The present disclosure relates generally to dual fuel injectors, and more particularly to side by side direct operated checks with offset biasing springs.
Natural gas has increasingly become attractive as fuel for internal combustion engines. In one type of engine, a small quantity of injected liquid diesel fuel is compression ignited to in turn ignite a larger charge of natural gas. Delivery of these two fuels to the combustion space was originally contemplated utilizing two completely separate systems for supplying the two different fuels to the combustion space. More recently, there has been interest in attempting to supply the two fuels to the engine cylinder from a single fuel injector. For instance, U.S. Pat. No. 6,073,862 shows a fuel injector with the ability to inject gaseous and liquid fuels through two separate sets of nozzle outlets of a single fuel injector. This reference teaches the use of dual concentric check valve members for controlling the injection of the two separate fuels. While the art of fuel injectors shows several different fuel injectors with dual concentric checks for various purposes such as mixed mode (HCCI and diesel) systems, staged fuel injectors and others, the problems associated with the ability to mass produce consistently operating fuel injectors with dual concentric check valve members has resulted in few, if any, fuel injectors reaching the market with dual concentric check valve members for any reason. Thus, one might expect potentially insurmountable problems in attempting to manufacture a commercially viable dual fuel injector employing concentric check valve members.
The present disclosure is directed toward one or more of the problems set forth above.
In one aspect, a fuel injector includes an injector body that defines a first fuel inlet, a second fuel inlet, a first nozzle outlet set and a second nozzle outlet set, and has disposed therein a first control chamber and a second control chamber. A first direct operated check includes a first check valve member with a closing hydraulic surface exposed to fluid pressure in the first control chamber. The first check valve member is movable between a closed position in contact with a first seat to block the first nozzle outlet set to the first fuel inlet, and an open position out of contact with the first seat to fluidly connect the first fuel inlet to the first nozzle outlet set. The first direct operated check also includes a first spring operably positioned to bias the first check valve member toward the closed position. A second direct operated check includes a second check valve member with a closing hydraulic surface exposed to fluid pressure in the second control chamber. The second check valve member is movable between a closed position in contact with a second seat to block the second nozzle outlet set to the second fuel inlet, and an open position out of contact with the second seat to fluidly connect the second fuel inlet to the second nozzle outlet set. The second direct operated check also includes a second spring operably positioned to bias the second check valve member toward the closed position. The first spring and the second spring are located on opposite sides of a plane oriented perpendicular to a long axis of the injector body.
In another aspect, a plurality of the fuel injectors previous described are utilized in a common rail fuel system. The first fuel inlet of each fuel injector is fluidly connected to a first common rail, and the second fuel inlet of each fuel injector is fluidly connected to a second common rail.
In still another aspect, a method of operating a fuel injector includes injecting liquid fuel through a first nozzle outlet set, and injecting a gaseous fuel through a second nozzle outlet set. The liquid injecting step includes relieving pressure on a closing hydraulic surface of a first check valve member by fluidly connecting a liquid fuel inlet to a drain outlet through a first control chamber. The gaseous fuel injecting step includes relieving pressure on a closing hydraulic surface of a second check valve member by fluidly connecting the liquid fuel inlet to the drain outlet through a second control chamber. A liquid injection event is ended by pushing the first check valve member toward a first seat with a first spring. A gaseous injection event is ended by pushing the second check valve member toward a second seat with a second spring located on an opposite side of a plane perpendicular to a long axis of the fuel injector from the first spring.
Referring initially to
Common rail fuel system 10 includes a liquid fuel supply system 20 that includes a pressure pump 21, a filter 22 and a tank 23. The high pressure pump 21 supplies liquid diesel fuel to, and controls pressure in, first common rail 11 responsive to control signals communicated from electronic controller 15 in a conventional manner. Common rail fuel system 10 also includes a gaseous fuel supply system 30 that includes a cryogenic fuel tank 31, a variable displacement pump 32, an accumulator 33, a heat exchanger 34, a filter 35 and a fuel conditioning module 36. Electronic controller 15 is in control communication with fuel conditioning module 36 to control the supply rate to, and pressure in, second common rail 12. In one aspect, the liquid common rail 11 may be maintained at a higher pressure (may be 5 MPa) greater than the pressure in gaseous fuel common rail 12, as one strategy to inhibit migration of gaseous fuel into the liquid side of common rail fuel system 10. Electronic controller 15 is also in control communication with each of the fuel injectors 13 to control the timing and duration of liquid and gaseous fuel injection events. Each injector body 40 also defines a drain outlet 65 that is fluidly connected (not shown) back to tank 23 recirculate fuel utilized by the fuel injectors 13 in controlling fuel injection events back to tank for recirculation.
Each injector body 40 defines a first nozzle outlet set 63, through which liquid fuel is injected into cylinders 9, and a second nozzle outlet set 64 through which gaseous fuel is injected. Disposed within injector body 40 are a first control chamber 66 and a second control chamber 67. Each fuel injector 13 includes a first direct operated check 70 that includes a first check valve member 71 with a closing hydraulic surface 72 exposed to fluid pressure in the first control chamber 66. The first check valve member 71 is movable between a closed position (as shown) in contact with a first seat 73 to block the first nozzle outlet set 63 to the first fuel inlet 61, and an open position out of contact with the first seat 73 to fluidly connect the first fuel inlet 61 to the first nozzle outlet set 63 to facilitate a liquid fuel injection event. Certain segments of the fluid passageways within injector body 40 that fluidly connect the first fuel inlet 61 to first nozzle outlet set 63 are not visible in any of the sectioned views of
A second direct operated check 80 includes a second check valve member 81 with a closing hydraulic surface 82 exposed to fluid pressure in the second control chamber 67. Second check valve member 81 is movable along a second centerline 88 between a closed position (as shown) in contact with a second seat 83 to fluidly block the second nozzle outlet set 64 to the second fuel inlet 62, and an open position out of contact with the second seat 83 to fluidly connect the second fuel inlet 62 to the second nozzle outlet set 64 to facilitate a gaseous fuel injection event. Although not visible in the sectioned views of
In the illustrated embodiment, first control valve member 51 and second control valve member 54 are substantially identical and interact with flat seats 52 and 55, respectively. Nevertheless, those skilled in the art will appreciate that seats 52 and 55 could have a different shape, such as conical, without departing from the scope of the present disclosure. In addition, first electrical actuator 50 and second electrical actuator 53 are shown as being identical and positioned side by side in injector body 40. Nevertheless, those skilled in the art will appreciate that different electrical actuators and different packaging arrangements could also fall within the scope of the present disclosure.
In order to accommodate first spring 91 and second spring 92 with sufficient pre-loads and sizes to obtain performance from fuel injector 13 as desired, first spring 91 and second spring 92 are located on opposite sides of a plane 93 that is oriented perpendicular to a long axis 94 of the injector body 40. In addition, the outer radius 96 of first spring 91 plus an outer radius 97 of the second spring 92 may be greater than a distance 95 between the first centerline 78 and the second centerline 88 to accommodate the different sized springs while maintaining a small distance 95 to locate the first and second nozzle outlet sets 63, 64 as illustrated. As shown, tip piece 41 is in contact with spring cage 42. In addition, tip piece 41 defines the first nozzle outlet set 63 and the second nozzle outlet set 64, that are in close proximity so as to be positioned close to the centerline of the engine cylinders 9, which can avoid a possible necessity of asymmetrical spray patterns. Nevertheless, first nozzle outlet set 63 and second nozzle outlet set 64 can have any known number of nozzle outlets arranged to produce any symmetrical or asymmetrical spray pattern without departing from the present disclosure. Also as shown, the first spring 91 and the second spring 92 are both positioned in a common spring chamber 56 defined by spring cage 42.
Referring now to
Referring now to
Referring in addition to
Referring to
The present disclosure finds potential application in any dual fuel application. The present disclosure finds particular applicability in dual fuel common rail systems, and especially those in which the two fuels differ in pressure, chemical identity and matter phase. Nevertheless, the present disclosure could find potential application in dual fuel systems where the fuels differ in less than all three of these categories. The offset spring locating strategy of the present disclosure also helps to facilitate both single piece check valve members and serves to help maintain the first and second nozzle outlet sets 63, 64 in close proximity, which can help to avoid potential use of exotic spray patterns in order to maintain good combustion characteristics in an installed engine.
When in operation, each fuel injector 13 will inject liquid fuel through the first nozzle outlet set 63 by relieving pressure on closing hydraulic surface 72 of first check valve member 71 by energizing the first electrical actuator 50. When this is done, the liquid fuel inlet 61 will be fluidly connected to drain outlet 65 by way of A-orifice 100, first control chamber 66, and Z-orifice 101 past seat 52. A liquid injection event is ended by pushing the first check valve member 71 toward first seat 73 with first spring 91. Gaseous fuel is injected through the second nozzle outlet set 64 by relieving pressure on closing hydraulic surface 82 by energizing second electrical actuator 53. When this is done, the first or liquid fuel inlet 61 becomes fluidly connected to the drain outlet 65 by way of A-orifice 102, second control chamber 67, Z-orifice 103 and past seat 55. A gaseous fuel injection event is ended by pushing the second check valve member 81 toward the second seat 83 with the second spring 92.
As stated earlier, in order to accommodate the desired spring sizes and pre-loads, the first spring 91 is located on opposite side of the plane 93 along long axis 94 with respect to the second spring 92. In the embodiments of
It should be understood that the above description is intended for illustrative purposes only, and is not intended to limit the scope of the present disclosure in any way. Thus, those skilled in the art will appreciate that other aspects of the disclosure can be obtained from a study of the drawings, the disclosure and the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3764076 | Eblen | Oct 1973 | A |
4356976 | Eblen et al. | Nov 1982 | A |
4499862 | Baumer et al. | Feb 1985 | A |
6073862 | Touchette et al. | Jun 2000 | A |
6422199 | Buckley et al. | Jul 2002 | B1 |
6761325 | Baker et al. | Jul 2004 | B2 |
8596561 | Kim et al. | Dec 2013 | B2 |
20120325180 | Montgomery | Dec 2012 | A1 |
Number | Date | Country |
---|---|---|
61-229969 | Oct 1986 | JP |
2012002620 | May 2012 | WO |
Number | Date | Country | |
---|---|---|---|
20140091159 A1 | Apr 2014 | US |