The following relates generally to the electronic countermeasure arts, the unmanned autonomous vehicle arts, signal jamming arts, communications arts, satellite navigation and communication arts, law enforcement arts, military science arts, and the like. It finds particular application in conjunction with the jamming and hijacking of drones, and will be described with particular reference thereto. However, it will be understood that it also finds application in other usage scenarios and is not necessarily limited to the aforementioned application.
Unmanned or autonomous aerial vehicles (“UAV), more commonly known as “drones”, have become more and more prevalent in both the military and civilian context. Current, commercially available drones embody technology that was until recently, solely within the purview of governmental entities. The drones available to the civilian and military markets include navigation systems, various types of eavesdropping components, high-definition or real-time video output, long life lithium batteries, and the like. Furthermore, current civilian models may be operated by any individual, without regarding to licensing or regulation.
The propagation of civilian drone usage has resulted in invasions of privacy, interference with official governmental operations, spying on neighbors, spying on government installations, and myriad other offensive operations. Military usage of drones, including armed drones, has increased substantially as battery storage has increased and power consumption has decreased. This widespread use of drones has led to security and privacy concerns for the military, law enforcement, and the private citizen. Furthermore, drones have substantially decreased in size, resulting in smaller and smaller, while the capabilities of the drones themselves have increased. This poses a security risk for security personnel as the operator of the drone may be far away, making the determination of the operator's intent particularly difficult to ascertain.
The drones in use typically operate using multiple frequency bands, some bands used for control signals between the drone and the operator, GPS/GLONASS signals for navigation, and other frequency bands for video and/or audio signal transmissions. This use of multiple frequencies results in difficulty in effectively tailoring a jamming signal directed solely to the offending drone, without negatively impacting other, non-offensive radio-frequency devices.
Furthermore, current commercially available jammers, while illegal in some jurisdictions, are generally omnidirectional in nature. To avoid issues relating to non-offensive devices, these jammers typically are limited in radius from less than a meter to 25 meters. Those jammers having larger effective radii for signal jamming or denial require substantial power (plug-in/non-portable) or are bulky. A common problem with all of these jammers is their inability to specifically target a drone, while allowing non-threatening devices to remain operational. Furthermore, due to the distances, and heights, at which drones operate, the portable jammers currently available lack the ability to effectively jam signals that may be used by the drones. For example, such commercially available jammers for Wi-Fi or GPS will propagate a jamming signal circularly outward, rendering the user's own devices inoperable while within that radius. The unintended consequences of such jamming may cause vehicle accidents or aircraft issues, depending upon the strength and radius of the jammer being used.
In addition to the foregoing problems, current jammers lack the ruggedness associated with field operations. That is, the commercially available jammers are delicate electronics, not designed for use by soldiers in the field. As noted above, the commercial jammers currently available further utilize multiple antennae, each directed to a different frequency band. These are not ruggedized pieces of equipment, capable of being utilized in field operations by law enforcement, security, or military. The multiple antennae are prone to breakage during transport. Those rugged military or law enforcement jammers that are available are portable in the sense that they are backpack or vehicle born devices, requiring substantial training to effectively operate.
Previous attempts at hand-held or portable jammers utilized standard form-factors for hand-held weapons. However, these designs are intended to compensate for recoil as the weapon fires. Rifle form-factors typically utilize a two hand approach, with the hands being spaced apart to steady the rifle when firing. This hand placement, with the weight of the average weapon, can be tiring, particularly when holding the weapon on target. Generally, because the weapon fires so quickly, the aforementioned design does not necessarily adversely affect its use. However, with directed energy weapons, which must remain on target while active, this displacement of at least one of the hands away from the body of the operator, places considerable strain on the extended arm.
Thus, it would be advantageous to provide a ruggedized form factor directional drone jammer that provides a soldier or law enforcement officer with simple, targeted anti-drone capabilities. Such a jammer is portable, including power supply, and comprises a rifle-like form allowing the soldier or law enforcement officer to aim via optic, electronic or open sights at a target drone for jamming of the drone control and/or GPS signals, while preventing interference for other devices utilizing the jammed frequencies. Furthermore, it would be advantageous to provide a suitable form-factor that relieves arm strain while maintaining aim on a targeted drone.
The following discloses a new and improved portable countermeasure device, utilizing a dual-grip embodiment, with directional targeting which addresses the above referenced issues, and others.
In one embodiment, a portable countermeasure device is provided comprising at least one directional antenna, at least one disruption component and at least one activator.
In another embodiment, a portable countermeasure device is provided having a weapon form factor with dual-grips, the grips located adjacent each other.
According to another embodiment, a dual-grip portable countermeasure device includes a body having a first grip and a second grip, with the second grip adjacent to the first grip located on a bottom portion of the body. The dual-grip portable countermeasure device further includes at least one directional antenna coupled to a front of the body, and at least one signal disruption component disposed within an interior of the body, the at least one signal disruption component in electronic communication with the at least one directional antenna.
In accordance with another embodiment, a dual-grip portable countermeasure device, includes a body that has a first grip located on a bottom portion of the body, a second grip adjacent the first grip located on the bottom portion of the body, and a buttstock formed on a rear portion of the body, with the first grip angled toward a buttstock of the body, and the second grip is angled opposite the first grip toward the front of the body. The dual-grip portable countermeasure device also includes a connector located on the buttstock, the connector configured to removably couple with an external power supply. Disruption components are located within the body and are in communication with the external power supply via the connector, the disruption components configured to generate a disruption signals on corresponding associated frequency bands. The dual-grip portable countermeasure device also includes a first activator coupled to the body adjacent the first grip and in operable communication with the external power supply and at least one of the disruption components, and a second activator coupled to the body adjacent the second grip and in operable communication with the external power supply and at least one of the disruption components. The dual-grip portable countermeasure device also includes multiple directional antennae in communication with the disruption components, the directional antennae configured to emit a corresponding plurality of disruption signals generated by the plurality of disruption components.
In another aspect, the portable countermeasure device further comprises a firearm form factor body, wherein the directional antenna is affixed to a front portion of the firearm form factor body. The one or more disruption components may be externally or internally mounted to the firearm form factor body.
In another aspect, a battery pack is capable of being inserted into an appropriate location on the firearm form factor body so as to supply power to the disruption components. Such a battery pack may comprise a lithium-ion battery, NiMH battery, or the like.
In another aspect, an external power supply may supply power to the disruption components.
In yet another aspect, a backpack external power supply may be coupled to the portable countermeasure device via a suitable connection port located on a buttstock of the firearm form factor body.
In still another aspect, a set of sights is coupled to the firearm form factor body, allowing aiming of the disruption components on a targeted drone.
In yet another aspect, the disruption components generate disruptive signals across multiple frequency bands via at least one antenna. In some embodiments, the multiple frequency bands include GPS, control signals, and/or Wi-Fi signals. In other embodiments, multiple antennae are used for different frequency bands.
The subject disclosure may take form in various components and arrangements of component, and in various steps and arrangement of steps. The drawings are only for purposes of illustrating the preferred embodiments and are not to be construed as limiting the subject disclosure.
One or more embodiments will now be described with reference to the attached drawings, wherein like reference numerals are used to refer to like elements throughout. Aspects of exemplary embodiments related to systems and methods for signal jamming and signal hijacking are described herein. In addition, example embodiments are presented hereinafter referring to a rifle-like apparatus that may be aimed by a soldier or law enforcement officer on a drone to disrupt control and/or navigation of the drone, however application of the systems and methods set forth can be made to other areas utilizing electronic countermeasures and privacy protection.
As described herein, there is described a portable countermeasure device, such as rifle-like or firearm form factor jammer, that can be aimed by a user at a drone, resulting in the disruption of control and/or navigation signals. In one embodiment, the portable countermeasure device includes multiple signal generators and associated amplifiers, producing disruptive, spoofing and/or jamming signals across multiple frequency bands. It will be appreciated by those skilled in the art that suitable disruptive signals may include, for example and without limitation, multi- or single frequency noise signals, alternative command signals, false data signals, and the like. In such an embodiment, a single antenna is coupled to the portable countermeasure device, capable of directing multiple frequency bands of disruptive signals toward a single target, forming a cone around the target. The portable countermeasure device may be self-contained, with replaceable battery packs, or receive power from an external source.
It will be appreciated that the various components of the portable countermeasure device, as described in greater detail below, may be added to an existing fire arm, an aftermarket rifle stock, or a firearm-like form factor having a customized body incorporating the various components. The portable countermeasure device may be aimed via iron sights, optical scope, or other means for directing the disruptive signals toward a targeted drone. Furthermore, the embodiments disclosed herein may be implemented without software, hardware, or other signal analysis means, enabling a soldier or law enforcement officer to use the portable countermeasure device without substantial training. Such a simplified implementation further ruggedizes the portable countermeasure device for use in harsh environments where weather, lack of resupply, insurgents, criminals, or the like, may operate.
Referring now to
It will be appreciated that the portable countermeasure device 100 of
The body 102 may be constructed of non-metallic materials, i.e., ballistic plastic, carbon fiber, ceramics, etc., or suitable non-transmissive metallic composites. The body 102 may be implemented in a suitable form factor with which soldiers and/or law enforcement personnel are already familiar, e.g., the aforementioned M4 carbine, AR-platform, AK-platform, SCAR, bullpup, etc. It will be appreciated that the width, length, and height of the body 102 may be dependent upon the size and number of generators 106 and amplifiers 108 either integral therein or externally affixed thereto. According to one embodiment, a multifunctional cell is formed as the body 102 to provide both structural support/shape of the portable countermeasure device 100 as well as supply power to the components therein. A suitable example of such a multifunctional cell is provided in PCT/US2013/040149, filed May 8, 2013 and titled MULTIFUNCTIONAL CELL FOR STRUCTURAL APPLICATIONS, the entire disclosure of which is incorporated by reference herein. In accordance with another embodiment, the portable countermeasure device 100 may include multiple signal disruption components 104 to combat a variety of potential targets, e.g., receivers of improvised explosive devices (IEDs), commercial drones, military drones, or other portable electronic devices of enemy combatants or suspects, e.g., cellular phones, GPS/Satellite-based navigation devices, remote control detonators, etc. A suitable example of a portable countermeasure device 100 that includes multiple signal disruption components 104 within the body 102 is depicted in
The portable countermeasure device 100, as shown in
In accordance with one embodiment, the signal generator 106 and corresponding amplifier 108, may be configured to generate signals from DC to 30 GHz. In another embodiment, a signal generator 106, with corresponding amplifier 108, is incorporated to generate disruptive signals in the, 70-75 MHz, 400-500 MHz, 800-900 MHz, 900-1000 MHz, 1000 MHz-1.8 GHz, 2.0 GHz-2.6 GHz, 5.0-5.6 GHz frequency ranges, or other known control/navigation signal frequency ranges. In one particular embodiment, a signal generator 106 for each of the 72 MHz frequency band, the 400 MHz frequency band, the 800 MHz frequency band, the 900 MHz frequency band, the 1.2 GHz frequency band, the 1.5 GHz frequency band, the 2.4 GHz frequency band, and the 5.8 GHz frequency band, with corresponding amplifiers 108 are incorporated into the portable countermeasure device 100. Additionally, the signal generator 106 may be in communication with memory (not shown) that stores alternative command signals for spoofing or hacking, as will be known in the art, a particular control frequency. In such embodiments, the signal generator 106 may be operable to transmit a different navigation signal (altering the coordinates the drone is receiving from navigation satellites/commands), transmit a control signal indicating the drone should land or return to home, or the like. It will be appreciated that such signals generated via the signal generator 106 may be output in addition to noise, jamming, or the like, or in place thereof.
In accordance with the example embodiment of
In accordance with another embodiment, the portable countermeasure device 100 may utilize an auxiliary cable to a backpack power supply, a remote power source, a portable generator, fuel cell, vehicle interface, or the like. As shown in
According to another embodiment, the portable countermeasure device 100 may include a display 120 operable to display remaining power levels of the battery pack, effective range of the output of the signal disruption components 104 relative to power supply level, or the like. This optional display 120 may be connected to control components (not shown), and be customized to display the frequency selected for output by the jammer components 104. In such an embodiment, the display 120 may be implemented as an LED, LCD, OLED, or other suitable display type. In accordance with one embodiment, the display 120 of the portable countermeasure device 100 may be implemented as a visual indicator associated with operation of the various components of the device 100. It will be appreciated that as the portable countermeasure device 100 does not provide physical recoil when operated, the display 120 provides visual feedback to the operator. As indicated above, one or more LEDs, or other suitable visual indicators, may be utilized, indicating, for example and without limitation that individual circuit cards are powered up, that individual circuit cards are within specified limits, that power is on to the operating/selected antennae, which antennae are operating, and the like.
In accordance with another embodiment, the portable countermeasure device 100 is equipped with a haptic feedback component 121, configured to provide haptic feedback through the body 102 (or grips 114, 115) to the operator when the portable countermeasure device 100 is active. In varying embodiments, the haptic feedback component 121 may be activated when one or more triggers 110, 112 are engaged and power to the signal disruption components 104 is on. In such embodiments, the haptic feedback generated by the component 121 may differ so as to indicate which antenna(e) 122 is engaged. As with other directed energy devices, e.g., lasers, RF generators, radar jammers, etc. having weapons form factors used in electronic warfare, the portable countermeasure device 100 of the subject application the does not provide any observable recoil when activated. Accordingly, the haptic feedback component 121 may provide varying feedback to triggers 110 and/or 112, grips 114 and/or 115, buttstock 103, etc., indicating activation of the portable countermeasure device 100.
The portable countermeasure device 100 depicted in
In one particular embodiment, the antenna 122 is implemented as a combined, high-gain, directional antenna having a helical cross-section. Other suitable directional antenna, e.g., Yagi, cylindrical, parabolic, long period array, spiral, phased array, conical, patch, etc., are also capable of being utilized in accordance with the disclosure set forth herein.
Affixed to the top of the body 102, either fixed thereto, or removably attached, e.g., attachments to a rail (shown in
In operation, the soldier or law enforcement officer will target a drone hovering or flying in an unauthorized area by aiming the antenna 122 of the portable countermeasure device 100 in a manner similar to a regular firearm. That is, the soldier or law enforcement officer, using the iron sights or optical sights 208, directs the antenna 122 of the portable countermeasure device 100 toward the drone. After ensuring that sufficient power is available, and the drone is within the effective range of the portable countermeasure device 100, the soldier or law enforcement officer activates the activator 110 (for all control frequency bands) and/or the activator 112 (for all GPS/navigation frequency bands) to activate the control circuit (not shown), which regulates the power from a battery or other power source to the disruption components 104. In an alternative embodiment, a single activator (not shown) may control activation of all disruption components 104, thereupon simultaneously or sequentially generating disruptions signals as described herein when the activators 110 and 112 are activated. When disrupting multiple frequency bands, e.g., control signals, Wi-Fi and/or GPS, multiple disruption signal generators 106 and amplifiers 108 are activated to produce the desired disruption signal, e.g., noise, spoofing, alternate commands, alternate coordinates, etc., on the selected frequency bands.
The disruptive signal is then directed through the single antenna 122 (capable of handling multiple frequency bands) or multiple antennae toward the drone at which the portable countermeasure device 100 is aimed. The disruption cone 126 then extends outward from the portable countermeasure device 100 toward the drone, disrupting control and GPS signals effectively negating the presence of the drone in the unauthorized area. Alternative embodiments disclosed herein include generating, via the signal generator 106, alternative commands to the drone, instructing the drone to land, change direction, change video broadcast stream, stop video streaming/recording, thereby overriding the original control signals. Furthermore, the portable countermeasure device 100 may be configured to transmit altered navigation coordinates, confusing the drone or forcing the drone to leave (or travel to) a particular area. The soldier or law enforcement officer then maintains his/her aim on the drone until the drone falls, retreats, loses power, or the like. The activator(s) 110-112 may then be deactivated by the law enforcement officer or soldier and the disabled drone may then be recovered by the appropriate authority for determination of the owner.
According to one example embodiment, the portable countermeasure device 100 includes hardware, software, and/or any suitable combination thereof, configured to interact with an associated user, a networked device, networked storage, remote devices, detector systems, tracking systems, and the like. In such an example embodiment, the portable countermeasure device 100 may include a processor, which performs signal analysis, ballistic analysis, or the like, as well as execution of processing instructions which are stored in memory connected to the processor for determining appropriate signal generation for disruption, power supply management, and the like. It will be appreciated that the inclusion of a suitable processor is optional, depending upon the ruggedness of the underlying implementation of the portable countermeasure device 100. Further, it will be understood that separate, integrated control circuitry, or the like, may be incorporated into the portable countermeasure device 100 so as to avoid interference of operations by the disruption components 104, or the like.
According to another example embodiment, the portable countermeasure device 100 may include a selector control (not shown), which may be located on the exterior of the portable countermeasure device 100. Such a selector control may be operable to select a frequency or frequencies to be generated by the at least one signal generator and amplified by the corresponding at least one amplifier 108. In accordance with one alternate embodiment, a variable amplifier may be used, whereupon power supplied to the signal generators 106 is modified, without increasing the power drain of the portable countermeasure device 100. It will be appreciated that the selector control may be implemented to provide ease of use to the soldier or law enforcement official in the field to reflect the desired target of the portable countermeasure device 100.
Turning now to
The multiple antennae 202, 204, and 206 illustrated in
As illustrated in
It will be appreciated that the embodiment of
The portable countermeasure device 200 of
It is to be appreciated that in connection with the particular illustrative embodiments presented herein certain structural and/or function features are described as being incorporated in defined elements and/or components. However, it is contemplated that these features may, to the same or similar benefit, also likewise be incorporated in other elements and/or components where appropriate. It is also to be appreciated that different aspects of the exemplary embodiments may be selectively employed as appropriate to achieve other alternate embodiments suited for desired applications, the other alternate embodiments thereby realizing the respective advantages of the aspects incorporated therein.
It is also to be appreciated that particular elements or components described herein may have their functionality suitably implemented via hardware, software, firmware or a combination thereof. Additionally, it is to be appreciated that certain elements described herein as incorporated together may under suitable circumstances be stand-alone elements or otherwise divided. Similarly, a plurality of particular functions described as being carried out by one particular element may be carried out by a plurality of distinct elements acting independently to carry out individual functions, or certain individual functions may be split-up and carried out by a plurality of distinct elements acting in concert. Alternately, some elements or components otherwise described and/or shown herein as distinct from one another may be physically or functionally combined where appropriate.
In short, the present specification has been set forth with reference to preferred embodiments. Obviously, modifications and alterations will occur to others upon reading and understanding the present specification. It is intended that the invention be construed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof. That is to say, it will be appreciated that various of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications, and also that various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art which are similarly intended to be encompassed by the following claims.
This application is a continuation of U.S. patent application Ser. No. 15/596,842, filed May 16, 2017 and titled DUAL-GRIP PORTABLE COUNTERMEASURE DEVICE AGAINST UNMANNED SYSTEMS, which is a continuation-in-part of U.S. patent application Ser. No. 15/274,021, filed Sep. 23, 2016 and titled PORTABLE COUNTERMEASURE DEVICE AGAINST UNMANNED SYSTEMS, which claims priority to U.S. Provisional Patent Application Ser. No. 62/222,475, filed Sep. 23, 2015, titled ELECTRONIC DRONE DEFENDER-WIRELESS JAMMING AND SIGNAL HACKING, the disclosures of which are incorporated by reference in their entirety herein.
Number | Name | Date | Kind |
---|---|---|---|
4584578 | Brauns et al. | Apr 1986 | A |
5001771 | New | Mar 1991 | A |
5287110 | Tran | Feb 1994 | A |
5822429 | Casabona et al. | Oct 1998 | A |
5896105 | Murphy et al. | Apr 1999 | A |
6223461 | Mardirossian | May 2001 | B1 |
6230371 | Chu | May 2001 | B1 |
6396432 | Riemschneider et al. | May 2002 | B1 |
6480144 | Miller | Nov 2002 | B1 |
6977598 | Longbottom | Dec 2005 | B2 |
7050755 | Kline | May 2006 | B2 |
7099369 | Karlsson | Aug 2006 | B2 |
7318368 | Ham et al. | Jan 2008 | B2 |
7423575 | Duff et al. | Sep 2008 | B2 |
7489264 | Ferm et al. | Feb 2009 | B2 |
7554481 | Cohen et al. | Jun 2009 | B2 |
7574168 | Twitchell et al. | Aug 2009 | B2 |
7697885 | Stoddard | Apr 2010 | B2 |
7698846 | Do Amarante | Apr 2010 | B2 |
7783246 | Twitchell, Jr. et al. | Aug 2010 | B2 |
8001901 | Bass | Aug 2011 | B2 |
8135661 | Olsson | Mar 2012 | B2 |
8145119 | Cornwell | Mar 2012 | B2 |
8170467 | Soddard | May 2012 | B2 |
8203109 | Taylor et al. | Jun 2012 | B2 |
8269957 | Saban et al. | Sep 2012 | B2 |
8301075 | Sherman et al. | Oct 2012 | B2 |
8388243 | Smith | Mar 2013 | B1 |
8615190 | Lu | Dec 2013 | B2 |
8903304 | Coleman et al. | Dec 2014 | B2 |
8971441 | Dowla et al. | Mar 2015 | B2 |
9071385 | Delaveau et al. | Jun 2015 | B2 |
9207049 | Rovinsky | Dec 2015 | B2 |
9404750 | Rios | Aug 2016 | B2 |
20030058112 | Gleine | Mar 2003 | A1 |
20030110675 | Garrett et al. | Jun 2003 | A1 |
20050011101 | Gooder | Jan 2005 | A1 |
20050041728 | Karlsson | Feb 2005 | A1 |
20060226950 | Kanou | Oct 2006 | A1 |
20070063886 | Brumley, II et al. | Mar 2007 | A1 |
20080174469 | Stark et al. | Jul 2008 | A1 |
20090214205 | Clark et al. | Aug 2009 | A1 |
20090287363 | Young | Nov 2009 | A1 |
20110000389 | Fullerton | Jan 2011 | A1 |
20110176674 | Romain | Jul 2011 | A1 |
20130015260 | Schulte | Jan 2013 | A1 |
20130023201 | Coleman et al. | Jan 2013 | A1 |
20140145993 | Nakayama | May 2014 | A1 |
20140147116 | Krupkin | May 2014 | A1 |
20140266851 | Fink et al. | Sep 2014 | A1 |
20140272807 | Guenther | Sep 2014 | A1 |
20150229434 | Shawn | Aug 2015 | A1 |
20150350914 | Baxley | Dec 2015 | A1 |
20160202025 | Di Mauro Lorenzi | Jul 2016 | A1 |
20170250778 | Stamm et al. | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
WO 2007012147 | Feb 2007 | WO |
WO 2007012148 | Feb 2007 | WO |
WO 2017053693 | Mar 2017 | WO |
Entry |
---|
V1; 3G Mobile Phone Jammer; accessed from http://www.jammerfromchina.com. |
V2; 3W High Power Portable All Wireless Bug Camera; accessed from http://www.jammerfromchina.com. |
V3; Cell phone jammer Search by Functions; accessed from http://www.jammerfromchina.com. |
V4; L5 3G Mobile Phone Signal Jammer; accessed from http://www.jammerfromchina.com. |
V5; New Arrival All-in-one Handheld GPS 2G 3G 4G Mobile Phone; accessed from http://www.jammerfromchina.com. |
V6; PCS_3G_WiFi_GPS Signal Blocker; accessed from http://www.jammerfromchina.com. |
V7; Phone Jammer—Wholesale Jammer—DropShip From China; accessed from http://www.jammerfromchina.com. |
W; Clear Sky jammers e-RAKE; accessed from http://www.hypercable.fr. |
X; High Gain Directional Antennas for High Power Adjustable WiFi Phone Jammer; accessed from http://www.alljammers.com. |
Y; Directional RF Jammer for blocking cellular phone calls; accessed from http://www.secintel.com. |
Z; Drone jammer instruction set. |
Fitriyani et al.; Yagi antenna design for signal phone jammer; 2012. |
International Search Report for PCT Application No. PCT/US2018/032732 dated Aug. 8, 2018. |
WiFi Sniper Rifle; Jun. 21, 2011; https://tinyurl.com/wifisniperrifle. |
Hunter Scott Hack Rifle; Jan. 19, 2015; https://www.hscott.net/hack-rifle. |
BlueSniper Rifle; Aug. 6, 2004; https://tinyurl.com/bluesniperrifle. |
How to Build a BlueSniper Rifle; Mar. 8, 2005; https://tinyurl.com/bluesniperrifle1. |
Sniping 2.4GHZ; Apr. 21, 2014; https://tinyurl.com/sniping2-4ghz. |
“World's First Fully Integrated Anti-UAV Defence System (Auds) Now Features Quad Band RF Inhibitor and Optical Disruptor”; Sep. 8, 2015; https://www.blighter.com/worlds-first-fully-integrated-anti-uav-defence-system-auds-now-features-quad-band-rf-inhibitor-and-optical-disruptor/. |
“AUDS—Anti-UAV Defence System”; May 11, 2019; https://www.youtube.com/watch?time_continue=66&v=P8aZ0zWX3SA. |
Number | Date | Country | |
---|---|---|---|
20180367237 A1 | Dec 2018 | US |
Number | Date | Country | |
---|---|---|---|
62222475 | Sep 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15596842 | May 2017 | US |
Child | 16005905 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15274021 | Sep 2016 | US |
Child | 15596842 | US |