The present invention relates generally to electrical switch assemblies that are actuated by rotatable members, and, more particularly the invention pertains to switches used in wiring harnesses such as on appliances, including ignition systems for gas fired appliances, outdoor cooking equipment and the like.
Electrical switches having rotatable actuators are used in a variety of applications. For example, it is known to use such switches in gas fueled cooking appliances. An electrical switch assembly is coupled to the rotatable valve stem of the gas valve, to control burner ignition circuitry. When the gas valve stem is rotated to place the valve in the open position and commence gas flow, the burner ignition electrical circuitry is energized to ignite the gas stream at the burner. In this way, stand-by pilot lights are not required, and gas ignition occurs simultaneously with opening the gas valve and commencing the flow of gas. Fuel is not wasted keeping a pilot light burning. Considerable fuel savings can be experienced, particularly in appliances that are used infrequently, with prolonged periods of nonuse. Pilot-less ignition systems conserve fuel and thereby improve appliance efficiency.
U.S. Pat. No. 5,687,836 entitled “ELECTRICAL SWITCH ASSEMBLY ACTUATABLE BY A ROTATABLE MEMBER”, issued Nov. 18, 1997, describes one such electrical switch assembly having utility for gas appliances. While providing many advantages, the switch assembly disclosed therein can be used only for a single circuit, and each switch function in each circuit requires a separate switch.
To improve appliance safety and enhance customer convenience, it is sometimes desirable to include multiple switching functions upon actuation or rotation of a single actuator. A variety of indicator lights to indicate status may be actuated with the primary function, or may be oppositely actuated. For example, it may be desirable to illuminate a “burner on” indicator together with actuation of the ignition circuitry when a gas valve is opened. An electric circuit to indicate ignition failure can be energized upon opening the gas valve, to be illuminated if ignition does not occur within a specific period of time. It may be desirable for various other safety and/or convenience features that are electrically operated to be actuated or de-actuated upon opening the gas valve.
As more and more individual switches for additional functions are combined with a single actuator, the actuator becomes unduly long and complex. Individual switches can be electrically connected, one to another, with only one controlled by the actuator, and others electrically controlled therefrom. However the wiring harness becomes unduly large and complex, and requires significant space for installation. In appliances, it is desirable to minimize space requirements for controls and the like, to maximize area available for appliance functions, for example oven interior space, while minimizing overall appliance size.
U.S. Pat. No. 7,148,440 entitled “STACKABLE SWITCH” issued Dec. 12, 2006, describes a multi-function switch of one type in which multiple switch functions can be stacked one upon another using an intermediate housing member having surface topographies suitable for use in the switches on opposite sides thereof. While the stackable switch disclosed therein provides multi-switching functions in a more compact arrangement than utilizing separate individual switches, in some applications still lower profiles are desirable. For example, to maintain adequate air flow around gas valves associated with the switches, still lower profiles are desirable to minimize the housing and structural dimensions required to contain the gas valves, gas supply systems and wire harnesses.
The present invention provides a dual function switch assembly having first and second switches contained in a single housing, and a single rotor having peripheral profiles for operating each switch upon rotation of the rotor.
In one aspect thereof, the present invention provides a multifunction switch assembly with a switch housing part having a base, first and second switches disposed in the switch housing part at different relative elevations with respect to the base and a switch actuating rotor having first and second peripheral profiles aligned with the first and second switches, respectively. A mounting part overlies the first and second switches and has an outward feature for attaching the switch assembly in an installation. The switch mounting part and the switch housing part are adapted for engagement one with the other.
In another aspect thereof, the present invention provides a switch assembly with a first switch part containing contacts therein for first and second switches and a rotor for actuating the switches. The rotor has first and second circumferential profile portions aligned with the first and second switches, respectively. A second switch part overlies the first switch part and includes connecting features for mounting the switch assembly in an installation.
In a still further aspect thereof, the present invention provides a wire harness with first, second, third and fourth conductors and a switch assembly having a first switch therein electrically connected to the first and second conductors, a second switch therein electrically connected to the third and fourth conductors; and a rotor disposed between the first and second switches and including first and second circumferential profiles aligned with the first and second switches, respectively. The third and fourth conductors are stacked on the first and second conductors, respectively.
An advantage of the present invention, in one form thereof, is providing a multi-function, multi-switch arrangement that is compact.
Another advantage of the present invention, in another form thereof, is providing multiple switches actuated by a single actuator.
Still another advantage of the present invention, in still another form thereof, is providing multiple switches that require minimal space.
Yet another advantage of the present invention, in yet another form thereof, is providing a multi-function switch assembly in which the switch components can be pre-assembled in one portion of the overall assembly that is common to multiple variations of the assembly and thereafter coupled with another portion of the overall assembly that is unique to final uses for the assembly.
Other features and advantages of the invention will become apparent to those skilled in the art upon review of the following detailed description, claims and drawings in which like numerals are used to designate like features.
Before the embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangements of the components set forth in the following description or illustrated in the drawings: The invention is capable of other embodiments and of being practiced or being carried out in various ways. Also, it is understood that the phraseology and terminology used herein are for the purpose of description and should not be regarded as limiting. The use herein of “including”, “comprising” and variations thereof is meant to encompass the items listed thereafter and equivalents thereof, as well as additional items and equivalents thereof.
Referring now more specifically to the drawings and to
While two switch assemblies 20 are illustrated on wire harness 24 in
Wire harness 24 includes a plurality of electrical conductors 38, 40, 42 and 44 connected to switch assemblies 20 as will be described in greater detail hereinafter. An electronic ignition module (not shown) and other suitable control devices are provided as part of appliance 22 between wire harness 24 and signal line 36. The design, installation and operation of such devices and gas flow equipment are well-known to those skilled in the art and will not be described in further detail herein.
With reference now to
Switch housing part 60 contains first and second switches 64, 66, respectively. Each switch 64, 66 has two similar switch contacts 68 illustrated in
As shown in
A beneficial feature of preferred forms of the present invention is the use of symmetrical contacts 68 so that each contact 68 in each switch 64, 66 is the same as the other contacts of switch assembly 20. Therefore, assembly is facilitated in that all contacts are interchangeable, and the installer need not identify specific contacts for specific positions. Mechanical, automated assembly is also facilitated by the use of interchangeable contacts at all positions.
Switch housing part 60 includes a base 80, opposed side panels 82, 84 and central formations 86, 88, 90 and 92. Each central formation 86, 88, 90 and 92 includes a generally flat wall segment 94 and a curved barrier segment 96. Wall segments 94 of each formation 86, 88, 90 and 92 confront one or the other of opposed side panels 82, 84 in spaced relation. Contacts 68 in pairs for each switch 64, 66 are restrained between sides 82, 84 respectively, and the wall segments 94 confronting it.
Along one or both of the opposite sides of base 80 between side panels 82, 84 a pedestal 98 is provided between adjacent curved barrier segments 94, one pedestal 98 at each of the sides being shown in
The pairs of contacts 68 defining first switch 64 and second switch 66 are disposed at different elevations relative to base 80, with second switch 66 elevated from base 80 by locating features 102. Thus, as can be seen most clearly in
On one side edge of base 80 a single latch loop 104 is provided and along an opposite side edge of base 80 two latch loops 106, 108 are provided for mechanical engagement with mounting part 62 to secure switch housing part 60 and mounting part 62 one to the other, as will be described in greater detail hereinafter.
Base 80 defines an aperture 110 therein substantially centrally located between barrier segments 96. On an inner surface of base 80, an annular channel 112 defines a path for rotation of rotor 100. On an outer surface of base 80 an outwardly projecting rim 114 surrounds aperture 110 for redirecting moisture and liquids away from aperture 110, to inhibit migration of liquids into switch assembly 20. Within switch assembly 20, wall segments 94 and barrier segments 96 block and redirect moisture away from contacts 68.
Along opposed sides of base 80, adjacent the ends of contacts 68, base 80 defines generally L-shaped passages along which conductors 38, 40, 42 and 44 are positioned. Within the L-shaped passages, one or more ridge 116 is provided to frictionally engage the insulation of conductors 38, 40, 42 and 44 which extend thereover. Ridges 116 pinch against the conductors and provide strain relief if wire harness 24 is lifted, moved or stored by grasping one or more of the conductors 38, 40, 42 or 44. Strain relief ridges provide some frictional engagement against each of the conductors, to retain the relative positions of conductors 38, 40, 42 and 44 with respect to switch assembly 20. Ridges 116 also serve as barriers to the infiltration of liquids and other contaminants.
Referring now more particularly to
Skirts 124, 126, 128 and 130 are spaced one from another to define openings through which conductors 38, 40, 42 and 44 can pass in stacked arrangement. Thus, an opening 138 is provided between skirts 124 and 126. Similar openings 140, 142 and 144 are provided between, respectively, skirts 126 and 128, 128 and 130, and 130 and 124. Within openings 138, 140, 142 and 144 and along surfaces of base 120 and skirts 124, 126, 128 and 130, one or more ridge 146 is provided to frictionally engage the insulation of conductors 38, 40, 42 and 44 extended there over, to pinch against the conductors and provide strain relief if wire harness 24 or is lifted, moved or stored by grasping one or more of the conductors 38, 40, 42 or 44. Strain relief ridges provide some frictional engagement against each of the conductors to retain the relative positions of conductors 38, 40, 42 and 44 with respect to switch assembly 20. Ridges 146 also serve as a barriers to the infiltration of liquids and other contaminants.
Base 120 further defines one or more locating feature 148, 150 for positioning mounting part 62 relative to switch housing part 60 and/or for positioning conductors 38, 40, 42 and 44 relative to conductor openings 138, 140, 142 and 144, and/or for securing contacts 68 in position within an assembled switch assembly 20.
On an outer surface of mounting part 62, one or more pedestal or connecting fixture 152, 154, 156 is provided for engagement with gas valve 26, manifold 28 or other frame and housing components in which dual function switch assembly 20 is located. An advantageous feature of the present invention is that mounting part 62 contains none of the components or elements necessary for operation of switches 64, 66, all of which can be preinstalled in switch housing part 60 instead. Accordingly, mounting part 62 can be readily designed and manufactured for mating with particular components on which switch assembly 20 will be installed, while the more complex structure of switch housing part 60 remains standard for multiple installations.
Base 120, skirts 124, 126, 128 and 130 can be modified as necessary for ease and convenience in molding and assembly. For example,
Rotor 100 is the actuator for first and second switches 64, 66 to operate the switches between closed and opened conditions depending on the rotational position of rotor 100 with respect to each switch 64, 66. Rotor 100 is a generally cylindrically shaped body having first and second circumferential outer cam surfaces 180, 182, respectively. An end body 184 has a non-circular opening 186 therethrough for receiving a noncircular portion of a valve stem 188 from gas valve 26. An end edge 190 of rotor 100 is configured to ride within channel 112. First cam surface 180 is aligned with first switch 64, and second cam surface 182 is aligned with second switch 66 such that one contact 68 of each contact pair in switches 64, 66 may ride against cam surfaces 180, 182, respectively. Rotation of stem 188 causes simultaneous rotation of rotor 100 and movement of first and second cam surfaces 180, 182 along first and second switches 64, 66. Accordingly, the peripheral surface shape of cam surfaces 180, 182 operates switches 64, 66 upon rotation of rotor 100 via rotation of valve stem 188.
On an end of rotor 100 opposite from end body 184, a flange 192 is provided with notches 196, 198. In the assembled configuration, pedestals 98 are received in notches 196, 198 to prevent unintended rotation of rotor 100. Accordingly, during transport, manipulation and installation the relative positioning of rotor 100 with respect to switch housing part 60 and mounting part 62 can be maintained to facilitate installation on gas valves 26. Providing a pedestal 98 in each notch 196, 198 enhances fixed, balanced positioning of rotor 100. Other types of rotation inhibiting structures also can be used.
A rotor of the present invention can have numerous configurations for operating switches 64, 66. As illustrated in
For mold design simplicity and manufacturing efficiency, flange 192 can be as wide as or wider than all portions of second cam surface 182, which is at all points thereof as wide as or wider than all portions of first cam surface 180. By providing no blind setbacks, mold design is simplified.
Switch housing part 60, mounting part 62 and rotor 100 can be made from suitable plastic materials. Contacts 68 are desirably thin and narrow, to provide an overall assembly that is small. Suitable materials for contact 68 include beryllium-copper, phosphor-bronze and stainless steel. Other conductive materials with suitable mechanical properties also can be used.
In the assembly of switch assembly 20, a different contact 68 is connected to each of conductors 38, 40, 42, 44. Two of the contacts 68 that are electrically connected to conductors 38 and 40 for a first circuit switch 64 are positioned between side panel 82 and the confronting wall segments 94 associated therewith, substantially against the inner surface of base 80. Conductors 38 and 40 are disposed along the inner surface of base 80 on opposite sides. The second pair of contacts 68 electrically connected to conductors 42 and 44 for second circuit switch 66 is positioned between side panel 84 and the confronting wall segments 94 associated therewith. Locating features 102 on base 80 retain contacts 68 for second switch 66 at a greater distance from base 80 than contacts 68 for first switch 64, and second conductors 42, 44 are stacked on conductors 38 and 40, respectively.
Rotor 100 is installed between barrier segments 96, with end edge 190 thereof disposed in channel 112 and first and second cam surfaces 180, 182 aligned with first and second switches 64, 66, respectively. The completed assembly of switch housing part 60, first and second switches 64, 66 disposed therein connected to conductors 38, 40, 42 and 44, with rotor 100 positioned therein is illustrated in
One of the advantages of a preferred embodiment of the present invention is that the completed assembly of switch housing part 60 with switches 64, 66 therein can be produced for use with a variety of different rotors 100 for different switching operations and with a variety of different mounting parts 62 for connection to different types of gas valves in different frameworks and structures.
With the appropriate rotor 100 inserted therein, switch assembly 20 is completed by placing mounting part 62 over switch housing part 60. Complementary engagement features that are non-symmetrical, such as a single latch loop 104 on one side of switch housing part 60 and two latch loops 106, 108 on an opposite side of switch housing part 60 for association with one protrusion 132 on one side of mounting part 62 and two protrusions 134, 136 on an opposite side of mounting part 62, facilitate proper orientation of the parts to attach mounting part 62 only one way with respect to switch housing part 60. Accordingly, the locating features 148, 150 on the inner surface of base 120 of mounting part 62 are properly positioned for securing first and second switches 64, 66 in proper position, and for covering and securing the positions of conductors 38, 40, 42 and 44.
Multiple dual function switch assemblies 20 can be installed in similar manner at selected locations along conductors 38, 40, 42 and 44 to provide a preassembled wire harness 24 for installation in an appliance 22, such as a gas cooking range or the like, to provide electrical switch functions associated with multiple gas valves 26. Thereafter, preassembled wire harness 24 can be installed in the appliance 22 by inserting dual function switch assemblies 20, with aligned apertures 110, 122 and opening 186, over valve stems 188 of gas valves 26. Conductors 38, 40, 42 and 44 are connected to the additional circuit components, including, for example, electronic ignition modules, indicator lights, audible buzzers, etc.
For connection to different types of valves and/or different types of frames, similar switch housing parts 60 having switches 64 and 66 can be connected to different types and arrangements for mounting part 62. Various different rotors can be associated therewith for operating first and second switches 64, 66 in different sequences.
Variations and modifications of the foregoing are within the scope of the present invention. It is understood that the invention disclosed and defined herein extends to all alternative combinations of two or more of the individual features mentioned or evident from the text and/or drawings. All of these different combinations constitute various alternative aspects of the present invention. The embodiments described herein explain the best modes known for practicing the invention and will enable others skilled in the art to utilize the invention. The claims are to be construed to include alternative embodiments to the extent permitted by the prior art.
Various features of the invention are set forth in the following claims.
The present regular United States patent application claims the benefits of U.S. Provisional Application Ser. No. 60/816,544, filed on Jun. 26, 2006.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2007/072005 | 6/25/2007 | WO | 00 | 3/20/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/002863 | 1/3/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3860786 | Wass | Jan 1975 | A |
3971904 | Ward | Jul 1976 | A |
4019855 | Camillo | Apr 1977 | A |
4177367 | Tirone et al. | Dec 1979 | A |
4258349 | Flory | Mar 1981 | A |
4272658 | Crosby | Jun 1981 | A |
4308433 | Edwards, Jr. | Dec 1981 | A |
4493953 | Bound | Jan 1985 | A |
4495387 | Thrush | Jan 1985 | A |
4612423 | Munroe | Sep 1986 | A |
4861949 | Bortolloni et al. | Aug 1989 | A |
4894019 | Howard | Jan 1990 | A |
5650601 | Krueger et al. | Jul 1997 | A |
5687836 | Gjerde | Nov 1997 | A |
6077126 | Peng | Jun 2000 | A |
6096987 | Krueger et al. | Aug 2000 | A |
6130389 | Rao | Oct 2000 | A |
7148440 | Gjerde | Dec 2006 | B2 |
20040201274 | Rudolph et al. | Oct 2004 | A1 |
20060042925 | Gjerde | Mar 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20090321231 A1 | Dec 2009 | US |
Number | Date | Country | |
---|---|---|---|
60816544 | Jun 2006 | US |