valve 130, the fluid can flow to only one nozzle orifice 2.
As will be understood, the selector switch 140 can be set to allow a first fuel at a first pressure to flow through the second primary flow path and a second fuel at the second higher pressure to flow through the first primary flow path. The selector switch 140 can also prevent the wrong fuel from flowing through the selector switch 140 through the wrong path. In addition, the locking valve 92 can help ensure that the system works properly and safely, even if there is a change in pressure but no change in fuel.
Though not shown, additional features, such as a bypass or cutoff valve 76 can also be used in the heating system 10.
As illustrated, pre-regulated fuel after passing through the inlet and valve 12 can provide a signal pressure in communication with a backside of the diaphragms 94 of the two valves 14. This is shown by the high pressure feedback path illustrated as a dotted line running from the valve 12 to the area between to the two diaphragms 94. As the valve 14 that is part of the pilot selector valve 150 is linked to the locking valve 92, this can move the locking valve and lock it into position. As mentioned, this can also lock the valves of the pilot selector valve 150 into position. The locking feature can engage to secure the valves in a locked position until the reset mechanism is pressed 90.
Fluid pressure can be used to change the position of the valve members in other ways as well. The fluid pressure can be from the fluid flowing through the valve, such as between the valve member and the valve seat, or from fluid acting on a backside of a diaphragm 94 (the same and/or different diaphragms than those shown), or from pressure acting on some other feature.
The various embodiments of the selector switch 140 can be formed within a single housing. There can be no external pipes between the components of the selector switch; the flow channel of one component (valve, pressure regulator, etc.) can lead directly into a flow channel of another component. In the illustrated embodiment, the locking valve 92 locks the pilot selector valve 150 into position. In other embodiments, the locking valve 92, pilot selector valve 150 and the two valves 12, 14 leading to or from the pressure regulators 20, 22 can all be connected or linked through a member 96. In still other embodiments, additional locking valves can be used in the system.
The housing of the illustrated selector valve 140 has three inlets and four outlets. It can include two pressure regulators, four or five valve members and a locking/release mechanism. In addition, one of the inlets can be a gas hook-up for connecting a gas source to the selector switch 140. The other inlets and outlets can be fluidly coupled to one or more of a control valve 130, a burner nozzle 160, and a pilot 180, among other components.
It will be understood that the locking valve 92 and reset switch 90 are very similar to that shown and described with respect to
The locking valve 92 is shown with the magnetic plate and magnet locking system of
The locking valve 92 can include a biasing member and one or more valve member each with a corresponding valve seat. The biasing member can comprise one or more of a spring and a diaphragm 94. The biasing member can bias the valve member(s) to an open or closed position with respect to the valve seat(s). As shown in
The selector switch 140 is similar to many of those discussed previously. It will be noted that the illustrated selector switch 140 has a single pressure switch, here a high pressure switch 12 that is normally closed. This is in contrast to many of the previously illustrated systems that had both a high pressure switch 12 and a low pressure switch 14; though single pressure switch systems were also previously discussed.
It will also be noted that though the selector valve 92, which is both a pilot selector switch and a nozzle selector switch, is shown schematically to be physically separate from the selector switch 140; both units can be integrated into a single housing.
The functioning of the piloted heater system 10 of
The first fuel, such as NG, can enter the inlet and begin to flow down two primary flow paths through the selector switch 140. The first fuel can be delivered at a lower pressure which can be insufficient to open the normally closed valve 12. Thus, the first fuel would proceed along the second primary flow path to the second pressure regulator 22 where it is regulated. The fuel can be regulated to 4, 5, or 6 inches of water column, for example. The regulated fuel can then exit the selector switch 140 through outlet 25.
From the selector switch 140, fuel can flow to the control valve 130. The control valve 130 can selectively provide fuel to both the burner 190 and to the pilot 180. As has been previously discussed with respect to other embodiments, the pilot 180 is first proven, prior to fuel flowing to the burner 190. As can be seen, the pilot 180 can include different pilot nozzles for the different fuels, such as an LP pilot nozzle 6 and an NG pilot nozzle 8. Each pilot nozzle 6, 8 can have a dedicated thermocouple 182 as shown, or they can be directed to a single thermocouple 182. In addition, in some embodiments, the nozzles can direct heat to different parts of the same thermocouple.
In order to prove the pilot 180, the control valve 130 directs fuel flow to the pilot selector switch 150 portion of the locking valve 92. As shown, the pilot selector switch 150 has one inlet that leads to two primary paths through the pilot selector switch 150 to two outlets. A normally closed valve 12 is positioned in front of or upstream from the first pilot nozzle 6 and a normally open valve 14 is positioned in front of or upstream from the second pilot nozzle 8. These two valves are linked by member 96 so that one is closed while the other is open.
The first fuel, such as NG, can enter the inlet of the pilot selector switch 150 and begin to flow down the two primary flow paths. The first fuel can be delivered at a lower pressure which can be insufficient to open the normally closed valve 12. Thus, the first fuel can flow to the normally open valve 14 and then proceed through to the second pilot nozzle 8 to prove the pilot.
Once the pilot is proven, the control valve 130 can allow fuel to flow to the burner selector switch portion of the locking valve 92. At the locking valve 92, as the fuel is at a lower pressure it can be insufficient to close the locking valve 92. In addition, it will be understood that as valve 14 of the selector valve remains open, fuel is allowed to flow through the locking valve 92 to the second orifice 4 of the burner nozzle 160 and to the burner 190. Thus, when a low pressure fluid flows from the control valve 130, desirably the fluid can flow to both nozzle orifices 2, 4.
Turning now to
The first fuel at high pressure can flow to and open the high pressure switch 12 in the selector switch 140. The high pressure switch 12 can be set to open at a threshold pressure, for example, the bottom of the expected or typical supply pressure range of the second fuel. This may be 10 or 11 inches water column in some embodiments, such as where liquid propane (LP) is typically delivered at between 11-13 inches water column. The first pressure regulator 20 can regulate the fuel pressure to be 7, 8, or 9 inches water column. This regulated fuel can then be delivered to the control valve 130. Depending on the range of supply pressure of the fuel, fuel may flow through both the first and second pressure regulators.
A fuel delivered to the pilot selector switch 150 at a pressure above a set threshold can move the valve to change which of the two valve seats and valve members are engaged. For example, the threshold pressure can be 8 inches water column. If the fuel has a low heat valve (NG) and is provided to an orifice sized for a fuel with a high heat value, then the flame will not heat the thermocouple enough to open the solenoid valve within the control valve 130. This will prevent fuel from flowing to the burner nozzle 160 as shown in
Providing a high pressure fuel can also cause the locking valve 92 to engage to secure the valve in a locked position until the reset mechanism is pressed 90.
The fuel can be delivered to the pilot selector switch 150 in many ways. In addition to the fuel that is delivered by the control valve 130, it can be seen that bleed line can be established between the selector switch 140 and the pilot selector switch 150. The bleed line can be an outlet signal pressure path 102. The outlet signal pressure path 102 can provide a small flow of regulated fuel to one of the diaphragms or valve members within the pilot selector switch 150. As shown, the outlet signal pressure path 102 provides a small flow of regulated fuel to the backside of a diaphragm within the pilot selector switch 150. This flow of fuel can be provided prior to fuel flowing from the control valve 130 to the pilot selector switch 150 and can advance the pilot selector switch 150 to the second and locked position.
Because the pilot light will not be proven and the heater will not function fully, the installer will normally check the system to discover what is wrong. If it is determined that the fuel is running above an expected or typical pressure, the heater may need to be set manually. Looking at
With the selector switch 140 manually set, the low heat value gas, such as NG can flow through the system normally as described above with reference to
Many locales run NG to a residential dwelling within a standard pressure range. This is typically between 7-9 inches water column. But, there are some places where the range might fluctuate more than normal, or the pressure might be higher than the standard pressure range. Thus, in some locales NG is provided with a supply pressure of up to 11 inches water column. In these situations, it may be necessary to manually set the selector switch 140 to the correct setting using the manual override switch 76.
Looking now to
In addition, the regulated fuel can provide a signal pressure through outlet signal pressure path 102 to a backside of the diaphragm 94 of the valve 14 and the valve of the locking valve 90. The higher pressure fuel can cause the locking valve 90 to close. The locking feature can engage to secure the valve in a locked position until the reset mechanism is pressed 90.
Once the fuel leaves the first pressure regulator 20 and the outlet of the selector valve 140 it can flow to the control valve 130. The control valve 130 can selectively provide fuel to both the burner 190 and to the pilot 180. In order to prove the pilot 180, the control valve 130 directs fuel flow to the pilot selector switch 150.
The second fuel, such as LP, can enter the inlet of the pilot selector switch 150 and begin to flow down the two primary flow paths. The second fuel can be delivered at a higher pressure which can open the normally closed valve 12. As the valves 12 and 14 are linked, this also closes valve 14. Thus, the second fuel can flow to the normally closed valve 12 and then proceed through to the first pilot nozzle 6 to prove the pilot 180.
Once the pilot is proven, the control valve 130 can allow fuel to flow to the burner selector switch portion of the locking valve 92. It will be understood that as valve 14 of the selector valve is closed, fuel is allowed to flow through the locking valve 92 to the first orifice 2 of the burner nozzle 160 and to the burner 190. Thus, when a high pressure fluid flows from the control valve 130, desirably the fluid can flow to only one nozzle orifice 2.
Liquid propane (LP) is often provided to heating devices in a tank. The tank typically provides the fuel within a consistent pressure range. At the same time, as the tank empties the pressure may slowly decrease or it may drop off after the tank empties to a large extent. In these situations, the LP can be provided at a lower than typical or desired pressure.
Because the fuel is at a lower than normal pressure it may no longer be able to open the high pressure switch 12 in the selector valve 140. This will cause the fuel to flow to the second pressure regulator 22 to be regulated to a lower pressure. But, because the locking valve 92 was previously set and is locked in position, fuel will still flow to the correct pilot and burner orifices.
It is anticipated that the reset switch 90 would only be accessed by a professional installer. This individual would desirably set-up the system based on the fuel type and typical pressures that are expected to be experienced at that location. Thus, if LP is used the high pressure will set the locked valve 92 to the locked, higher pressure/higher heat value position during initial set-up. It should normally not need to be reset unless a different fuel is to be used. This could be the case for example, if natural gas lines were accessed after the heater was initially set-up for a propane tank.
Fuel can flow through the selector switches 140 of
As shown in
As has also been previously discussed, the locking selector valve 92 can direct the flow of fuel from the burner inlet 112 to one or both of two outlets 114, 116. The first outlet 114 can be an “always on” outlet and the second outlet 116 can be selectable. These outlets can direct fuel to the burner nozzle 160. The flow paths to and through the burner nozzle 160 are best seen in the cross-sectional view of
The locking selector valve 92 can also be seen in
In
The reset switch 90 can include a knob or lever 101 and a spring. A user can rotate the lever 101 to force the magnet 91 away from magnetic material on the stem 93. This will allow the stem 93 to move away from the magnet 91 if there are no counter acting forces on the backside of the diaphragm 94 and valve members. In other embodiments, the reset switch 90 can include a preferably non-magnetic rod and the user can push on the knob to advance the rod to separate the features.
According to some embodiments, a fuel selector switch can be used with either a first fuel or a second fuel different from the first. The fuel selector switch can comprise a valve and a reset switch. The valve can comprise a valve body, a valve seat, a spring and a diaphragm, the valve can be configured to have a closed position wherein the valve body is engaged with the valve seat and an open position wherein first valve body is disengaged from the valve seat, the valve configured such that fuel flowing through the valve seat in is communication with a front side of the diaphragm, the spring and diaphragm configured to bias the valve member to either the open or closed position. The reset switch can comprise a locking mechanism to lock the valve member in one of either the open or closed position; the reset switch can be further configured to release the valve member from being locked. The fuel selector switch can be configured such that an initial fluid pressure in communication with a backside of the diaphragm determines whether the valve is in the open position or the closed position.
According to some embodiments, a fuel selector switch can be used with either a first fuel or a second fuel different from the first. The fuel selector switch can comprise a housing, first and second valves, first and second pressure regulators and a reset switch. The housing can have a first inlet, a first outlet, and a first flow path between the first inlet and the first outlet. The first valve can be positioned in the first flow path and can comprise a first valve body and a first valve seat. The first valve can be configured to have a closed position wherein the first valve body is engaged with the first valve seat and an open position wherein the first valve body is disengaged from the first valve seat. The first pressure regulator can be positioned in the first flow path and configured to regulate a flow of fuel within a first predetermined pressure range. The second valve can comprise a second valve body and a second valve seat; the second valve can be configured to have a closed position wherein the second valve body is engaged with the second valve seat and an open position wherein the second valve body is disengaged from the second valve seat. The second pressure regulator can be configured to regulate a flow of fluid within a second predetermined pressure range different from the first predetermined pressure range. The fuel selector switch can be configured such that a fluid pressure of the fuel flowing through the fuel selector switch determines whether the first valve is in the open position or the closed position. The second valve can be configured such that a fluid pressure of fuel determines whether the second valve member is in the open or closed position, wherein when the second valve member is in the closed position the second valve member is fixed in position with respect to the second valve seat requiring actuation of the reset switch to move the second valve member from the closed position.
According to some embodiments, a fuel selector switch can be used with either a first fuel or a second fuel different from the first. The fuel selector switch can comprise a housing, first, second and third valves, first and second pressure regulators, and a reset switch. The housing can have a first inlet, a first outlet, a first flow path between the first inlet and the first outlet, a second flow path between the first inlet and the first outlet, a second inlet, a second outlet and a third flow path between the second inlet and the second outlet. The first valve can be positioned in the first flow path, the first valve comprising a first valve body and a first valve seat, the first valve configured to have a closed position wherein the first valve body is engaged with the first valve seat and an open position wherein the first valve body is disengaged from the first valve seat. The first pressure regulator can be positioned in the first flow path and configured to regulate a flow of fuel within a first predetermined pressure range. The second valve can be positioned in the second flow path, the second valve comprising a second valve body and a second valve seat, the second valve configured to have a closed position wherein the second valve body is engaged with the second valve seat and an open position wherein the second valve body is disengaged from the second valve seat. The second pressure regulator can be positioned in the second flow path and configured to regulate a flow of fluid within a second predetermined pressure range different from the first predetermined pressure range. The fuel selector switch can be configured such that a fluid pressure of the fuel flowing through the fuel selector switch determines whether the first flow path and the second path is open or closed as predetermined threshold fluid pressures determine the position of the respective first and second valves. The third valve can be positioned in the third flow path, the third valve comprising a third valve body and a third valve seat, the third valve configured to have a closed position wherein the third valve body is engaged with the third valve seat and an open position wherein the third valve body is disengaged from the third valve seat. The third valve can be configured such that a fluid pressure of fuel determines whether the third valve member moves from the open to the closed position, wherein when the third valve member is in the closed position the third valve member being fixed in position with respect to the third valve seat requiring actuation of the reset switch to move the third valve member from the closed position.
In some embodiments, a dual fuel heating assembly can be used with either a first fuel or a second fuel different from the first. The heating assembly can comprise a first orifice configured to direct fuel flow for combustion, a second orifice configured to direct fuel flow for combustion; and a nozzle selector valve configured to control fuel flow to the first orifice. The nozzle selector valve can comprise a valve seat, a valve member having first and second positions with respect to the valve seat, and a reset switch. The nozzle selector valve can be configured such that a fluid pressure of fuel within the heating assembly determines whether the valve member is in the first or second position, wherein when the valve member is in the second position the valve member is fixed in position with respect to the valve seat requiring actuation of the reset switch to move the valve member from the second position.
In some embodiments, a dual fuel heating assembly can be used with either a first fuel or a second fuel different from the first. The heating assembly can comprise a first pressure regulator configured to regulate a flow of fuel within a first predetermined pressure range, a second pressure regulator configured to regulate a flow of fluid within a second predetermined pressure range different from the first predetermined pressure range, a burner configured for combustion of fuel, a first burner orifice configured to direct fuel flow to the burner for combustion, a second burner orifice configured to direct fuel flow to the burner for combustion, a gas valve configured to receive fuel flow from either the first or the second pressure regulator and to direct fuel flow to the first and second burner orifices, and a nozzle selector valve configured to allow or prevent fuel flow from the gas valve to the first burner orifice. The nozzle selector valve can comprise a valve seat, a valve member configured for a first position spaced from the valve seat to allow fuel flow from the gas valve to the first burner orifice and a second position engaged with the valve seat to prevent fuel flow from the gas valve to the first burner orifice, and a reset switch. The nozzle selector valve can be configured such that a fluid pressure of fuel within the heating assembly determines whether the valve member is in the first or second position, wherein when the valve member is in the second position the valve member is fixed in position with respect to the valve seat requiring actuation of the reset switch to move the valve member from the second position to open the nozzle selector valve and allow flow therethrough.
In some embodiments, a dual fuel heating assembly can be used with either a first fuel or a second fuel different from the first. The heating assembly can comprise a pressure regulator configured to regulate a flow of fuel within a predetermined pressure range, a burner configured for combustion of fuel, a first burner orifice configured to direct fuel flow to the burner for combustion, a second burner orifice configured to direct fuel flow to the burner for combustion, a gas valve configured to receive fuel flow from the pressure regulator and to direct fuel flow to the first and second burner orifices, and a nozzle selector valve configured to allow or prevent fuel flow from the gas valve to the first burner orifice. The nozzle selector valve can comprise a valve seat, a valve member having first and second positions with respect to the valve seat, and a reset switch. The nozzle selector valve can be configured such that a fluid pressure of fuel within the heating assembly determines whether the valve member is in the first or second position, wherein when the valve member is in the second position the valve member is fixed in position with respect to the valve seat requiring actuation of the reset switch to move the valve member from the second position.
Advantageously, certain embodiments of the heating assembly as described herein facilitate a single appliance unit being efficaciously used with different fuel sources. This desirably saves on inventory costs, offers a retailer or store to stock and provide a single unit that is usable with more than one fuel source, and permits customers the convenience of readily obtaining a unit which operates with the fuel source of their choice.
Advantageously, certain embodiments of the heating assembly can transition between the different operating configurations as desired with relative ease and without or with little adjustment by an installer and/or an end user. Preferably, a user does not need to make a fuel selection through any type of control or adjustment. The systems described herein can alleviate many of the different adjustments and changes required to change from one fuel to another in many prior art heating sources.
Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures or characteristics of any embodiment described above may be combined in any suitable manner, as would be apparent to one of ordinary skill in the art from this disclosure, in one or more embodiments.
Similarly, it should be appreciated that in the above description of embodiments, various features of the inventions are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure and aiding in the understanding of one or more of the various inventive aspects. This method of disclosure, however, is not to be interpreted as reflecting an intention that any claim require more features than are expressly recited in that claim. Rather, as the following claims reflect, inventive aspects lie in a combination of fewer than all features of any single foregoing disclosed embodiment. Thus, the claims following the Detailed Description are hereby expressly incorporated into this Detailed Description, with each claim standing on its own as a separate embodiment.
This application is a continuation-in-part of U.S. application Ser. No. 14/713,947, filed May 15, 2015 which claims priority to U.S. Provisional Appl. Nos. 61/994,786, filed May 16, 2014; 61/994,790, filed May 16, 2014; 61/994,796, filed May 16, 2014; 62/022,605, filed Jul. 9, 2014; and 62/034,063, filed Aug. 6, 2014. This application also claims priority to U.S. Provisional Appl. No. 62/322,177, filed Apr. 13, 2016. The entire contents of the above applications are hereby incorporated by reference and made a part of this specification. Any and all priority claims identified in the Application Data Sheet, or any correction thereto, are hereby incorporated by reference under 37 CFR 1.57. U.S. patent application Ser. No. 13/155,328, filed Jun. 7, 2011, now U.S. Pat. No. 8,752,541 is also incorporated by reference in its entirety and for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
188740 | Murphy | Mar 1877 | A |
743714 | Guese | Nov 1903 | A |
1051072 | Bradley | Jan 1913 | A |
1589386 | Harper | Jun 1926 | A |
1639115 | Smith | Aug 1927 | A |
1697865 | Hahn et al. | Jan 1929 | A |
1729819 | Campbell | Oct 1929 | A |
1755639 | Fawcett | Apr 1930 | A |
1867110 | Signore | Jul 1932 | A |
2088685 | Birch | Aug 1937 | A |
2160264 | Furlong | May 1939 | A |
2161523 | Moecker, Jr. et al. | Jun 1939 | A |
2319676 | Guelson | May 1943 | A |
2354286 | Whaley, Jr. | Jul 1944 | A |
2380956 | Everts | Aug 1945 | A |
2397670 | Krugler | Apr 1946 | A |
2422368 | Ray | Jun 1947 | A |
2464697 | Logan et al. | Mar 1949 | A |
2518894 | Humbarger et al. | Aug 1950 | A |
2556337 | Paille | Jun 1951 | A |
2560245 | Ramsaur et al. | Jul 1951 | A |
2578042 | Chandler | Dec 1951 | A |
2588485 | Clarke et al. | Mar 1952 | A |
2630821 | Arey et al. | Mar 1953 | A |
2641273 | Siebens | Jun 1953 | A |
2661157 | Reichelderfer | Dec 1953 | A |
2687140 | St. Clair et al. | Aug 1954 | A |
2693812 | Jones et al. | Nov 1954 | A |
2905361 | Noall | Sep 1959 | A |
2966920 | Oglesby et al. | Jan 1961 | A |
2969924 | William | Jan 1961 | A |
3001541 | St. Clair et al. | Sep 1961 | A |
3032096 | Stoui | May 1962 | A |
3054529 | Billington | Sep 1962 | A |
3083721 | Matthews et al. | Apr 1963 | A |
3331392 | Davidson et al. | Jul 1967 | A |
3386656 | Bergquist | Jun 1968 | A |
3417779 | Golay | Dec 1968 | A |
3430655 | Forney | Mar 1969 | A |
3550613 | Barber | Dec 1970 | A |
3552430 | Love | Jan 1971 | A |
3578015 | Andersen | May 1971 | A |
3578243 | Love | May 1971 | A |
3633606 | Hay | Jan 1972 | A |
3747629 | Bauman | Jul 1973 | A |
3800830 | Etter | Apr 1974 | A |
3802454 | Kleuters | Apr 1974 | A |
3814570 | Guigues et al. | Jun 1974 | A |
3814573 | Karlovetz | Jun 1974 | A |
3829279 | Qualley et al. | Aug 1974 | A |
3843310 | Massi | Oct 1974 | A |
3884413 | Berquist | May 1975 | A |
3939871 | Dickson | Feb 1976 | A |
4021190 | Dickson | May 1977 | A |
4081235 | Van der Veer | Mar 1978 | A |
4101257 | Straitz, III | Jul 1978 | A |
4157238 | Van Berkum | Jun 1979 | A |
4171712 | DeForrest | Oct 1979 | A |
4181154 | Oley et al. | Jan 1980 | A |
4290450 | Swanson | Sep 1981 | A |
4301825 | Simko | Nov 1981 | A |
4355659 | Kelchner | Oct 1982 | A |
4359284 | Kude et al. | Nov 1982 | A |
4465456 | Hynek et al. | Aug 1984 | A |
4474166 | Shaftner et al. | Oct 1984 | A |
4515554 | Sirand | May 1985 | A |
4660595 | Kuster et al. | Apr 1987 | A |
4718448 | Love et al. | Jan 1988 | A |
4718846 | Oguri et al. | Jan 1988 | A |
4768543 | Wienke et al. | Sep 1988 | A |
4768947 | Adachi | Sep 1988 | A |
4796652 | Hafla | Jan 1989 | A |
4848133 | Paulis et al. | Jul 1989 | A |
4874006 | Iqbal | Oct 1989 | A |
4930538 | Browne | Jun 1990 | A |
4944324 | Kajino et al. | Jul 1990 | A |
4958771 | Klomp | Sep 1990 | A |
4965707 | Butterfield | Oct 1990 | A |
5025990 | Ridenour | Jun 1991 | A |
5027854 | Genbauffe | Jul 1991 | A |
5172728 | Tsukazaki | Dec 1992 | A |
5251823 | Joshi et al. | Oct 1993 | A |
5278936 | Shao | Jan 1994 | A |
5379794 | Brown | Jan 1995 | A |
5413141 | Dietiker | May 1995 | A |
5452709 | Mealer | Sep 1995 | A |
5458294 | Zachary et al. | Oct 1995 | A |
5470018 | Smith | Nov 1995 | A |
5513798 | Tavor | May 1996 | A |
5520206 | Deville | May 1996 | A |
5542609 | Myers et al. | Aug 1996 | A |
5567141 | Joshi et al. | Oct 1996 | A |
5584680 | Kim | Dec 1996 | A |
5591024 | Eavenson et al. | Jan 1997 | A |
5603211 | Graves | Feb 1997 | A |
5642580 | Hess et al. | Jul 1997 | A |
5674065 | Grando et al. | Oct 1997 | A |
5706859 | Backlund | Jan 1998 | A |
5782626 | Joos et al. | Jul 1998 | A |
5787874 | Krohn et al. | Aug 1998 | A |
5787928 | Allen et al. | Aug 1998 | A |
5795145 | Manning et al. | Aug 1998 | A |
5807098 | Deng | Sep 1998 | A |
5814121 | Travis | Sep 1998 | A |
5838243 | Gallo | Nov 1998 | A |
5906197 | French et al. | May 1999 | A |
5915952 | Manning et al. | Jun 1999 | A |
5941699 | Abele | Aug 1999 | A |
5944257 | Dietiker et al. | Aug 1999 | A |
5966937 | Graves | Oct 1999 | A |
5971746 | Givens et al. | Oct 1999 | A |
5975112 | Ohmi et al. | Nov 1999 | A |
5987889 | Graves et al. | Nov 1999 | A |
5988204 | Reinhardt et al. | Nov 1999 | A |
6035893 | Ohmi et al. | Mar 2000 | A |
6045058 | Dobbeling et al. | Apr 2000 | A |
6076517 | Kahlke et al. | Jun 2000 | A |
6135063 | Welden | Oct 2000 | A |
6162048 | Griffioen et al. | Dec 2000 | A |
6244223 | Welk | Jun 2001 | B1 |
6244524 | Tackels et al. | Jun 2001 | B1 |
6257270 | Ohmi et al. | Jul 2001 | B1 |
6354072 | Hura | Mar 2002 | B1 |
6354078 | Karlsson et al. | Mar 2002 | B1 |
6402052 | Murawa | Jun 2002 | B1 |
6543235 | Crocker et al. | Apr 2003 | B1 |
6607854 | Rehg et al. | Aug 2003 | B1 |
6705342 | Santinanavat et al. | Mar 2004 | B2 |
6786194 | Koegler et al. | Sep 2004 | B2 |
6832625 | Ford | Dec 2004 | B2 |
6845966 | Albizuri | Jan 2005 | B1 |
6884065 | Vandrak et al. | Apr 2005 | B2 |
6901962 | Kroupa et al. | Jun 2005 | B2 |
6904873 | Ashton | Jun 2005 | B1 |
6910496 | Strom | Jun 2005 | B2 |
6938634 | Dewey, Jr. | Sep 2005 | B2 |
6941962 | Haddad | Sep 2005 | B2 |
7013886 | Deng | Mar 2006 | B2 |
7044729 | Ayastuy et al. | May 2006 | B2 |
7048538 | Albizuri | May 2006 | B2 |
7143783 | Emke et al. | Dec 2006 | B2 |
7146997 | Francis et al. | Dec 2006 | B2 |
7156370 | Albizuri | Jan 2007 | B2 |
7174913 | Albizuri | Feb 2007 | B2 |
7201186 | Ayastuy | Apr 2007 | B2 |
7225830 | Kershaw | Jun 2007 | B1 |
7251940 | Graves et al. | Aug 2007 | B2 |
7299799 | Albizuri | Nov 2007 | B2 |
7341074 | Pechtold | Mar 2008 | B2 |
7367352 | Hagen et al. | May 2008 | B2 |
7434447 | Deng | Oct 2008 | B2 |
7458386 | Zhang | Dec 2008 | B2 |
7487888 | Pierre, Jr. | Feb 2009 | B1 |
7490869 | Iturralde et al. | Feb 2009 | B2 |
7523762 | Buezies et al. | Apr 2009 | B2 |
7528608 | Elexpuru et al. | May 2009 | B2 |
7533656 | Dingle | May 2009 | B2 |
7591257 | Bayer et al. | Sep 2009 | B2 |
7600529 | Querejeta | Oct 2009 | B2 |
7607325 | Elexpuru et al. | Oct 2009 | B2 |
7607426 | Deng | Oct 2009 | B2 |
7617841 | Zimpfer et al. | Nov 2009 | B2 |
7634993 | Bellomo | Dec 2009 | B2 |
7637476 | Mugica et al. | Dec 2009 | B2 |
7641470 | Albizuri | Jan 2010 | B2 |
7651330 | Albizuri | Jan 2010 | B2 |
7654820 | Deng | Feb 2010 | B2 |
7677236 | Deng | Mar 2010 | B2 |
7730765 | Deng | Jun 2010 | B2 |
7758323 | Orue | Jul 2010 | B2 |
7766006 | Manning | Aug 2010 | B1 |
7861706 | Bellomo | Jan 2011 | B2 |
7942164 | Hsiao | May 2011 | B2 |
7967005 | Parrish | Jun 2011 | B2 |
7967006 | Deng | Jun 2011 | B2 |
7967007 | Deng | Jun 2011 | B2 |
8011920 | Deng | Sep 2011 | B2 |
8057219 | Manning et al. | Nov 2011 | B1 |
8123150 | Khan et al. | Feb 2012 | B2 |
8152515 | Deng | Apr 2012 | B2 |
8162002 | Pavin | Apr 2012 | B2 |
8235708 | Deng | Aug 2012 | B2 |
8241034 | Deng | Aug 2012 | B2 |
8317511 | Deng | Nov 2012 | B2 |
8418661 | Kanda | Apr 2013 | B2 |
8465277 | Deng | Jun 2013 | B2 |
8517718 | Deng | Aug 2013 | B2 |
8545216 | Deng | Oct 2013 | B2 |
8568136 | Deng | Oct 2013 | B2 |
8613276 | Parrish | Dec 2013 | B2 |
8752541 | Deng | Jun 2014 | B2 |
8757139 | Deng | Jun 2014 | B2 |
8757202 | Deng | Jun 2014 | B2 |
8851065 | Deng | Oct 2014 | B2 |
8915239 | Deng | Dec 2014 | B2 |
8985094 | Deng | Mar 2015 | B2 |
9021859 | Deng | May 2015 | B2 |
9091431 | Deng | Jul 2015 | B2 |
9097422 | Deng | Aug 2015 | B2 |
9140457 | Deng | Sep 2015 | B2 |
9170016 | Deng | Oct 2015 | B2 |
9175848 | Deng | Nov 2015 | B2 |
9200801 | Deng | Dec 2015 | B2 |
9200802 | Deng | Dec 2015 | B2 |
9222670 | Deng | Dec 2015 | B2 |
9416977 | Deng | Aug 2016 | B2 |
9423123 | Deng et al. | Aug 2016 | B2 |
9441833 | Deng | Sep 2016 | B2 |
9441840 | Deng et al. | Sep 2016 | B2 |
9518732 | Deng | Dec 2016 | B2 |
9523497 | Deng et al. | Dec 2016 | B2 |
9581329 | Deng | Feb 2017 | B2 |
9587830 | Deng | Mar 2017 | B2 |
9752779 | Deng | Sep 2017 | B2 |
9752782 | Deng | Sep 2017 | B2 |
10066838 | Deng | Sep 2018 | B2 |
20020058266 | Clough et al. | May 2002 | A1 |
20020160325 | Deng | Oct 2002 | A1 |
20020160326 | Deng | Oct 2002 | A1 |
20030010952 | Morete | Jan 2003 | A1 |
20030217555 | Gerhold | Nov 2003 | A1 |
20040226600 | Starer et al. | Nov 2004 | A1 |
20040238030 | Dewey, Jr. | Dec 2004 | A1 |
20050167530 | Ward et al. | Aug 2005 | A1 |
20050202361 | Albizuri | Sep 2005 | A1 |
20050208443 | Bachinski et al. | Sep 2005 | A1 |
20060096644 | Goldfarb et al. | May 2006 | A1 |
20060201496 | Shingler | Sep 2006 | A1 |
20060236986 | Fujisawa | Oct 2006 | A1 |
20070044856 | Bonior | Mar 2007 | A1 |
20070154856 | Hallit et al. | Jul 2007 | A1 |
20070210069 | Albizuri | Sep 2007 | A1 |
20070215223 | Morris | Sep 2007 | A1 |
20070277803 | Deng | Dec 2007 | A1 |
20070277813 | Deng | Dec 2007 | A1 |
20080121116 | Albizuri | May 2008 | A1 |
20080168980 | Lyons et al. | Jul 2008 | A1 |
20080236688 | Albizuri | Oct 2008 | A1 |
20080236689 | Albizuri | Oct 2008 | A1 |
20080314090 | Orue Orue et al. | Dec 2008 | A1 |
20090039072 | Liana | Feb 2009 | A1 |
20090140193 | Albizuri Landa | Jun 2009 | A1 |
20090159068 | Querejeta et al. | Jun 2009 | A1 |
20090280448 | Antxia Uribetxbarria et al. | Nov 2009 | A1 |
20100035195 | Querejeta Andueza et al. | Feb 2010 | A1 |
20100035196 | Deng | Feb 2010 | A1 |
20100086884 | Querejeta Andueza et al. | Apr 2010 | A1 |
20100086885 | Querejeta Andueza et al. | Apr 2010 | A1 |
20100089385 | Albizuri | Apr 2010 | A1 |
20100089386 | Albizuri | Apr 2010 | A1 |
20100095945 | Manning | Apr 2010 | A1 |
20100154777 | Carvalho et al. | Jun 2010 | A1 |
20100255433 | Querejeta Andueza et al. | Oct 2010 | A1 |
20100275953 | Orue Orue et al. | Nov 2010 | A1 |
20100310997 | Mugica Odriozola et al. | Dec 2010 | A1 |
20100319789 | Erdmann et al. | Dec 2010 | A1 |
20100326430 | Deng | Dec 2010 | A1 |
20100330513 | Deng | Dec 2010 | A1 |
20100330518 | Deng | Dec 2010 | A1 |
20100330519 | Deng | Dec 2010 | A1 |
20110226355 | Benvenuto et al. | Sep 2011 | A1 |
20110284791 | Vasquez et al. | Nov 2011 | A1 |
20120006091 | Deng | Jan 2012 | A1 |
20120006426 | Gorelic | Jan 2012 | A1 |
20120012097 | Deng | Jan 2012 | A1 |
20120012099 | Deng | Jan 2012 | A1 |
20120012103 | Deng | Jan 2012 | A1 |
20120080024 | Deng | Apr 2012 | A1 |
20130037014 | Deng | Feb 2013 | A1 |
20130101945 | Mulberry | Apr 2013 | A1 |
20130299022 | Deng | Nov 2013 | A1 |
20140072921 | Deng | Mar 2014 | A1 |
20140150767 | Deng | Jun 2014 | A1 |
20140299123 | Deng | Oct 2014 | A1 |
20160146471 | Deng | May 2016 | A1 |
20160161146 | Deng | Jun 2016 | A1 |
20160290656 | Deng | Oct 2016 | A1 |
20170138604 | Deng | May 2017 | A1 |
Number | Date | Country |
---|---|---|
2421550 | Feb 2001 | CN |
2430629 | May 2001 | CN |
1873268 | Dec 2006 | CN |
1873268 | Dec 2006 | CN |
113 680 | Nov 1899 | DE |
720 854 | May 1942 | DE |
1650303 | Sep 1970 | DE |
1959677 | May 1971 | DE |
3700233 | Jul 1988 | DE |
19543018 | May 1997 | DE |
0509626 | Oct 1992 | EP |
1326050 | Jul 2003 | EP |
19845 | Feb 1913 | GB |
1136468 | Dec 1968 | GB |
2241180 | Aug 1991 | GB |
2298039 | Aug 1996 | GB |
58 219320 | Dec 1983 | JP |
59009425 | Jan 1984 | JP |
03 230015 | Oct 1991 | JP |
05-256422 | May 1993 | JP |
10141656 | May 1998 | JP |
11192166 | Jul 1999 | JP |
11-344216 | Dec 1999 | JP |
2000234738 | Aug 2000 | JP |
2003 056845 | Feb 2003 | JP |
2003 074837 | Mar 2003 | JP |
2003 074838 | Mar 2003 | JP |
2010071477 | Apr 2010 | JP |
WO 2008071970 | Jun 2008 | WO |
Entry |
---|
Office Action dated Jul. 10, 2018 from U.S. Appl. No. 14/713,948. |
Country Flame Technologies Inglenook Fireplace Gas Log Set Model INGLS 24-N or INGLS 24-P Natural Gas or Propane Conversion Kit, Installation, Operation, and Maintenance Manual, 2004. |
Desa Heating Products, Technical Service Training Manual, 2004. |
Flagro F-400T Dual Fuel Construction Heater, Operating Instructions Manual. |
Heat Wagon S1505 Construction Heater, Installation and Maintenance Manual, Jul. 29, 2002. |
Jotul GF 3 BVAllagash B-Vent Gas Heater, Installation and Operating Instructions, Dec. 2000. |
Vanguard Unvented (Vent-Free) Propane/LP Gas Log Heater Manual, Feb. 2004. |
White Mountain Hearth, The Vail Vent-Free Gas Fireplace, Installation Instructions and Owner's Manual, Mar. 2006. |
Installation Instructions and Owner's Manuals for Empire Unvented Gas Fireplace Model VFHS-36, Mar. 2001. |
Installation Instructions and Owner's Manuals for Empire Unvented Gas Fireplace Model VFHS-33, Apr. 2001. |
Installation Instructions and Owner's Manuals for Empire Unvented Gas Fireplace Models VFHD-32 and VFHS-36, Apr. 2003. |
Installation Instructions and Owner's Manuals for Empire Unvented Gas Fireplace Models VFHD-32 and VFHS-36, Sep. 2003. |
Installation Instructions and Owner's Manuals for Empire Unvented Gas Fireplace Models VFHD-32 and VFHS-36, Feb. 2004. |
Installation Instructions and Owner's Manuals for Empire Unvented Gas Fireplace Models VFHD-32 and VFHS-36, Sep. 2004. |
Installation Instructions and Owner's Manuals for Empire Unvented Gas Fireplace Models VFHD-32 and VFHS-36, Jun. 2005. |
Installation Instructions and Owner's Manuals for Empire Unvented Gas Fireplace Models VFP32FP and VFP36FP, Mar. 2006. |
Installation Instructions and Owner's Manuals for Empire Unvented Gas Fireplace Models VFP32FP and VFP36FP, May 2006. |
Installation Instructions and Owner's Manuals for Empire Unvented Gas Fireplace Model VFHS-20, Jun. 2002. |
Installation Instructions and Owner's Manuals for Empire Unvented Gas Fireplace Model VFHS-20, Sep. 2003. |
Installation Instructions and Owner's Manuals for Empire Unvented Gas Fireplace Model VFHS-20, Nov. 2003. |
Installation Instructions and Owner's Manuals for Empire Unvented Gas Fireplace Model VFHS-20, Sep. 2004. |
Installation Instructions and Owner's Manuals for Empire Unvented Gas Fireplace Model VFHS-20, Jun. 2005. |
Installation Instructions and Owner's Manuals for Empire Unvented Gas Fireplace Model VFHS-32, Aug. 2002. |
Procom Heating, Inc. v. GHP Group, Inc. (W.D. KY, Case No. 1:13-cv-00163-GNS-HBB): GHP's Answer to the First Amended Complaint, Aug. 27, 2014. |
Procom Heating, Inc. v. GHP Group, Inc. (W.D. KY, Case No. 1:13-cv-00163-GNS-HBB): Procom Heating's First Amended Complaint, Aug. 13, 2014. |
Procom Heating, Inc. v. GHP Group, Inc. (W.D. KY, Case No. 1:13-cv-00163-GNS-HBB): Claims Construction Memorandum Opinion and Order, Jul. 8, 2015. |
Procom Heating, Inc. v. GHP Group, Inc. (W.D. KY, Case No. 1:13-cv-00163-GNS-HBB): GHP's Initial Invalidity Contentions, Mar. 31, 2014. |
Procom Heating, Inc. v. GHP Group, Inc. (W.D. KY, Case No. 1:13-cv-00163-GNS-HBB): GHP's 2nd Amended Initial Invalidity Contentions, Sep. 4, 2015. |
Procom Heating, Inc. v. GHP Group, Inc. (W.D. KY, Case No. 1:13-cv-00163-GNS-HBB): GHP's 2nd Amended Initial Invalidity Contentions, Claims Chart—Exhibit A, Sep. 4, 2015. |
Procom Heating, Inc. v. GHP Group, Inc. (W.D. KY, Case No. 1:13-cv-00163-GNS-HBB): GHP's 2nd Amended Initial Invalidity Contentions, Claims Chart—Exhibit B, Sep. 4, 2015. |
Procom Heating, Inc. v. GHP Group, Inc. (W.D. KY, Case No. 1:13-cv-00163-GNS-HBB): GHP's 2nd Amended Initial Invalidity Contentions, Claims Chart—Exhibit C, Sep. 4, 2015. |
Procom Heating, Inc. v. GHP Group, Inc. (W.D. KY, Case No. 1:13-cv-00163-GNS-HBB): GHP's 2nd Amended Initial Invalidity Contentions, Claims Chart—Exhibit D, Sep. 4, 2015. |
Procom Heating, Inc. v. GHP Group, Inc. (W.D. KY, Case No. 1:13-cv-00163-GNS-HBB): GHP's 2nd Amended Initial Invalidity Contentions, Claims Chart—Exhibit E, Sep. 4, 2015. |
Procom Heating, Inc. v. GHP Group, Inc. (W.D. KY, Case No. 1:13-cv-00163-GNS-HBB): GHP's 2nd Amended Initial Invalidity Contentions, Claims Chart—Exhibit F, Sep. 4, 2015. |
Procom Heating, Inc. v. GHP Group, Inc. (W.D. KY, Case No. 1:13-cv-00163-GNS-HBB): GHP's 2nd Amended Initial Invalidity Contentions, Claims Chart—Exhibit G, Sep. 4, 2015. |
Consumer Guide to Vent-Free Gas Supplemental Heating Products, est. 2007. |
Heat and Glo, Escape Series Gas Fireplaces, Mar. 2005. |
Heat and Glo, Escape-42DV Owner's Manual, Rev. i, Dec. 2006. |
Napoleon, Park Avenue Installation and Operation Instructions, Jul. 20, 2006. |
Napoleon, The Madison Installation and Operation Instructions, May 24, 2005. |
Number | Date | Country | |
---|---|---|---|
20160290656 A1 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
61994786 | May 2014 | US | |
61994790 | May 2014 | US | |
61994796 | May 2014 | US | |
62022605 | Jul 2014 | US | |
62034063 | Aug 2014 | US | |
62322177 | Apr 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14713947 | May 2015 | US |
Child | 15175915 | US |