Biosensors are devices for sensing and detecting biomolecules and operate on the basis of electronic, electrochemical, optical and mechanical detection principles. Biosensors that include transistors are sensors that electrically sense charges, photons, and mechanical properties of bio-entities or biomolecules. The sensor detects the concentration of bio-entities or biomolecules, or through interaction and reaction between specified reactants and bio-entities/biomolecules. Such biosensors are fast in signal conversion and can be manufactured using semiconductor processes and easily applied to integrated circuits and MEMS.
A field effect transistor (FET) includes a source, a drain and a gate and may be used as a sensor for various types of targets. A biologically sensitive field effect transistor, or bio-organic field effect transistor, (Bio-FET) is created to detect biomolecules, including, for example, H+, Ca2+, DNA, proteins and glucose. An electrolyte containing the molecule of interest is used as the Bio-FET gate.
Aspects of the present disclosure are best understood from the following detailed description when read with the accompanying figures. It is noted that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
The following disclosure provides many different embodiments, or examples, for implementing different features of the provided subject matter. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. For example, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed between the first and second features, such that the first and second features may not be in direct contact. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
Further, spatially relative terms, such as “beneath,” “below,” “lower,” “above,” “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. The spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. The apparatus may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly.
In a biologically sensitive field effect transistor (BioFET), the gate of a metal-oxide-semiconductor field-effect transistor (MOSFET) is replaced by a bio- or biochemical-compatible layer or a biofunctionalized layer of immobilized probe molecules that act as surface receptors. A BioFET is primarily a field-effect biosensor with a semiconductor transducer, and the gate controls the conductance of the semiconductor between its source and drain contacts.
Typical detection mechanism of BioFETs is the conductance modulation of the transducer resulting from the binding of a target biomolecule to the gate or to a receptor molecule immobilized on the gate. When the target biomolecule binds to the gate or the immobilized receptor, the drain current of the BioFET is changed by the gate potential. This fluctuation in the drain current can be measured, and the bonding between the receptor and the target biomolecule can be identified. A great variety of biomolecules may be used as the gate of the BioFET such as ions, enzymes, antibodies, ligands, receptors, peptides, oligonucleotides, cells of organs, organisms and pieces of tissue. For example, to detect single-stranded deoxyribonucleic acid (ssDNA), the gate of the BioFET is equipped with immobilized complementary ssDNA strands. Also, to detect various proteins such as tumour markers, monoclonal antibodies may be implemented as the gate of the BioFET.
When an electric field is applied across a piece of material, the electrons respond by moving with an average velocity called drift velocity. This phenomenon is known as electron mobility. Conventional BioFET sensors suffer from large accumulative drift effect. The drift effect results from electrical field enhanced ion migration within the gate insulator, and the electrochemical non-equilibrium occurs at the insulator-solution interface. In one example, the drift rate is as high as 36 nA/min under operation mode. The high drift rate may lead to compromising in the sensitivity of the sensor. Many approaches have been used to attenuate drift effect. For example, when a BioFET requires calibration, a test power source is applied to the background, and a current change related to pH value in the solution is detected. A threshold slope (current/time) is measured according to the current change. The signal then undergoes analogue/digital conversion in a CPU, and time drift data is extracted and stored in the memory. This time drift data is used in the calibration when an analyte test is conducted. However, to obtain background time drift data is relatively time consuming, and the collective time drift data results in accumulative deviation. Furthermore, the process requires complex hardware set, for example, the analogue-digital converter, CPU and memory unit.
Another example of conventional BioFET calibration uses a reference FET (REFET) along with the existing BioFET. In contrast to the BioFET, this REFET is non-biologically sensitive. REFET obtains the background voltage of the pH value in the solution along with time, while the Bio-FET obtains the bio-sensitive voltage data alone with time. A differential measurement is then conducted between this pair. In this calibration system, REFET has to be fabricated in additional process, and once the drift effect in the REFET is taken into account, the error range may increase.
Still another example of conventional BioFET calibration system uses pulse-modulated biasing to repeatedly reset vertical electrical field and therefore reduce the drift effect. In this approach, a high-frequency alternating current (AC) biasing is required. As a result, a time discrete sample readout interface has to be designed for interpreting the data.
Please refer to
The source, drain, and/or channel region 115, 117, 119 are formed on an active region of the substrate 110. The FET may be an n-type FET (nFET) or a p-type FET (pFET). For example, the source/drain regions 115, 117 may include n-type dopants or p-type dopants depending on the FET configuration. The first control gate 120 is disposed on the first side 111 of the substrate 110 and includes a gate dielectric layer 121, an interconnect layer 123, a first gate electrode 125, and/or other suitable layers. In an embodiment, the gate electrode 125 is polysilicon. Other exemplary gate electrodes include metal gate electrodes including material such as, Cu, W, Ti, Ta, Cr, Pt, Ag, Au; suitable metallic compounds like TiN, TaN, NiSi, CoSi; combinations thereof; and/or other suitable conductive materials. In an embodiment, the gate dielectric layer 121 is silicon oxide. Other exemplary gate dielectric layer 121 includes silicon nitride, silicon oxynitride, a dielectric with a high dielectric constant (high k), and/or combinations thereof. Examples of high k materials include hafnium silicate, hafnium oxide, zirconium oxide, aluminum oxide, tantalum pentoxide, hafnium dioxide-alumina (HfO2—Al2O3) alloy, or combinations thereof. The first control gate 120 may be formed using typical CMOS processes such as, photolithography; ion implantation; diffusion; deposition including physical vapor deposition (PVD), metal evaporation or sputtering, chemical vapor deposition (CVD), plasma-enhanced chemical vapor deposition (PECVD), atmospheric pressure chemical vapor deposition (APCVD), low-pressure CVD (LPCVD), high density plasma CVD (HDPCVD), atomic layer deposition (ALD), spin on coating; etching including wet etching, dry etching, and plasma etching; and/or other suitable CMOS processes.
The substrate 110 further includes a buried oxide (BOX) layer 131 formed by a process such as separation by implanted oxygen (SIMOX), and/or other suitable processes. An opening 137 is formed at the second side 113 of the substrate 110. The opening 137 may include a trench formed in one or more layers disposed on the second side 113 of the substrate 110 that includes the first control gate 120. The opening 137 expose a region underlying the first control gate 120 and body structure (e.g., adjacent the channel region 119 of the first control gate 120). In an embodiment, the opening 137 exposes an active region (e.g., silicon active region) underlying the first control gate 120 and active/channel region 119 of the substrate 110. The opening 137 may be formed using suitable photolithography processes to provide a pattern on the substrate and etching process to remove materials from the buried oxide layer 131 until the second side 113 of the substrate 110 is exposed. The etching processes include wet etch, dry etch, plasma etch and/or other suitable processes.
A sensing film 133 is formed conformingly to the BOX 131 and the opening 137. The sensing film 133 is deposited over the sidewalls and bottom of opening 137 and the exposed active region underlying the first control gate 120. The sensing film 133 is compatible to biomolecules or bio-entities binding. For example, the sensing film 133 may provide a binding interface for biomolecules or bio-entities. The sensing film 133 may include a dielectric material, a conductive material, and/or other suitable material for holding a receptor. Exemplary sensing materials include high-k dielectric films, metals, metal oxides, dielectrics, and/or other suitable materials. As a further example, exemplary sensing materials include HfO2, Ta2O5, Pt, Au, W, Ti, Al, Cu, oxides of such metals, SiO2, Si3N4, Al2O3, TiO2, TiN, SnO, SnO2, SrTiO3, ZrO2, La2O3; and/or other suitable materials. The sensing film 133 may be formed using CMOS processes such as, for example, physical vapor deposition (PVD) (sputtering), chemical vapor deposition (CVD), plasma-enhanced chemical vapor deposition (PECVD), atmospheric pressure chemical vapor deposition (APCVD), low-pressure CVD (LPCVD), high density plasma CVD (HDPCVD), or atomic layer deposition (ALD). In some embodiments, the sensing film 133 may include a plurality of layers. A receptor such as an enzyme, antibody, ligand, peptide, nucleotide, cell of an organ, organism, or piece of tissue is placed on the sensing film 133 for detection of a target biomolecule.
A reference electrode 139 is placed in the analyte solution 135 at the second side 113 of the substrate 110, functioning as the second control gate 130. In some embodiments, the sensing film 133 is exposed to the analyte solution 135, and the reference electrode 139 is immersed in the analyte solution such that the second control gate 130 is a fluidic gate. The second control gate 130 is in Off-state. The analyte solution may be seen as a SOI transistor bulk substrate. That is, the fluidic gate 130 is turned off, while the standard MOS gate 120 functions as in On-state. The surface potential change of the second control gate 130 modulates the threshold voltage (VTH) of the first control gate 120 transistor through capacitive coupling. When the gate of the sensor 100 (e.g., the second control gate 130) is triggered by the presence of bio-molecule, the sensor 100 will transfer electrons and induce the field effect charging of the first control gate 120, thereby modulating the current (e.g., Ids). The change of the current or threshold voltage (VTH) can serve to indicate detection of the relevant biomolecules or bio-entities. Thus, the time drift effect caused by solution charging or large vertical electrical field is greatly reduced as the second control gate 130 is in Off-state. A voltage biasing between the source region 115, 117 and the second control gate 130 is smaller than a threshold voltage of the second control gate 130. More specifically, the threshold voltage of the second control gate 130 is approximately 0.5 V. In conventional dual gate BioFET system, the turn-on voltage of the fluidic gate transistor is much higher than that of the standard MOSFET. Furthermore, because no voltage is applied through the second control gate 130, the required overall voltage remains much lower than a conventional dual gate BioFET. However, because of substrate effect, the threshold voltage of the fluidic gate still exists in trace.
Please refer to
As shown in
VTH,FG represents the threshold voltage of the front gate 230, Eref represents the reference electrode potential, φs represents surface potential related to pH, χsol is surface dipole potential of the solution, the φm/q comes from semiconductor electron work function, and VTH, MOS represents the threshold voltage of the front gate 230 when it acts as a standard MOSFET device.
The pH value in the sensor 100, 200 has a decided effect to the accuracy of the device. The sensor has dual control gates, but the second control gate is in Off-state, and the first control gate is in On-state. This system allows less threshold voltage interference from the second control gate, which is a fluidic gate usually having larger voltage bias. The circuitry design is simpler without additional circuitry for calibration purpose. Please refer to
Attention is now invited to
Attention is now invited to
According to
A readout interface is designed for the dual gate BioFET. Conventional biosensors have, for example, single-gate FET using constant-voltage constant-current (CVCC) structure to extract threshold variation (ΔVTH) of the BioFET. In this configuration, a large circuitry is required with at least 2 operational amplifiers (OP AMP), 1 resistor and 2 current sources. The body effect has great impact on the current source drifting, and therefore, due to the size and accuracy it is not suitable in sensory array. Another example involves a differential pair of ISFET/MOSFET with indirect voltage feedback loop to MOSFET to extract threshold voltage variation of the BioFET (ΔVTH,BIO). The Drain/source voltage varies according to the bio-signals from the ISFET, and the current source also suffers from body effect. The voltage readout depends on two sets of FETs, and therefore, deviation adds on to the result. Still another example of conventional readout interface employs simpler circuitry with 1 operational amplifier and 1 resistor and direct voltage feedback to the reference electrode in solution to extract signals. Although body effect may reduce in this configuration, the output voltage is connected to the reference electrode in the solution, and therefore, the direct voltage feedback can only be used for a single one sensor. This configuration has constant drain current and drain voltage but is not suitable in a sensor array because of structural hindrance.
The BioFET sensor 100, 200 may be implemented in a readout interface of a sensor array, and from the series of BioFET, the threshold voltage may be efficiently collected, and at the same time sensitivity is not compromised. BioFET sensor 100, 200 may be replaced by, for example, a single gate BioFET having FET counterparts. It should be noted that all the drain terminals of the FETs are connected together, and all the source terminals thereof are connected together. Attention is now invited to
In some of the embodiments, the second control gate is in On-state and the first control gate is in Off-state. When the sensing film of the BioFET receives molecule of interest, a surface potential change is initialised on the sensing film of the second control gate. Through capacitance coupling, the voltage change at the first control gate, which is at Off-state, will induce coupling effect to the second control gate. The variation of threshold voltage (ΔVTH (pH)) occurs at the second control gate is affected by the pH value. Also, the voltage change of the first control gate (ΔVBG) results in a variation of threshold voltage ΔVTH (VBG) at the second control gate as well. The ΔVTH of the second control gate by the pH value is therefore cancelled out by the ΔVTH caused by the first control gates due to coupling effect. As a result, the ΔVOUT, which is equal to ΔVBG, is larger than ΔVTH (pH), resulting in an amplification gain larger than 1. The thickness of the oxide layer has an influence on the coupling effect because, the oxide capacitance shown in
Attention is now invited to
The instant disclosure utilizes dual gate structure and allows the capacitive coupling effect takes place. One of the gate is in Off-state, and therefore the solution biasing voltage is reduced, and the time drifting effect is minimized. The detection resolution of the device is enhanced because more variation is removed or attenuated from the structural design. When implementing the structure to a readout interface, the amplification gain may be greater than 1.
In one aspect of the instant disclosure, a biologically sensitive field effect transistor includes a substrate, a first control gate and a second control gate. The substrate has a first side and a second side opposite to the first side, a source region and a drain region. The first control gate is disposed on the first side of the substrate. The second control gate is disposed on the second side of the substrate. The second control gate includes a sensing film disposed on the second side of the substrate. A voltage biasing between the source region and the second control gate is smaller than a threshold voltage of the second control gate.
In another aspect of the instant disclosure a dual gate field effect transistor readout interface includes a field effect transistor including at least two gate terminals, a drain terminal and a source terminal. The readout interface further includes a feedback amplifier comprising a first input terminal connected to the drain terminal, a second input terminal biased at a reference voltage and an output terminal connected to one of the control gate.
In still another aspect of the instant disclosure a method includes producing a first signal through a sampling loop, estimating and storing a mismatch of each unit based on the first signal from the sampling loop, and performing mismatch compensation and produce a second signal through a cancel mismatch loop.
The foregoing outlines features of several embodiments so that those skilled in the art may better understand the aspects of the present disclosure. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions, and alterations herein.
This application is a continuation of U.S. patent application Ser. No. 16/227,646, filed on Dec. 20, 2018, which is a continuation of U.S. patent application Ser. No. 14/961,588, filed on Dec. 7, 2015. These applications are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
5702981 | Maniar et al. | Dec 1997 | A |
6639841 | Chen | Oct 2003 | B2 |
7060510 | Bonnell et al. | Jun 2006 | B2 |
7306924 | Gomez et al. | Dec 2007 | B2 |
7632670 | Offenhausser et al. | Dec 2009 | B2 |
7695609 | Soundarrajan et al. | Apr 2010 | B2 |
7696530 | Yamamoto et al. | Apr 2010 | B2 |
7833708 | Enzelberger et al. | Nov 2010 | B2 |
7923314 | Tezuka et al. | Apr 2011 | B2 |
8007727 | Shalev et al. | Aug 2011 | B2 |
8420328 | Chen et al. | Apr 2013 | B2 |
8471559 | Taherian et al. | Jun 2013 | B2 |
8502277 | Matsumoto et al. | Aug 2013 | B2 |
8519490 | Bikumandla | Aug 2013 | B2 |
8557643 | Han et al. | Oct 2013 | B2 |
8728844 | Liu et al. | May 2014 | B1 |
8778269 | Joshi et al. | Jul 2014 | B2 |
8871549 | Ellis-Monaghan et al. | Oct 2014 | B2 |
8878258 | Monfray et al. | Nov 2014 | B2 |
9080969 | Liu et al. | Jul 2015 | B2 |
9389199 | Cheng et al. | Jul 2016 | B2 |
9417209 | Shen et al. | Aug 2016 | B2 |
9459234 | Kalnitsky et al. | Oct 2016 | B2 |
10161901 | Huang et al. | Dec 2018 | B2 |
10876998 | Huang et al. | Dec 2020 | B2 |
20040256657 | Hung et al. | Dec 2004 | A1 |
20080175061 | Kim et al. | Jul 2008 | A1 |
20100032671 | Marshall | Feb 2010 | A1 |
20120007166 | Zhu et al. | Jan 2012 | A1 |
20130200438 | Liu et al. | Aug 2013 | A1 |
20140252421 | Liu et al. | Sep 2014 | A1 |
20140264467 | Cheng et al. | Sep 2014 | A1 |
20140295573 | Huang et al. | Oct 2014 | A1 |
20140368415 | Kim et al. | Dec 2014 | A1 |
20150160323 | Wen | Jun 2015 | A1 |
20150316503 | Hoque et al. | Nov 2015 | A1 |
20170102356 | Lin et al. | Apr 2017 | A1 |
20170160226 | Huang et al. | Jun 2017 | A1 |
20190145927 | Huang et al. | May 2019 | A1 |
Number | Date | Country |
---|---|---|
1842704 | Oct 2006 | CN |
103426930 | Dec 2013 | CN |
2008-176243 | Jan 2007 | JP |
2012-0121228 | Nov 2012 | KR |
2013-0078182 | Jul 2013 | KR |
Entry |
---|
Bergveld, The Operation of an ISFET as an Electronic Device, Sensors and Actuators, 1 (1981), pp. 17-29, 1981. |
Casans et al., “Circuit provides constant current for ISFETs/MEMFETs”, EON, design ideas, Oct. 26, 2000; 2 pages. |
Chen et al., “An Intelligent ISFET Sensory System With Temperature and Drift Compensation for Long-Term Monitoring”, IEEE Sensors Journal, vol. 8, No. 12, Dec. 2008; pp. 1948-1959. |
Morgenshtein et al., “A Microsystem for ISFET-Based pH Measurement in CMOS Technology”, The 16th European Conference on Solid-State Transducers, Sep. 15-18, 2002, Prague, Czech Republic, pp. 360-363, 2002. |
Muller et al., “Differential ISFET/REFET Pairs as a Reference System for Integrated ISFET-Sensorarrays”, 1991 IEEE, pp. 467-470, 1991. |
Welch et al., “Experimental and Simulated Cycling of ISFET Electric Fields for Drift Reset”, IEEE Electron Device Letters, vol. 34, No. 3, Mar. 2013; pp. 456-458. |
English language abstract of Japanese Patent Publication No. 2008-176243, Japanese Patent Office, accessed Apr. 24, 2017, listed as document FP2 on the accompanying form PTO/SB/08a; 1 page. |
English language abstract of Korean Publication No. 10-2012-0121228, Korean Patent Office KIPRIS, accessed Apr. 24, 2017, listed as document FP1 on the accompanying form PTO/SB/08a; 1 page. |
Number | Date | Country | |
---|---|---|---|
20210148856 A1 | May 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16227646 | Dec 2018 | US |
Child | 17135508 | US | |
Parent | 14961588 | Dec 2015 | US |
Child | 16227646 | US |