The present disclosure relates to a power multiplexer, and more particularly, to a dual input single output (DISO) power multiplexer for a near field communication application.
Power multiplexer switches typically link a power supply with a device to be powered (a load) and provide switching control to couple or de-couple the load from the supply based on a switching signal. Examples loads that may be controlled by a load switch include portable devices such as phones, digital cameras, media players, Global Positioning System (GPS) receivers and portable games. Load switches may provide limited or no protection, however, against reverse current flow from the load back to the power supply, which can damage sensitive and/or valuable components. This lack of reverse current flow protection is particularly common when the switch is in an off or open state.
Additionally, many electronic devices, particularly portable devices such as mobile phones, are powered by batteries. Batteries eventually run low on power forcing an interruption in the use of the device. Either the battery must be replaced or recharged, which may be inconvenient and time consuming. In the case of a mobile phone, for example, a low battery may cause the a loss of power to the phones Subscriber Identity Module (SIM) circuit card.
Features and advantages of the claimed subject matter will be apparent from the following detailed description of embodiments consistent therewith, which description should be considered with reference to the accompanying drawings, wherein:
Although the following Detailed Description will proceed with reference being made to illustrative embodiments, many alternatives, modifications, and variations thereof will be apparent to those skilled in the art.
Generally, this disclosure provides a dual input single output (DISO) power multiplexer configured for use with a near field communication (NFC) module. The DISO power multiplexer may provide true reverse current blocking (TRCB) and may be implemented in a single integrated circuit that is operable at reduced voltages. The power multiplexer provides protection in the form of reverse current blocking which prevents current from flowing back from the load VOUT to the channel inputs VinA and VinB regardless of the state of each channel input switch being open or closed (i.e., on or off). This type of reverse current blocking, which provides protection whether the switch is on or off, is also referred to as TRCB. The DISO power multiplexer may enable power to be provided from the NFC module to a Subscriber Identity Module (SIM) circuit card, for example in a mobile phone, to allow the SIM card to be operable even though power from a conventional source such as a Power Management Unit (PMU) is unavailable, for example, when the phone is powered off.
In some embodiments the power multiplexer may be slew rate controlled. In some embodiments, the power multiplexer may be part of a power path management system configured for use with universal serial bus (USB) and wireless charger applications.
The power multiplexer 110 may further be configured to provide TRCB between Vout and VinA in channel A, and between Vout and VinB in channel B. In some embodiments, control signals, including an enable and a select may also be provided to the power multiplexer 110, as will be explained below. In some embodiments, the select signal may be provided by a system 106, for example, a processor or control circuitry in a mobile phone. In some embodiments, the enable may be held at a constant high level, for example by a battery. If the enable is driven low, the output voltage may be allowed to float or may go to ground. Input voltage signal levels may be in the approximate range of 1.5 volts to 5.5 volts.
In some embodiments a “break before make” transition from channel A to channel B, and vice versa, is provided to enable hot swapping between power supplies. In some further embodiments the system may be implemented on a single integrated circuit (IC) having an approximate size of 1 mm by 1.5 mm. The IC may be configured with two integrated P-channel power switches and associated analog control circuitry.
Control signals, including an enable and a select may also be provided to the slew rate controlled power multiplexer, as will be explained below. In some embodiments, the power sources may be a wall adapter, for example a 5 volt wall adapter, and/or a wireless charging unit, for example a 5 volt 1 amp charging unit. Input voltages may be in the approximate range of 1.5 volts to 5.5 volts. In some embodiments, the output Vout may be coupled to a system that may include another charger and/or a battery to which power will be supplied for operation.
Input Buffer and control logic circuits 602 may be configured to determine which of the input supply voltages VinA or VinB, if either will be coupled to Vout based on the enable and control signals provided. Control logic circuit 602 drives P-Channel MOSFET TRCB switches 604 and 608 through slew rate driver 606 and slew rate driver 610 respectively to accomplish this switching. Slew rate drivers 606, 610 provide slew rate control so that P-Channel MOSFET switches 604, 608 can be turned on with the appropriate slew rate. An optional output discharge circuit 612 may be provided and controlled by control logic circuit 602.
In some embodiments a “break before make” transition from channel A to channel B, and vice versa, is provided to enable hot swapping between power supplies. In some further embodiments the system may be implemented on a single integrated circuit (IC) having an approximate size of 1 mm by 1.5 mm. The IC may be configured with two integrated P-channel power switches and associated analog control circuitry.
The DISO power path manager circuit 702 may further be configured to allow reverse current to flow on the Vbus input through a bi-directional switch, permitting operation of USB on-the-go (OTG) capability which enables the USB device to act as either a master or slave device. Control signals, including an enable and a select may also be coupled between the DISO power path manager circuit 702 and the system 708, as will be explained below. In some embodiments, under-voltage and over-voltage lockouts may be provided to protect the PMIC 704. Thermal shutdown protection may also be provided. A 50 msec delay may also be provided during power source switching.
In some embodiments the system may be implemented on a single integrated circuit (IC) having an approximate size of 1.8 mm by 2.0 mm.
In a first case, the battery voltage is in a valid range and the EN signal is high. In this case, the output VOUT is selected from a valid VIN or VBUS based on the VIN_SEL signal which can be used to determine the priority of inputs when both input sources are available. The Other_VIN_AVA signal is provided to indicate, when high, that both input sources are available. In the absence of VIN, the EN signal may provide power to the DISO power path manager circuit 702 control logic to support USB OTG.
In a second case, the battery is depleted or the EN signal is low. In this case, a valid input source can power the system directly, based on automatic selection. If only one valid source is available, it is applied. If two valid sources are available, priority may be set by the DF_IN signal.
As used herein, use of the term “nominal” or “nominally” when referring to an amount means a designated or theoretical amount that may vary from the actual amount.
The term “switches” may be embodied as MOSFET switches (e.g. individual NMOS and PMOS elements), BJT switches and/or other switching circuits known in the art. In addition, “circuitry” or “circuit”, as used in any embodiment herein, may comprise, for example, singly or in any combination, hardwired circuitry, programmable circuitry, state machine circuitry, and/or circuitry that is included in a larger system, for example, elements that may be included in an integrated circuit.
Thus, the present disclosure provides systems, methods and platforms for power multiplexer switching operations. The system may include an NFC module configured to receive power through an RF channel. The system of this example may also include a SIM circuit configured with a supply voltage port. The system of this example may further include a power multiplexer circuit configured to controllably couple the SIM circuit supply voltage port to the NFC module, and the NFC module provides a supply voltage to the SIM circuit such that the SIM circuit is operable in the absence of primary device power source.
According to another aspect there is provided a method. The method may include configuring a power multiplexer circuit with a first input voltage port, a second input voltage port and an output voltage port. The method of this example may also include coupling a power management unit to the first input voltage port. The method of this example may further include coupling an NFC module to the second input voltage port. The method of this example may further include coupling a selection circuit to the power multiplexer circuit, the selection circuit configured to select one of the first input voltage port and the second input voltage port to be coupled to the output voltage port.
According to another aspect there is provided a platform. The platform may include a processor, an RF transceiver coupled to the processor and an antenna couple to the RF transceiver. The platform of this example may also include an NFC module configured to receive power. The platform of this example may further include a SIM circuit configured with a supply voltage port. The platform of this example may further include a power multiplexer circuit coupled to the processor, the power multiplexer circuit configured to controllably couple the SIM circuit supply voltage port to the NFC module, and the NFC module provides a supply voltage to the SIM circuit such that the SIM circuit is operable in the absence of primary device power source.
The terms and expressions which have been employed herein are used as terms of description and not of limitation, and there is no intention, in the use of such terms and expressions, of excluding any equivalents of the features shown and described (or portions thereof), and it is recognized that various modifications are possible within the scope of the claims. Accordingly, the claims are intended to cover all such equivalents. Various features, aspects, and embodiments have been described herein. The features, aspects, and embodiments are susceptible to combination with one another as well as to variation and modification, as will be understood by those having skill in the art. The present disclosure should, therefore, be considered to encompass such combinations, variations, and modifications.
This application claims the benefit of U.S. provisional patent applications: Ser. No. 61/562,609 filed Nov. 22, 2011; Ser. No. 61/562,722 filed Nov. 22, 2011; and Ser. No. 61/567,438 filed Dec. 6, 2011, which are incorporated fully herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5398182 | Crosby | Mar 1995 | A |
5485073 | Kasashima et al. | Jan 1996 | A |
5539610 | Williams et al. | Jul 1996 | A |
5594381 | Bingham | Jan 1997 | A |
5726505 | Yamada et al. | Mar 1998 | A |
6021332 | Alberth, Jr. et al. | Feb 2000 | A |
6351175 | Rapp | Feb 2002 | B1 |
6452362 | Choo | Sep 2002 | B1 |
6541947 | Dittmer et al. | Apr 2003 | B1 |
7414330 | Chen | Aug 2008 | B2 |
7451414 | Groos | Nov 2008 | B2 |
7554285 | Simoes et al. | Jun 2009 | B2 |
8203234 | Lee et al. | Jun 2012 | B2 |
8428513 | Sklovsky et al. | Apr 2013 | B2 |
8619400 | Dobkin et al. | Dec 2013 | B2 |
8941264 | Scruggs et al. | Jan 2015 | B2 |
20040155627 | Stanesti et al. | Aug 2004 | A1 |
20050037241 | Schneider et al. | Feb 2005 | A1 |
20050184715 | Kidokoro et al. | Aug 2005 | A1 |
20050285676 | Jones | Dec 2005 | A1 |
20100130263 | Zhang et al. | May 2010 | A1 |
20100231047 | Lee et al. | Sep 2010 | A1 |
20120106021 | Suchoff | May 2012 | A1 |
20120287540 | Dobkin et al. | Nov 2012 | A1 |
Number | Date | Country |
---|---|---|
101378558 | Mar 2009 | CN |
101557122 | Oct 2009 | CN |
2004-280704 | Oct 2004 | JP |
2008-029160 | Feb 2008 | JP |
Entry |
---|
Texas Instruments—TPS2114A/TPS2115A, Autoswitching Power Mux, Mar. 2004, Revised May 2012, 28 pages. |
Analogic Tech—AAT4674, Power Supply Selector Switch, Sep. 2007, 13 pages. |
On Semiconductor—CAT6500, 3.0 A Power Selector Switch, Aug. 2011, Rev. 1, 13 pages. |
Fairchild Semiconductor—FPF1320 / FPF1321, IntelliMAX(TM) Dual-Input Single-Output Advanced Power Switch with True Reverse-Current Blocking, Jan. 2012, Rev. 1.0.0, 16 pages. |
International Search Report and Written Opinion dated Aug. 16, 2012 issued in PCT Patent Application No. PCT/ CN2011/082758, 12 pages. |
Fairchild Semiconductor—FPF3040, IntelliMAX(TM) 20 V-Rated Dual Input Single Output Power-Source-Selector Switch, Sep. 2012, Rev. 2.4.0, 12, pages. |
Paul Horowitz et al., The Art of Electronics, 1989, Cambridge University Press, Second Edition, pp. 230-232. |
Number | Date | Country | |
---|---|---|---|
20130169059 A1 | Jul 2013 | US |
Number | Date | Country | |
---|---|---|---|
61562609 | Nov 2011 | US | |
61562722 | Nov 2011 | US | |
61567438 | Dec 2011 | US |