1. Field
Embodiments of the invention relate to a multi-lens camera unit for recording video images. More particularly, embodiments of the invention relate to a portable digital video system sized to be worn on the user's body and equipped with a plurality of lens assemblies for recording video in a plurality of directions.
2. Related Art
There is a need for wearable video recording devices for purposes such as law enforcement, as prior devices are limited to capturing video in a single direction. Thus, in the case of a head-mounted unit, events occurring behind and to a side of the user are not recorded.
Embodiments of the invention solve the above problem by providing an apparatus and method for a wearably sized, multi-lens digital recorder. In a first embodiment, the invention includes a camera unit comprising a first lens assembly, a second lens assembly, a first housing containing the first lens assembly and the second lens assembly, a battery unit, a first storage memory, controller circuitry operable to receive video data from the first lens assembly and the second lens assembly and store the video data in the first storage memory, and a second housing containing the battery unit and attached via a cable to the first housing unit.
A second embodiment includes a method of controlling the operation of a camera unit comprising the steps of storing imagery from a first lens assembly and a nonparaxial second lens assembly to a first storage memory, receiving a trigger signal in response to a trigger event, transferring an imagery from the first storage memory to a second storage memory, and in response to the trigger signal, storing imagery from the first lens assembly and the second lens assembly to the second storage memory.
A third embodiment of the invention includes a dual-lens camera apparatus, comprising a camera housing including a plurality of non-paraxial lens assemblies, a battery housing connected by a cable to the camera housing and providing power thereto, a volatile memory, and a non-volatile memory.
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the detailed description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Other aspects and advantages of the current invention will be apparent from the following detailed description of the embodiments and the accompanying drawing figures.
The drawing figures do not limit the invention to the specific embodiments disclosed and described herein. The drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the invention.
The subject matter of embodiments of the invention is described in detail below to meet statutory requirements; however, the description itself is not intended to limit the scope of claims. Rather, the claimed subject matter might be embodied in other ways to include different steps or combinations of steps similar to the ones described in this document, in conjunction with other present or future technologies. Minor variations from the description below will be obvious to one skilled in the art and are intended to be captured within the scope of the claimed invention. Terms should not be interpreted as implying any particular ordering of various steps described unless the order of individual steps is explicitly described.
The following detailed description of embodiments of the invention references the accompanying drawings that illustrate specific embodiments in which the invention can be practiced. The embodiments are intended to describe aspects of the invention in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments can be utilized and changes can be made without departing from the scope of the invention. The following detailed description is, therefore, not to be taken in a limiting sense. The scope of embodiments of the invention is defined only by the appended claims, along with the full scope of equivalents to which such claims are entitled.
In this description, references to “one embodiment,” “an embodiment,” or “embodiments,” mean that the feature or features being referred to are included in at least one embodiment of the technology. Separate reference to “one embodiment,” “an embodiment,” or “embodiments,” in this description do not necessarily refer to the same embodiment and are also not mutually exclusive unless so stated and/or except as will be readily apparent to those skilled in the art from the description. For example, a feature, structure, or act described in one embodiment may also be included in other embodiments, but is not necessarily included. Thus, the technology can include a variety of combinations and/or integrations of the embodiments described herein.
Embodiments of the invention may be embodied as, among other subject matter, a method, a system, or a set of instructions embodied on one or more computer-readable media. Computer-readable media include both volatile and nonvolatile media, removable and nonremovable media, and contemplate media readable by a database. For example, computer-readable media include (but are not limited to) RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile discs (DVD), holographic media or other optical disc storage, magnetic cassettes, magnetic tape, magnetic disk storage, and other magnetic storage devices. These technologies can store data temporarily or permanently. However, unless explicitly specified otherwise, the term “computer-readable media” should not be construed to include physical, but transitory, forms of signal transmission such as radio broadcasts, electrical signals through a wire, or light pulses through a fiber-optic cable. Examples of stored information include computer-useable instructions, data structures, program modules, and other data representations.
Different forms of computer-readable media store data in different ways. For example, volatile storage media such as RAM may retain data only as long as it is powered, while non-volatile media such as flash memory retain data even when powered off. Furthermore, some forms of computer storage media are write-once, read many (WORM), such that data can be stored to them but not erased or overwritten. For some forms of WORM media, data can be recorded in multiple sessions, where the data from one session is appended to the data from the previous session. Other forms of media may be indefinitely rewriteable. Some forms of media may be encrypted, such that data is written to them encrypted by an encryption key (which can correspond to the device, the user, or be unique in some other way) and data read from them is scrambled unless decrypted with the corresponding decryption key.
Additionally, storage media can be made tamper-resistant such that it is difficult or impossible to alter or erase data stored to them, or to prevent reading data except by authorized means. WORM media or encrypted media, as described above are one way to make storage media tamper resistant. Another way is to make storage media physically difficult to remove, such as by covering them with epoxy after they have been installed. Other methods of making storage resistant tamper resistant are also known in the art and can be used.
Turning first to
Mounted inside lens housing 100 are lens assemblies 102 and 104. In some embodiments, additional lens assemblies may also be present. Each such lens assembly has an optical axis, defined as the ray passing through the center of the lens and oriented in the direction the lens assembly is pointed. Thus, the optical axis determines the field of view for the lens assembly. In one embodiment, lens assemblies 102 and 104 are fixedly mounted in lens housing 100 such that their optical axes are reciprocal. In another embodiment lens assemblies 102 and 104 are mounted in lens housing 100 such that their lens assemblies are skew. Such lens orientations are discussed in greater detail with respect to
Each of lens assemblies 102 and 104 is operable to provide a video feed of video data. While reference is made to “video data” and “video feeds,” In some embodiments, lens assemblies 102 and 104 may instead, or in addition, record still image data. In some such embodiments, one of lens assembly 102 and 104 will record video data and the other will record still image data.
In certain embodiments, lens housing 100 may also include a display 106. In some such embodiments, an actuator is included to switch display 106 between the available video feeds from lens assemblies 102, 104 or other lens assemblies or no feed. In some such embodiments, the actuator is mounted in lens housing 100, display 106, or battery housing 108. In some embodiments, display 106 may be a monocular display for displaying the video feed from lens assembly 102, lens assembly 104, or both. In other embodiments, display is a glassless holographic display. Where present, display 106 generally may be any form of image display technology now known or hereafter discovered invented. In some embodiments, display 106 is not integrated into lens housing 100, but rather removably attached, either directly or via a cable or wireless connection. In other embodiments, display is not connected to lens housing 100 directly, but rather via battery housing 108.
In some embodiments, lens housing 100 will also have an attachment point 110 for connecting to one of a variety of suitable mounts. This attachment point may be purely mechanical, or may incorporate data connections for connection to display 106, battery housing 108, and/or other peripheral units. Examples of such attachment points include screw mounts, clip mounts, ball-and-socket mounts, friction mounts, and snap mounts. Any type of mounting hardware, now known or hereafter discovered may be used.
In some embodiments, lens housing 100 is connected to battery housing 108 via cable 112. In some embodiments, cable 112 provides power to lens assemblies 102 and 104, and other components mounted in or attached to lens housing 100. In other embodiments, cable 112 incorporates unidirectional or bidirectional data connections between components mounted in or attached to lens housing 100 and components mounted in or attached to battery housing 108. In these embodiments, cable 112 is communicatively coupled to lens assemblies 102 and 104. In some such embodiments, cable 112 is further communicatively coupled to display 106. In some embodiments, cable 112 is not connected directly to lens housing 100, but rather indirectly via a mount connected to attachment point 110 or otherwise. In still other embodiments, communication between lens housing 100 and battery housing 108 is a wireless connection such as that provided by a personal-area network (PAN), and there is no physical connection between the two housings.
In some embodiments where it is present, cable 112 also connects to battery housing 108. In other embodiments, there may not be a separate battery housing 108, but rather all of the components described herein are mounted in lens housing 100. In other embodiments, some of the components described here as mounted in battery housing 108 are instead mounted in lens housing 100. Similar to lens housing 100, in some embodiments, battery housing 108 also has an attachment point 114. Attachment point 114 can take the form of a spring clip for attachment to clothing or a belt, or can be a universal connector that can attach to a variety of mounts. Other forms of attachment point 114 are also possible.
In some embodiments, power supply 116 is mounted in battery housing 108. In some embodiments, power supply 116 is a set of rechargeable battery cells. These cells can be removable for recharging or chargeable via an external connection. In other embodiments, power supply is one or more non-rechargeable batteries. In still other embodiments, power supply 116 is a fuel cell or micro-turbine. Any form of power supply, now known or hereafter invented may be used as power supply 116. It is an advantage of embodiments of the invention with separate lens housing 100 and battery housing 108 that the weight and volume consumed by power supply 116 is separated from lens housing 100, allowing lens housing to be more comfortably mounted on the user's body, such as in a head-mounted configuration. In some embodiments, power supply is electrically coupled to lens assemblies 102 and 104. In other assemblies, it is further electrically coupled to display 106. Power supply 116 may also be electrically coupled to other components mounted in battery housing 108. In some embodiments, separate power supplies may be provided for components in lens housing 100 and battery housing 108.
In some embodiments, battery housing 108 also contains controller circuitry 118. In various embodiments, controller circuitry 118 performs different functions associated with the operation of the camera unit including video encoding, trigger event detection, storage management, and input/output (I/O) control, as well as other functions known in the art. Controller circuitry 118 may take the form of a microcontroller, microprocessor, or special-purpose controller circuitry. Controller circuitry 118 may also incorporate one or more computer-readable media for storing device firmware. Controller circuitry 118 is electrically coupled to power source 116, and communicatively coupled to lens assemblies 102 and 104 as well as various components installed in battery housing 108, including storage memories such as volatile memory 120 and non-volatile memory 122, sensors such as sensor 124, and I/O ports and controllers such as I/O unit 126. One exemplary method of operation for controller circuitry 118 is depicted in
Encoded video data and other data processed by controller circuitry 118 may be stored in one or more memories such as volatile memory 120 or non-volatile memory 122. In one embodiment, video is recorded continuously, along with any relevant metadata, and stored in volatile memory 120. When a triggering event occurs, the contents of volatile memory 120 are transferred to non-volatile memory 122, and incoming video is also stored in non-volatile memory. In other embodiments, two non-volatile or volatile memories are used. In yet other embodiments, a single memory is used. In some single-memory embodiments, all video data is stored to non-volatile memory 122. In other single-memory embodiments, a triggering event initiated the recording and storage of data. In some embodiments, non-volatile memory 122, volatile memory 120, or both provide authenticated, tamper-resistant storage such that recorded data can be used as evidence in legal proceedings. In some embodiments, controller circuitry 118 uses a device-specific key to digitally sign or otherwise authenticate video recordings. In some embodiments, non-volatile memory 122 is a removable memory card. In some such embodiments, non-volatile memory is write-once, read-many (WORM) memory. In general, the storage memories used in embodiments of the invention can be any data storage media known in the art as described herein or invented in the future. In some embodiments, battery housing 108 has no persistent storage memory, and video data that is to be retained is transmitted in real time over a network to a remote data store. In other embodiments, data to be retained is both stored locally and transmitted to a remote data store.
In some embodiments, additional sensors such as sensor 124 are present in battery housing 108, lens housing 100, or elsewhere. Such sensors may provide data to supplement the video data provided by lens assemblies 102 and 104. Examples of such sensors include a microphone for recording audio data, a radio receiver for recording radio transmissions, a global-positioning system (GPS) receiver for recording position data, one or more accelerometers for recording movement and acceleration data, and a radio-frequency identifier (RFID) receiver for recording the presence of nearby RFID tags such as RFID tag 128 in other units. RFID tag 128 can, in turn, be read by sensors present in other camera units, or by readers in an associated system such as a unit mounted in a patrol car. Such associated systems may also have their own RFID tags. Although the above discussion references RFID tags and readers, any wireless signaling mechanism can be used to similar effect. Additional sensors, such as a holster event sensor, may be directly or wirelessly connected. Sensor 124 may include or take the form of other sensors and transceivers now known or hereafter invented.
In some embodiments, battery housing 108 or lens housing 100 may also contain an I/O unit such as I/O unit 126. Such an I/O unit may allow additional modules such as those containing additional sensors to be attached. In some embodiments, I/O unit allows data from storage memories 120 and 122 to be transferred off of the device. In other embodiments, it allows controller circuitry 118 to be reprogrammed. In yet other embodiments, it allows power supply 116 to be recharged. It will be apparent to a person skilled in the art that I/O unit 126 may perform all of these functions, individually or in parallel.
Turning now to
Also shown is port 20, which, in this embodiment, accepts cable 112. It is an advantage of this embodiment of the invention that the separation between lens housing 100 and battery housing 108 allows the depicted battery housing to be much smaller and more compact than is possible with single unit with all of the components depicted in lens housing 100 and battery housing 108 mounted in a single housing. As shown, lens housing 100 is less than two inches in length and one-half inch in diameter.
Turning now to
Turning now to
Turning now to
Next, at step 504, a triggering event is detected. Such triggering event can be any event suggesting that a record of the immediately preceding and/or succeeding events should be retained. A first class of triggering events relates to circumstances around the user. For example, the user triggering the siren and/or light bar of a patrol cruiser might be a triggering event. Alternately, a velocity or acceleration reading, either from the cruiser or from integrated velocity and/or sensors such as sensor 124 may be a triggering event. For example, a velocity of the user wearing the housing 100 may be a triggering event, such as the user running as opposed to walking. Similarly, a vehicle crash, detected by an accelerometer reading, airbag deployment, or similar stimulus, might be a trigger event. Additionally, a positional reading could be a triggering event. Such a positional reading could be absolute (for example, entering or exiting a particular geo-fenced area) or relative (for example, moving more than a particular distance from a patrol cruiser or other fixed or mobile point of reference).
Such a sensor-related triggering event may be generated directly by the sensor, or by a recording device manager, such as a Digital Ally® VuLink®, that controls and synchronizes various recording devices. For example, the recording device manager may communicate (via wireless communication, wired communication, or both) to sensors such as described herein, one or more person-mounted camera units, a vehicle-mounted video camera oriented to observe events external to the vehicle, a vehicle-mounted video camera oriented to observe events internal to the vehicle, and/or one or more storage storage elements. In some embodiments, the recording device manager detects when one video camera begins recording, and then instructs all other associated devices to begin recording. The recording device manager may also send information indicative of a time stamp to the various recording devices for corroborating the recorded data.
For example, the recording device manager may instruct all associated video cameras to begin recording upon the receipt of a signal from a sensor such as a breath analyzer that a breath analysis has begun. This ensures that multiple video cameras record the breath analysis, for future authentication that the breath analysis was performed correctly. The recording device manager may also send a time stamp to all the associated video cameras to provide a corroboration of the various recorded data.
A second class of triggering events relates to the user. For example, a sensor configured to detect when a holster cover is opened or when a weapon is removed from the holster could generate a triggering event. Another form of user-related triggering event could come in the form of one or more biometric stress indications (such as elevated heart rate, blood pressure respiration, etc.) obtained from biometric sensors worn by the user. Similarly, audio data could generate triggering events if raised voices or high levels of vocal stress are detected.
A third class of triggering events relates to context recognition from the data being collected. For example, when controller circuitry 118 detects that the video data it is processing contains a face, a triggering event could be generated. Alternately, this functionality could be limited to the recognition of a particular face (for example, if the user sees a face matching a photograph provided with a warrant, or on a wanted poster, a trigger event could be generated). Such triggering events can, in some embodiments, be limited to a particular video stream. For example, face detection could only act as a triggering event when the rear camera detects the face; i.e., when a person approaches the user from behind. Similar recognition algorithms can be applied to other data streams as well; for example, the audio signature of a gunshot could be a triggering event, or the positional signature of evasive maneuvering.
Finally, a triggering signal can be generated manually by the user or, in embodiments where data is streamed to a remote date store, by a remote observer. Of course, a person of skill in the art will recognize that a wide variety of triggering signals are possible and variations and combinations of the above will be apparent.
In response to the triggering signal, at step 506, controller circuitry 118 copies the contents of volatile memory 120 to non-volatile memory 122. In this way, a permanent record is created of not merely events following the trigger signal, but of those preceding it was well. This transfer process continues at step 508 as new data is stored to volatile memory 120, in effect recording the live data to non-volatile memory 122 as well. In some embodiments, after a trigger signal is detected, data is recorded directly to the non-volatile memory instead of indirectly via the volatile memory.
Finally, at step 510, the trigger event ends. How this occurs will vary in different embodiments and with different trigger events. In some embodiments, recording to non-volatile memory 122 will continue until the end of shift for the user. In other embodiments, it will continue until non-volatile memory 122 is full. In still other embodiments it will continue until the camera unit is powered down, or until the user manually deactivates it. Additionally, some trigger events can terminate on their own. For example, if the user leaving their patrol car is a trigger event, then returning to the car may end the triggering event, either immediately or after some predetermined delay. Similarly, if elevated biometric readings generate a trigger event, then a return to normal levels may terminate, perhaps with a delay or some level of hysteresis. In some embodiments, the user may be able to manually cancel a trigger event, while in other embodiments this may be undesirable. At this point, processing returns to step 502 to await further trigger signals.
Many different arrangements of the various components depicted, as well as components not shown, are possible without departing from the scope of the claims below. Embodiments of the invention have been described with the intent to be illustrative rather than restrictive. Alternative embodiments will become apparent to readers of this disclosure after and because of reading it. Alternative means of implementing the aforementioned can be completed without departing from the scope of the claims below. Certain features and subcombinations are of utility and may be employed without reference to other features and subcombinations and are contemplated within the scope of the claims. Although the invention has been described with reference to the embodiments illustrated in the attached drawing figures, it is noted that equivalents may be employed and substitutions made herein without departing from the scope of the invention as recited in the claims.
This non-provisional patent application is a continuation-in-part application and claims priority benefit, with regard to all common subject matter, of commonly assigned U.S. patent application Ser. No. 13/967,151, filed Aug. 14, 2013, and entitled “COMPUTER PROGRAM, METHOD, AND SYSTEM FOR MANAGING MULTIPLE DATA RECORDING DEVICES” (“the '151 Application”). The '151 Application is hereby incorporated by reference in its entirety into the present application. Embodiments and/or features of the invention described in the present document may be used with the subject matter disclosed in commonly assigned U.S. Pat. No. 8,781,292, filed Sep. 27, 2013, issued Jul. 15, 2014, and entitled “COMPUTER PROGRAM, METHOD, AND SYSTEM FOR MANAGING MULTIPLE DATA RECORDING DEVICES” (“the '292 Patent”), which is a continuation application of the '151 Application. The '292 Patent is hereby incorporated by reference in its entirety into the present application. Embodiments and/or features of the invention described in the present document may be used with the subject matter disclosed in commonly assigned U.S. patent application Ser. No. 14/040,329, filed Sep. 27, 2013, and entitled “PORTABLE VIDEO AND IMAGING SYSTEM” (“the '329 Application”); and commonly assigned U.S. patent application Ser. No. 14/040,006, filed Sep. 27, 2013, and entitled “MOBILE VIDEO AND IMAGING SYSTEM” (“the '006 Application”). The '329 Application and the '006 Application are hereby incorporated by reference in their entirety into the present application. Further, embodiments and/or features of the invention described in the present document may be used with the subject matter disclosed in commonly assigned and concurrently filed U.S. patent application Ser. No. 14/517,368 filed Oct. 17, 2014, and entitled “FORENSIC VIDEO RECORDING WITH PRESENCE DETECTION,” and with concurrently filed and commonly assigned U.S. patent application Ser. No. 14/517,160 filed Oct. 17, 2014, and entitled “BREATH ANALYZER, SYSTEM, AND COMPUTER PROGRAM FOR AUTHENTICATING, PRESERVING, AND PRESENTING BREATH ANALYSIS DATA.” Each of the concurrently filed patent applications is also a continuation-in-part of the '151 Application. The concurrently filed patent applications are hereby incorporated by reference in their entirety into the present application.
Number | Name | Date | Kind |
---|---|---|---|
4409670 | Herndon et al. | Oct 1983 | A |
4789904 | Peterson | Dec 1988 | A |
4863130 | Marks, Jr. | Sep 1989 | A |
4918473 | Blackshear | Apr 1990 | A |
5027104 | Reid | Jun 1991 | A |
5096287 | Kaikinami et al. | Mar 1992 | A |
5111289 | Lucas et al. | May 1992 | A |
5289321 | Secor | Feb 1994 | A |
5381155 | Gerber | Jan 1995 | A |
5408330 | Squicciarini et al. | Apr 1995 | A |
5446659 | Yamawaki | Aug 1995 | A |
5453939 | Hoffman et al. | Sep 1995 | A |
5473729 | Bryant et al. | Dec 1995 | A |
5479149 | Pike | Dec 1995 | A |
5497419 | Hill | Mar 1996 | A |
5526133 | Paff | Jun 1996 | A |
5585798 | Yoshioka et al. | Dec 1996 | A |
5642285 | Woo et al. | Jun 1997 | A |
5668675 | Fredricks | Sep 1997 | A |
5689442 | Swanson et al. | Nov 1997 | A |
5742336 | Lee | Apr 1998 | A |
5752632 | Sanderson et al. | May 1998 | A |
5798458 | Monroe | Aug 1998 | A |
5815093 | Kikinis | Sep 1998 | A |
5850613 | Bullecks | Dec 1998 | A |
5878283 | House et al. | Mar 1999 | A |
5886739 | Winningstad | Mar 1999 | A |
5890079 | Levine | Mar 1999 | A |
5926210 | Hackett et al. | Jul 1999 | A |
5962806 | Coakley et al. | Oct 1999 | A |
5978017 | Tino | Nov 1999 | A |
5983161 | Lemelson et al. | Nov 1999 | A |
5996023 | Winter et al. | Nov 1999 | A |
6008841 | Charlson | Dec 1999 | A |
6028528 | Lorenzetti et al. | Feb 2000 | A |
6052068 | Price et al. | Apr 2000 | A |
6097429 | Seeley et al. | Aug 2000 | A |
6100806 | Gaukel | Aug 2000 | A |
6121881 | Bieback et al. | Sep 2000 | A |
6141609 | Herdeg et al. | Oct 2000 | A |
6141611 | Macket et al. | Oct 2000 | A |
6163338 | Johnson et al. | Dec 2000 | A |
6175300 | Kendrick | Jan 2001 | B1 |
6298290 | Abe et al. | Oct 2001 | B1 |
6310541 | Atkins | Oct 2001 | B1 |
6314364 | Nakamura | Nov 2001 | B1 |
6324053 | Kamijo | Nov 2001 | B1 |
6326900 | Deline et al. | Dec 2001 | B2 |
6333694 | Pierce et al. | Dec 2001 | B2 |
6333759 | Mazzilli | Dec 2001 | B1 |
6370475 | Breed et al. | Apr 2002 | B1 |
RE37709 | Dukek | May 2002 | E |
6389340 | Rayner | May 2002 | B1 |
6396403 | Haner | May 2002 | B1 |
6405112 | Rayner | Jun 2002 | B1 |
6449540 | Rayner | Sep 2002 | B1 |
6452572 | Fan et al. | Sep 2002 | B1 |
6490409 | Walker | Dec 2002 | B1 |
6518881 | Monroe | Feb 2003 | B2 |
6525672 | Chainer et al. | Feb 2003 | B2 |
6546119 | Ciolli et al. | Apr 2003 | B2 |
6560463 | Santhoff | May 2003 | B1 |
6563532 | Strub et al. | May 2003 | B1 |
6591242 | Karp et al. | Jul 2003 | B1 |
6681195 | Poland et al. | Jan 2004 | B1 |
6690268 | Schofield et al. | Feb 2004 | B2 |
6697103 | Fernandez et al. | Feb 2004 | B1 |
6718239 | Rayner | Apr 2004 | B2 |
6727816 | Helgeson | Apr 2004 | B1 |
6748792 | Freund et al. | Jun 2004 | B1 |
6823621 | Gotfried | Nov 2004 | B2 |
6831556 | Boykin | Dec 2004 | B1 |
6856873 | Breed et al. | Feb 2005 | B2 |
6883694 | Abelow | Apr 2005 | B2 |
6950122 | Mirabile | Sep 2005 | B1 |
6970183 | Monroe | Nov 2005 | B1 |
7012632 | Freeman et al. | Mar 2006 | B2 |
7034683 | Ghazarian | Apr 2006 | B2 |
D520738 | Tarantino | May 2006 | S |
7038590 | Hoffman et al. | May 2006 | B2 |
7088387 | Freeman et al. | Aug 2006 | B1 |
D529528 | Ross et al. | Oct 2006 | S |
7119832 | Blanco et al. | Oct 2006 | B2 |
7126472 | Kraus et al. | Oct 2006 | B2 |
7147155 | Weekes | Dec 2006 | B2 |
7180407 | Guo | Feb 2007 | B1 |
7190882 | Gammenthaler | Mar 2007 | B2 |
7363742 | Nerheim | Apr 2008 | B2 |
7371021 | Ross, Jr. et al. | May 2008 | B2 |
7421024 | Castillo | Sep 2008 | B2 |
7436143 | Lakshmanan et al. | Oct 2008 | B2 |
7436955 | Yan et al. | Oct 2008 | B2 |
7448996 | Khanuja et al. | Nov 2008 | B2 |
7456875 | Kashiwa | Nov 2008 | B2 |
7496140 | Winningstad et al. | Feb 2009 | B2 |
7500794 | Clark | Mar 2009 | B1 |
7508941 | O'Toole, Jr. et al. | Mar 2009 | B1 |
7511737 | Singh | Mar 2009 | B2 |
7536457 | Miller | May 2009 | B2 |
7539533 | Tran | May 2009 | B2 |
7561037 | Monroe | Jul 2009 | B1 |
7594305 | Moore | Sep 2009 | B2 |
7602301 | Stirling et al. | Oct 2009 | B1 |
7656439 | Manico et al. | Feb 2010 | B1 |
7659827 | Gunderson et al. | Feb 2010 | B2 |
7680947 | Nicholl et al. | Mar 2010 | B2 |
7697035 | Suber et al. | Apr 2010 | B1 |
7804426 | Etcheson | Sep 2010 | B2 |
7806525 | Howell et al. | Oct 2010 | B2 |
7853944 | Choe | Dec 2010 | B2 |
7944676 | Smith et al. | May 2011 | B2 |
8077029 | Daniel et al. | Dec 2011 | B1 |
8121306 | Cilia et al. | Feb 2012 | B2 |
8175314 | Webster | May 2012 | B1 |
8179604 | Prada Gomez | May 2012 | B1 |
8269617 | Cook et al. | Sep 2012 | B2 |
8314708 | Gunderson et al. | Nov 2012 | B2 |
8356438 | Brundula et al. | Jan 2013 | B2 |
8373567 | Denson | Feb 2013 | B2 |
8384539 | Denny et al. | Feb 2013 | B2 |
8446469 | Blanco et al. | May 2013 | B2 |
8456293 | Trundel et al. | Jun 2013 | B1 |
8503972 | Haler et al. | Aug 2013 | B2 |
8508353 | Cook et al. | Aug 2013 | B2 |
8520069 | Haler | Aug 2013 | B2 |
8594485 | Brundula | Nov 2013 | B2 |
8606492 | Botnen | Dec 2013 | B1 |
8676428 | Richardson et al. | Mar 2014 | B2 |
8707758 | Keays | Apr 2014 | B2 |
8725462 | Jain et al. | May 2014 | B2 |
8744642 | Nemat-Nasser et al. | Jun 2014 | B2 |
8780205 | Boutell et al. | Jul 2014 | B2 |
8781292 | Ross et al. | Jul 2014 | B1 |
8805431 | Vasavada et al. | Aug 2014 | B2 |
8849501 | Cook et al. | Sep 2014 | B2 |
8854199 | Cook et al. | Oct 2014 | B2 |
8896694 | O'Donnell et al. | Nov 2014 | B2 |
8930072 | Lambert et al. | Jan 2015 | B1 |
8989914 | Nemat-Nasser et al. | Mar 2015 | B1 |
8996234 | Tamari et al. | Mar 2015 | B1 |
9003474 | Smith | Apr 2015 | B1 |
9058499 | Smith | Jun 2015 | B1 |
9122082 | Abreau | Sep 2015 | B2 |
9164543 | Minn et al. | Oct 2015 | B2 |
9253452 | Ross et al. | Feb 2016 | B2 |
20020013517 | West et al. | Jan 2002 | A1 |
20020019696 | Kruse | Feb 2002 | A1 |
20020032510 | Tumball et al. | Mar 2002 | A1 |
20020044065 | Quist et al. | Apr 2002 | A1 |
20020049881 | Sugimura | Apr 2002 | A1 |
20020084130 | Der Gazarian et al. | Jul 2002 | A1 |
20020131768 | Gammenthaler | Sep 2002 | A1 |
20020135336 | Zhou et al. | Sep 2002 | A1 |
20020159434 | Gosior et al. | Oct 2002 | A1 |
20020191952 | Fiore | Dec 2002 | A1 |
20030040917 | Fiedler | Feb 2003 | A1 |
20030080713 | Kirmuss | May 2003 | A1 |
20030080878 | Kirmuss | May 2003 | A1 |
20030081121 | Kirmuss | May 2003 | A1 |
20030081934 | Kirmuss | May 2003 | A1 |
20030081935 | Kirmuss | May 2003 | A1 |
20030081942 | Melnyk et al. | May 2003 | A1 |
20030095688 | Kirmuss | May 2003 | A1 |
20030106917 | Shelter et al. | Jun 2003 | A1 |
20030133018 | Ziemkowski | Jul 2003 | A1 |
20030151510 | Smith | Aug 2003 | A1 |
20030173408 | Mosher, Jr. et al. | Sep 2003 | A1 |
20030184674 | Manico et al. | Oct 2003 | A1 |
20030185417 | Alttar et al. | Oct 2003 | A1 |
20030215010 | Kashiwa | Nov 2003 | A1 |
20030215114 | Kyle | Nov 2003 | A1 |
20030222982 | Hamdan et al. | Dec 2003 | A1 |
20040008255 | Lewellen | Jan 2004 | A1 |
20040043765 | Tolhurst | Mar 2004 | A1 |
20040143373 | Ennis | Jun 2004 | A1 |
20040145457 | Schofield et al. | Jul 2004 | A1 |
20040150717 | Page et al. | Aug 2004 | A1 |
20040168002 | Accarie et al. | Aug 2004 | A1 |
20040199785 | Pederson | Oct 2004 | A1 |
20040223054 | Rotholtz | Nov 2004 | A1 |
20040243734 | Kitagawa et al. | Dec 2004 | A1 |
20040267419 | Jeng | Dec 2004 | A1 |
20050030151 | Singh | Feb 2005 | A1 |
20050035161 | Shioda | Feb 2005 | A1 |
20050046583 | Richards | Mar 2005 | A1 |
20050050266 | Haas et al. | Mar 2005 | A1 |
20050068169 | Copley et al. | Mar 2005 | A1 |
20050083404 | Pierce et al. | Apr 2005 | A1 |
20050094966 | Elberbaum | May 2005 | A1 |
20050100329 | Lao et al. | May 2005 | A1 |
20050101334 | Brown et al. | May 2005 | A1 |
20050134966 | Burgner | May 2005 | A1 |
20050132200 | Jaffe et al. | Jun 2005 | A1 |
20050151852 | Jomppanen | Jul 2005 | A1 |
20050167172 | Fernandez | Aug 2005 | A1 |
20050185438 | Ching | Aug 2005 | A1 |
20050206532 | Lock | Sep 2005 | A1 |
20050206741 | Raber | Sep 2005 | A1 |
20050228234 | Yang | Oct 2005 | A1 |
20050232469 | Schofield et al. | Oct 2005 | A1 |
20050243171 | Ross, Sr. et al. | Nov 2005 | A1 |
20060009238 | Stanco et al. | Jan 2006 | A1 |
20060014563 | Cheng | Jan 2006 | A1 |
20060028811 | Ross, Jr. et al. | Feb 2006 | A1 |
20060055786 | Olilla | Mar 2006 | A1 |
20060158968 | Vanman et al. | Jul 2006 | A1 |
20060164220 | Harter, Jr. et al. | Jul 2006 | A1 |
20060164534 | Robinson et al. | Jul 2006 | A1 |
20060170770 | MacCarthy | Aug 2006 | A1 |
20060176149 | Douglas | Aug 2006 | A1 |
20060183505 | Willrich | Aug 2006 | A1 |
20060193749 | Ghazarian et al. | Aug 2006 | A1 |
20060203090 | Wang et al. | Sep 2006 | A1 |
20060220826 | Rast | Oct 2006 | A1 |
20060225253 | Bates | Oct 2006 | A1 |
20060244601 | Nishimura | Nov 2006 | A1 |
20060256822 | Kwong et al. | Nov 2006 | A1 |
20060267773 | Roque | Nov 2006 | A1 |
20060270465 | Lee et al. | Nov 2006 | A1 |
20060271287 | Gold et al. | Nov 2006 | A1 |
20060274166 | Lee et al. | Dec 2006 | A1 |
20060274828 | Siemens et al. | Dec 2006 | A1 |
20060275031 | Ku | Dec 2006 | A1 |
20060276200 | Radhakrishnan et al. | Dec 2006 | A1 |
20060282021 | DeVaul et al. | Dec 2006 | A1 |
20060287821 | Lin | Dec 2006 | A1 |
20060293571 | Bao et al. | Dec 2006 | A1 |
20070021134 | Liou | Jan 2007 | A1 |
20070064108 | Haler | Mar 2007 | A1 |
20070067079 | Kosugi | Mar 2007 | A1 |
20070092237 | Kim | Apr 2007 | A1 |
20070102508 | Mcintosh | May 2007 | A1 |
20070117083 | Winneg et al. | May 2007 | A1 |
20070132567 | Schofield et al. | Jun 2007 | A1 |
20070152811 | Anderson | Jul 2007 | A1 |
20070172053 | Poirier | Jul 2007 | A1 |
20070177023 | Beuhler et al. | Aug 2007 | A1 |
20070199076 | Rensin et al. | Aug 2007 | A1 |
20070229350 | Scalisi et al. | Oct 2007 | A1 |
20070257781 | Denson | Nov 2007 | A1 |
20070257782 | Etcheson | Nov 2007 | A1 |
20070257804 | Gunderson et al. | Nov 2007 | A1 |
20070257815 | Gunderson et al. | Nov 2007 | A1 |
20070260361 | Etcheson | Nov 2007 | A1 |
20070268158 | Gunderson et al. | Nov 2007 | A1 |
20070271105 | Gunderson et al. | Nov 2007 | A1 |
20070274705 | Kashiwa | Nov 2007 | A1 |
20070091557 | Maron et al. | Dec 2007 | A1 |
20070285222 | Zadnikar | Dec 2007 | A1 |
20070287425 | Bates | Dec 2007 | A1 |
20070297320 | Brummette et al. | Dec 2007 | A1 |
20080001735 | Tran | Jan 2008 | A1 |
20080002031 | Cana et al. | Jan 2008 | A1 |
20080002599 | Denny et al. | Feb 2008 | A1 |
20080030580 | Kashhiwa et al. | Feb 2008 | A1 |
20080042825 | Denny et al. | Feb 2008 | A1 |
20080043736 | Stanley | Feb 2008 | A1 |
20080049830 | Richardson | Feb 2008 | A1 |
20080063252 | Dobbs et al. | Mar 2008 | A1 |
20080084473 | Romanowich | Apr 2008 | A1 |
20080100705 | Kister et al. | May 2008 | A1 |
20080122603 | Plante et al. | May 2008 | A1 |
20080129518 | Carlton-Foss | Jun 2008 | A1 |
20080143481 | Abraham et al. | Jun 2008 | A1 |
20080144705 | Rackin et al. | Jun 2008 | A1 |
20080169929 | Albertson et al. | Jul 2008 | A1 |
20080170130 | Ollila et al. | Jul 2008 | A1 |
20080211906 | Lovric | Sep 2008 | A1 |
20080222849 | Lavoie | Sep 2008 | A1 |
20080239064 | Iwasaki | Oct 2008 | A1 |
20080246656 | Ghazarian | Oct 2008 | A1 |
20080266118 | Pierson et al. | Oct 2008 | A1 |
20080307435 | Rehman | Dec 2008 | A1 |
20080316314 | Bedell et al. | Dec 2008 | A1 |
20090002491 | Haler | Jan 2009 | A1 |
20090002556 | Manapragada et al. | Jan 2009 | A1 |
20090027499 | Nicholl | Jan 2009 | A1 |
20090070820 | Li | Mar 2009 | A1 |
20090091651 | Artsiely | Apr 2009 | A1 |
20090122142 | Shapley | May 2009 | A1 |
20090135007 | Donovan et al. | May 2009 | A1 |
20090141129 | Dischinger | Jun 2009 | A1 |
20090169068 | Okamoto | Jul 2009 | A1 |
20090189981 | Stann et al. | Jul 2009 | A1 |
20090195686 | Shintani | Aug 2009 | A1 |
20090207252 | Raghunath | Aug 2009 | A1 |
20090213204 | Wong | Aug 2009 | A1 |
20090243794 | Morrow | Oct 2009 | A1 |
20090251545 | Shekarri et al. | Oct 2009 | A1 |
20090252486 | Ross, Jr. et al. | Oct 2009 | A1 |
20090276708 | Smith et al. | Nov 2009 | A1 |
20090294538 | Wihlborg et al. | Dec 2009 | A1 |
20090324203 | Wiklof | Dec 2009 | A1 |
20100045798 | Sugimoto et al. | Feb 2010 | A1 |
20100050734 | Chou | Mar 2010 | A1 |
20100060747 | Woodman | Mar 2010 | A1 |
20100097221 | Kreiner et al. | Apr 2010 | A1 |
20100106707 | Brown et al. | Apr 2010 | A1 |
20100118147 | Dorneich et al. | May 2010 | A1 |
20100122435 | Markham | May 2010 | A1 |
20100123779 | Snyder et al. | May 2010 | A1 |
20100177193 | Flores | Jul 2010 | A1 |
20100177891 | Keidar et al. | Jul 2010 | A1 |
20100188201 | Cook et al. | Jul 2010 | A1 |
20100191411 | Cook et al. | Jul 2010 | A1 |
20100194885 | Plaster | Aug 2010 | A1 |
20100217836 | Rofougaran | Aug 2010 | A1 |
20100238009 | Cook et al. | Sep 2010 | A1 |
20100238262 | Kurtz et al. | Sep 2010 | A1 |
20100242076 | Potesta et al. | Sep 2010 | A1 |
20100250021 | Cook et al. | Sep 2010 | A1 |
20100265331 | Tanaka | Oct 2010 | A1 |
20100274816 | Guzik | Oct 2010 | A1 |
20100277591 | Kowalsky | Nov 2010 | A1 |
20100287473 | Recesso et al. | Nov 2010 | A1 |
20100296571 | El-Saban | Nov 2010 | A1 |
20110005151 | Beard | Jan 2011 | A1 |
20110018998 | Guzik | Jan 2011 | A1 |
20110050904 | Anderson | Mar 2011 | A1 |
20110069151 | Orimoto | Mar 2011 | A1 |
20110084820 | Walter et al. | Apr 2011 | A1 |
20110094003 | Spiewak et al. | Apr 2011 | A1 |
20110098924 | Baladeta et al. | Apr 2011 | A1 |
20110129151 | Saito et al. | Jun 2011 | A1 |
20110157759 | Smith et al. | Jun 2011 | A1 |
20110261176 | Monaghan, Sr. et al. | Oct 2011 | A1 |
20110281547 | Cordero | Nov 2011 | A1 |
20110301971 | Roesch et al. | Dec 2011 | A1 |
20110314401 | Salisbury et al. | Dec 2011 | A1 |
20120038689 | Ishii | Feb 2012 | A1 |
20120056722 | Kawaguchi | Mar 2012 | A1 |
20120063736 | Simmons et al. | Mar 2012 | A1 |
20120120258 | Boutell et al. | May 2012 | A1 |
20120162436 | Cordell et al. | Jun 2012 | A1 |
20120188345 | Salow | Jul 2012 | A1 |
20120189286 | Takayama et al. | Jul 2012 | A1 |
20120230540 | Calman et al. | Sep 2012 | A1 |
20120257320 | Brundula et al. | Oct 2012 | A1 |
20120268259 | Igel et al. | Oct 2012 | A1 |
20120276954 | Kowalsky | Nov 2012 | A1 |
20130021153 | Keays | Jan 2013 | A1 |
20130033610 | Osborn | Feb 2013 | A1 |
20130035602 | Gemer | Feb 2013 | A1 |
20130080836 | Stergiou et al. | Mar 2013 | A1 |
20130096731 | Tamari et al. | Apr 2013 | A1 |
20130105518 | McPherson | May 2013 | A1 |
20130148295 | Minn et al. | Jun 2013 | A1 |
20130222640 | Beak et al. | Aug 2013 | A1 |
20130225309 | Bentley et al. | Aug 2013 | A1 |
20130258270 | Cazalet | Oct 2013 | A1 |
20130300563 | Glaze | Nov 2013 | A1 |
20130343572 | Lee | Dec 2013 | A1 |
20140037262 | Sako | Feb 2014 | A1 |
20140047371 | Palmer | Feb 2014 | A1 |
20140049636 | O'Donnell et al. | Feb 2014 | A1 |
20140071024 | Fu | Mar 2014 | A1 |
20140092299 | Phillips et al. | Apr 2014 | A1 |
20140094992 | Lambert et al. | Apr 2014 | A1 |
20140098453 | Brundula et al. | Apr 2014 | A1 |
20140140575 | Wolf | May 2014 | A1 |
20140170602 | Reed | Jun 2014 | A1 |
20140192194 | Bedell et al. | Jul 2014 | A1 |
20140195105 | Lambert et al. | Jul 2014 | A1 |
20140195272 | Sadiq et al. | Jul 2014 | A1 |
20140210625 | Nemat-Nasser | Jul 2014 | A1 |
20140218544 | Sent et al. | Aug 2014 | A1 |
20140226007 | Hsu | Aug 2014 | A1 |
20140227671 | Olmstead et al. | Aug 2014 | A1 |
20140311215 | Keays et al. | Oct 2014 | A1 |
20140355951 | Tabak | Dec 2014 | A1 |
20150050003 | Ross et al. | Feb 2015 | A1 |
20150051502 | Ross | Feb 2015 | A1 |
20150053776 | Rose et al. | Mar 2015 | A1 |
20150078727 | Ross et al. | Mar 2015 | A1 |
20150088335 | Lambert et al. | Mar 2015 | A1 |
20150103246 | Phillips et al. | Apr 2015 | A1 |
20150229630 | Smith | Aug 2015 | A1 |
20150358549 | Cho et al. | Dec 2015 | A1 |
20160042767 | Araya et al. | Feb 2016 | A1 |
20160050345 | Longbotham | Feb 2016 | A1 |
20160127695 | Zhang | May 2016 | A1 |
20160165192 | Saatchi | Jun 2016 | A1 |
20160364621 | Hill et al. | Dec 2016 | A1 |
20170070659 | Kievsky et al. | Mar 2017 | A1 |
20170195635 | Yokomitsu et al. | Jul 2017 | A1 |
20170230605 | Han et al. | Aug 2017 | A1 |
20170237950 | Araya et al. | Aug 2017 | A1 |
20170244884 | Burtey et al. | Aug 2017 | A1 |
20170277700 | Davis et al. | Sep 2017 | A1 |
20170287523 | Hodulik et al. | Oct 2017 | A1 |
20180023910 | Kramer | Jan 2018 | A1 |
20180050800 | Boykin et al. | Feb 2018 | A1 |
Number | Date | Country |
---|---|---|
102010019451 | Nov 2011 | DE |
247993 | Jul 2012 | EP |
2273624 | Jun 1994 | GB |
2320389 | May 1998 | GB |
2343252 | May 2000 | GB |
2351055 | Dec 2000 | GB |
2417151 | Feb 2006 | GB |
2425427 | Oct 2006 | GB |
2455885 | Jul 2009 | GB |
2485804 | May 2012 | GB |
20090923 | Sep 2010 | IE |
294188 | Sep 1993 | JP |
2010395 | Sep 1993 | JP |
153298 | Jun 1996 | JP |
198858 | Jul 1997 | JP |
10076880 | Mar 1998 | JP |
2000137263 | May 2000 | JP |
2005119631 | May 2005 | JP |
200236817 | Aug 2001 | KR |
1050897 | Jul 2011 | KR |
2383915 | Mar 2010 | RU |
107851 | Aug 2011 | RU |
124780 | Feb 2013 | RU |
9005076 | May 1990 | WO |
9738526 | Oct 1997 | WO |
9831146 | Jul 1998 | WO |
9948308 | Sep 1999 | WO |
0039556 | Jul 2000 | WO |
0051360 | Aug 2000 | WO |
0123214 | Apr 2001 | WO |
0249881 | Jun 2002 | WO |
0209575 | Nov 2002 | WO |
03049446 | Jun 2003 | WO |
2004036926 | Apr 2004 | WO |
2009013526 | Jan 2009 | WO |
2011001180 | Jan 2011 | WO |
2012037139 | Mar 2012 | WO |
2012120083 | Sep 2012 | WO |
2014000161 | Jan 2014 | WO |
2014052898 | Apr 2014 | WO |
Entry |
---|
Techdad Review (http://techdadreview.com/2013/06/19/atc-chameleon/, Jun. 19, 2013, 1 page. |
Nigeria News—Taser develops Robocop-like' technology enabling police officers to record valuable evidence on a wearable camera . . . and hopefully save on expensive lawsuits, Jun. 4, 2013, 5 pages. |
Munchbach, Andrew, “Taser's on-officer cameras catch you in the act, right to remain silent imperative”, at https://www.engadget.com/2012/02/21/tasers-on-officer-cameras-catch-you-in-the-act-right-to-remain/, Feb. 21, 2012, 5 pages. |
File History of U.S. Appl. No. 14/040,329, filed Sep. 27, 2013, entitled Portable Video and Imaging System; Applicant: Digital Ally, Inc. |
File History of U.S. Appl. No. 13/967,151, filed Aug. 14, 2013, entitled Computer Program, Method, and System for Managing Multiple Data Recording Devices; Applicant: Digital Ally, Inc. |
File History of U.S. Appl. No. 14/040,233, filed Sep. 27, 2013, entitled Computer Program, Method, and System for Managing Multiple Data Recording Devices; Applicant: Digital Ally, Inc. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Jan. 30, 2014; International Application No. PCT/US2013/062415; International Filing Date: Sep. 27, 2013; Applicant: Digital Ally, Inc. |
Brown, TP-LINK TL-WDR3500 Wireless N600 Router Review, Mar. 6, 2013. |
Taser Axon Body on Officer Video/Police Body Camera, http://www.taser.com/products/on-officer-video/axon-body-on-officer-video, Sep. 23, 2013, Date Posted: Unknown, pp. 1-8. |
GoPro Official Website: The World's Most Versatile Camera, http://gopro.com/products/?gclid=CKqHv9jT4rkCFWZk7AodyiAAaQ, Sep. 23, 2013, Date Posted: Unknown, pp. 4-9. |
Vievu Products, http://www.vievu.com/vievu-products/vievu-squared/, Sep. 25, 2013, Date Posted: Unknown, pp. 1-2. |
Digital Ally First Vu Mountable Digital Camera Video Recorder, http://www.opticsplanet.com/digital-ally-first-vu-mountable-digital-camera-video-recorder.html?gclid=CIKohcX05rkCFSlo7AodU0IA0g&ef_id=UjCGEAAAAWGEjrQF:20130925155534:s, Sep. 25, 2013, Date Posted: Unknown, pp. 1-4. |
Taser Axon Flex On-Officer Video/Police Video Camera, http://www.taser.com/products/on-officer-video/taser-axon, Sep. 26, 2013, Date Posted: Unknown, pp. 1-8. |
Zepcam Wearable Video Technology, http://www.zepcam.com/product.aspx, Sep. 26, 2013, Date Posted: Unknown, pp. 1-2. |
Witness Cam headset, http://www.secgru.com/DVR-Witness-Cam-Headset-Video-Recorder-SG-DVR-1-COP.html, Sep. 26, 2013, Date Posted: Unknown, pp. 1-2. |
SUV Cam, http://www.elmo.co.jp/suv-cam/en/product/index.html, Sep. 26, 2013, Date Posted: Unknown, p. 1. |
Asian Wolf High Quality Angel Eye Body Video Spy Camera Recorder System, http://www.asianwolf.com/covert-bodycam-hq-angeleye.html, Sep. 26, 2013, Date Posted: Unknown, pp. 1-3. |
Panasonic Handheld AVCCAM HD Recorder/Player, http://www.panasonic.com/business/provideo/ag-hmr10.asp, Sep. 26, 2013, Date Posted: Unknown, pp. 1-2. |
POV.HD System Digital Video Camera, http://www.vio-pov.com/index.php, Sep. 26, 2013, Date Posted: Unknown, pp. 1-3. |
Ecplaza HY-001HD law enforcement DVR, http://fireeye.en.ecplaza.net/law-enforcement-dvr--238185-1619696.html, Sep. 26, 2013, Date Posted: Unknown, pp. 1-3. |
Edesix VideoBadge, http://www.edesix.com/edesix-products, Sep. 26, 2013, Date Posted: Unknown, pp. 1-3. |
Tide Leader police body worn camera, http://tideleader.en.gongchang.com/product/14899076, Sep. 26, 2013, Date Posted: Unknown, pp. 1-3. |
Stalker VUE Law Enforcement Grade Body Worn Video Camera/Recorder, http://www.stalkerradar.com/law_vue.shtml, Sep. 26, 2013, Date Posted: Unknown, pp. 1-2. |
Vidmic Officer Worn Video & Radio Accessories, http://www.vidmic.com/, Sep. 26, 2013, Date Posted: Unknown, p. 1. |
WatchGuard CopVu Wearable Video Camera System, http://watchguardvideo.com/copvu/overview, Sep. 26, 2013, Date Posted: Unknown, pp. 1-2. |
Kustom Signals VieVu, http://www.kustomsignals.com/index.php/mvideo/vievu, Sep. 26, 2013, Date Posted: Unknown, pp. 1-4. |
WolfCom 3rd Eye, X1 A/V Recorder for Police and Military, http://wolfcomusa.com/Products/Products.html, Sep. 26, 2013, Date Posted: Unknown, pp. 1-3. |
RevealMedia RS3-SX high definition video recorder, http://www.revealmedia.com/buy-t166/cameras/rs3-sx.aspx, Sep. 26, 2013, Date Posted: Unknown, pp. 1-2. |
Spy Chest Mini Spy Camera / Self Contained Mini camcorder / Audio & Video Recorder, http://www.spytechs.com/spy_cameras/mini-spy-camera.htm, Sep. 26, 2013, Date Posted: Unknown, pp. 1-3. |
Lea-Aid Scorpion Micro Recorder Patrol kit,http://www.leacorp.com/products/SCORPION-Micro-Recorder-Patrol-kit.html, Sep. 26, 2013, Date Posted: Unknown, pp. 1-2. |
Veho MUVI portable wireless speaker with dock, http://veho-uk.fastnet.co.uk/main/shop.aspx?category=camcorder, Sep. 26, 2013, Date Posted: Unknown, p. 1. |
Veho MUVI HD, http://veho-uk.fastnet.co.uk/main/shop.aspx?category=CAMMUVIHD, Sep. 26, 2013, Date Posted: Unknown, pp. 1-5. |
SIV Security in Vehicle Driving Partner, http://www.siv.co.kr/, Sep. 26, 2013, Date Posted: Unknown, p. 1. |
Midland XTC HD Video Camera, http://midlandradio.com/Company/xtc100-signup, Sep. 26, 2013, Date Posted: Unknown, pp. 1-3. |
Freudenrich, Craig, Ph.D.; “How Breathalyzers Work—Why Test?.” HowStuff Works. Printed Date: Oct. 16, 2014; Posted Date: Unknown; <http://electronics.howstuffworks.com/gadgets/automotive/breathalyzer1.htm>. |
“Breathalyzer.” Wikipedia. Printed Date: Oct. 16, 2014; Date Page Last Modified: Sep. 14, 2014; <http://en.wikipedia.org/wiki/Breathalyzer>. |
Renstrom, Joell; “Tiny 3D Projectors Allow You to Transmit Holograms From a Cell Phone.” Giant Freakin Robot. Printed Date: Oct. 16, 2014; Posted Date: Jun. 13, 2014; <http://www.giantfreakinrobot.com/sci/coming-3d-projectors-transmit-holograms-cell-phone.html>. |
Kopin Corporation; Home Page; Printed Date: Oct. 16, 2014; Posted Date: Unknown; <http://www.kopin.com>. |
Wasson, Brian; “Digital Eyewear for Law Enforcement.” Printed Date: Oct. 16, 2014; Posted Date: Dec. 9, 2013; <http://www.wassom.com/digital-eyewear-for-law-enforcement.html>. |
“Stalker Press Room—Using In-Car Video, the Internet, and the Cloud to keep police officers safe is the subject of CopTrax live, free webinar.” Stalker. Printed Date: Oct. 16, 2014; Posted Date: Jul. 31, 2014. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Feb. 4, 2016; International Application No. PCT/US2015/056052; International Filing Date: Oct. 16, 2015; Applicant: Digital Ally, Inc. |
ATC Chameleon. Techdad Review [Online] Jun. 19, 2013 [Retrieved on Dec. 30, 2015]. Retrieved from Internet. <URL:http://www.techdadreview.com/2013/06/19atc-chameleon/>. |
Automation Systems Article, Know-How Bank Co. Ltd. Takes Leap Forward as a Company Specializing in R&D and Technology Consulting, published Jan. 2005. |
Car Rear View Camera—Multimedia Rear View Mirror—4′ LCD color monitor, Retrieved from the Internet: <URL: http://web.archive.org/web/20050209014751/http://laipac.com/multimedia-rear-mirror.htm>, Feb. 9, 2005. |
Controller Area Network (CAN) Overview, National Instruments White Paper (Aug. 1, 2014. |
Daskam, Samuel W., Law Enforcement Armed Robbery Alarm System Utilizing Recorded Voice Addresses Via Police Radio Channels, Source: Univ. of Ky, Off of Res and Eng., Sery (UKY BU107), pp. 18-22, 1975. |
Digital Ally vs. Taser International, Inc., Case No. 2:16-cv-232 (CJW/TJ); US D. Kan, Defendant Taser International Inc.'s Preliminary Invalidity Contentions, Jul. 5, 2016. |
Electronic Times Article, published Feb. 24, 2005. |
Supplementary European Search Report dated Sep. 28, 2010 in European Patent Application No. 06803645.8; Applicant: Digital Ally, Inc. |
W. Fincham, Data Recorders for Accident Investigation, Monitoring of Driver and Vehicle Performance (Digest No. 1997/122), Publication Date: Apr. 10, 1997, pp. 6/1-6/3. |
Frankel, Harry; Riter, Stephen, Bernat, Andrew, Automated Imaging System for Border Control, Source: University of Kentucky, Office of Engineering Services, (Bulletin) UKY BU, pp. 169-173, Aug. 1986. |
Guide to Bluetooth Security: Recommendations of the National Institute of Standards and Technology, National Institute of Standards and Technology, U.S. Dep't of Commerce, NIST Special Publication 800-121, Revision 1 (Jun. 2012). |
Hankyung Auto News Article, Know-How Bank's Black Box for Cars “Multi-Black Box,” Copyright 2005. |
ICOP Extreme Wireless Mic, Operation Supplement, Copyright 2008. |
ICOP Model 20/20-W Specifications; Enhanced Digital In-Car Video and Audio recording Systems, date: Unknown. |
ICOP Mobile DVRS; ICOP Model 20/20-W & ICOP 20/20 Vision, date: Unknown. |
Bertomen, Lindsey J., PoliceOne.com News; “Product Review: ICOP Model 20/20-W,” May 19, 2009. |
ICOP Raytheon JPS communications, Raytheon Model 20/20-W, Raytheon 20/20 Vision Digital In-Car Video Systems, date: Unknown. |
Overview of the IEEE 802.15.4 standards for Low rate Wireless Personal Area Networks, 2010 7th International Symposium on Wireless Communication Systems (ISWCS), Copyright 2010. |
Translation of Korean Patent No. 10-1050897, published Jul. 20, 2011. |
Lewis, S.R., Future System Specifications for Traffic Enforcement Equipment, S.R. 1 Source: IEE Colloquium (Digest), N 252, Publication Date: Nov. 18, 1996, pp. 8/1-8/2. |
Lilliput RV 18-50NP 5″ Rear View Mirror TFT LCD Screen with Camera, Retrieved from the Internet: <URL: http://www.case-mod.com/lilliput-rv1850np-rear-view-mirror-tft-lcd-screen-with-camera-p-1271.html>, Mar. 4, 2005. |
Motor Magazine Article, Recreating the Scene of an Accident, published 2005. |
Near Field Communication; Sony Corporation; pp. 1-7, Date: Unknown. |
New Rearview-Mirror-Based Camera Display Takes the Guesswork Out of Backing Up Retrieved from the Internet: <URL: httb://news.thomasnet.com/fullstory/497750>, Press Release, Oct. 30, 2006. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Search Authority, or the Declaration dated Jan. 14, 2016, International Application No. PCT/US2015/056039; International Filing date Oct. 16, 2015, Applicant: Digital Ally, Inc. |
City of Pomona Request for Proposals for Mobile Video Recording System for Police Vehicles, dated prior to Apr. 4, 2013. |
Request for Comment 1323 of the Internet Engineering Task Force, TCP Extensions for High Performance, Date: May 1992. |
SIIF Award for Multi Black Box, published Dec. 10, 2004. |
U.S. Appl. No. 13/959,142 Final Office Action dated Jul. 20, 2016. |
U.S. Appl. No. 13/959,142 Office Action dated Nov. 3, 2015. |
U.S. Appl. No. 15/011,132 Office Action dated Apr. 18, 2016, 19 pages. |
State of Utah Invitation to Bid State Cooperative Contract; Vendor: ICOP Digital, Inc., Contract No. MA503, Jul. 1, 2008. |
http:/ /www.k-h-b.com/board/board.php?board=products01&comand=body&no=1, Current State of Technology Held by the Company, Copyright 2005. |
http://www.k-h-b.com/sub1_02.htm1, Copyright 2005. |
X26 Taser, Date Unknown. |
Taser International; Taser X26 Specification Sheet, 2003. |
Dees, Tim; Taser Axon Flex: The next generation of body camera; <http://www.policeone.com/police-products/body-cameras/articles/527231-0-TASER-Axon-Flex-The-next-generation-of-body-camera/>, Date Posted: Mar. 12, 2012; Date Printed: Oct. 27, 2015. |
International Association of Chiefs of Police Digital Video System Minimum Specifications; Nov. 21, 2008. |
Petition for Inter Partes Review No. 2017-00375, Taser International, Inc. v. Digital Ally, Inc., filed Dec. 1, 2013. |
Petition for Inter Partes Review No. 2017-00376, Taser International, Inc. v. Digital Ally, Inc., filed Dec. 1, 2013. |
Petition for Inter Partes Review No. 2017-00515, Taser International, Inc. v. Digital Ally Inc., filed Jan. 11, 2017. |
PCT Patent Application PCT/US16/34345 International Search Report and Written Opinion dated Dec. 29, 2016. |
Digital Ally, Inc. vs. Taser International, Inc., Case No. 2:16-cv-020232 (CJM/TJ); US D. Kan, Complaint for Patent Infringement, Jan. 14, 2016. |
Digital Ally, Inc. vs. Enforcement video LLC d/b/a Watchguard Video., Case No. 2:16-cv-02349 (CJM/TJ); US D. Kan, Complaint for Patent Infringement, May 27, 2016. |
State of Utah Invitation to Bid State Cooperative Contract; Vendor: Kustom Signals Inc., Contract No. MA1991, Apr. 25, 2008. |
Petition for Inter Partes Review No. 2017-00775, Taser International, Inc. v. Digital Ally Inc., filed Jan. 25, 2017. |
Invalidity Chart for International Publication No. WO2014/000161 dated Oct. 31, 2017. |
Petition for Post Grant Review No. PGR2018-00052, Axon Enterprise, Inc. v. Digital Ally, Inc., filed Mar. 19, 2018. |
MPEG-4 Coding of Moving Pictures and Audio ISO/IEC JTC1/SC29/WG11 N4668 dated Mar. 2002. |
Invalidity Chart for International Publication No. WO2014/000161 dated Oct. 31, 2017 (Resubmitted). |
Drift X170, http://driftinnovation.com/support/firmware-update/x170/, Sep. 26, 2013, Date Posted: Unknown, p. 1. |
UCorder Pockito Wearabel Mini Pcket Camcorder, http://www.ucorder.com/, Sep. 26, 2013, Date Posted: Unknown, p. 1. |
Isaw Advance Hull HD EXtreme, www.isawcam.co.kr, Sep. 26, 2013, Date Posted: Unknown, p. 1. |
Scorpion Micro DV Video Audio Recorder, http://www.leacorp.com/scorpion-micro-dv-video-audio-recorder/, Sep. 26, 2013, Date Posted: Unknown, pp. 1-3. |
Taser Cam Law Enforcement Audio/Video Recorder (gun mounted), http://www.taser.com/products/on-officer-video/taser-cam, Sep. 26, 2013, Date Posted: Unknown, pp. 1-3. |
Looxcie Wearable & mountable streaming video cams, http://www.looxcie.com/overview?gclid=-CPbDyv6piq8CFWeFQAodlhXC-w, Sep. 26, 2013, Date Posted: Unknown, pp. 1-4. |
Point of View Cameras Military & Police, http://pointofviewcameras.com/military-police, Sep. 26, 2013, Date Posted: Unknown, pp. 1-2. |
Dyna Spy Inc. hidden cameras, https://www.dynaspy.com/hidden-cameras/spy-cameras/body-worn-wearable-spy-cameras, Sep. 26, 2013, Date Posted: Unknown, pp. 1-3. |
Amazon.com wearable camcorders, http://www.amazon.com/s/ref=nb_sb_ss_i_0_4?url=search-alias%3Dphoto&field-keywords=wearable+camcorder&x=0&y=0&sprefix=wear, Sep. 26, 2013, Date Posted: Unknown, pp. 1-4. |
Oregon Scientific ATC Chameleon Dual Lens HD Action Camera, http://www.oregonscientificstore.com/Oregon-Scientific-ATC-Chameleon-Dual-Lens-HD-Action-Camera.data, Date Posted: Unknown; Date Printed: Oct. 13, 2014, pp. 1-4. |
European Patent Application 15850436.6 Search Report dated May 4, 2018. |
Number | Date | Country | |
---|---|---|---|
20150063776 A1 | Mar 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13967151 | Aug 2013 | US |
Child | 14517226 | US |