This disclosure relates generally to laser scanning and, more particularly, to using a fiber optic cable in the receive path of a laser scanning system.
Light detection and ranging (LiDAR) systems use light pulses to create an image or point cloud of the external environment. Some typical LiDAR systems include a light source, a pulse steering system, and light detector. The light source generates light pulses that are directed by the pulse steering system in particular directions when being transmitted from the LiDAR system. When a transmitted light pulse is scattered by an object, some of the scattered light is returned to the LiDAR system as a returned pulse. The light detector detects the returned pulse. Using the time it took for the returned pulse to be detected after the light pulse was transmitted and the speed of light, the LiDAR system can determine the distance to the object along the path of the transmitted light pulse. The pulse steering system can direct light pulses along different paths to allow the LiDAR system to scan the surrounding environment and produce an image or point cloud. LiDAR systems can also use techniques other than time-of-flight and scanning to measure the surrounding environment
The following presents a simplified summary of one or more examples to provide a basic understanding of the disclosure. This summary is not an extensive overview of all contemplated examples, and is not intended to either identify key or critical elements of all examples or delineate the scope of any or all examples. Its purpose is to present some concepts of one or more examples in a simplified form as a prelude to the more detailed description that is presented below.
A dual lens assembly positioned along an optical receive path within a LiDAR system is provided. The dual lens assembly is constructed to reduce a numerical aperture of a returned light pulse and reduce a walk-off error associated with one or more mirrors of the LiDAR system.
In some embodiments, a light detection and ranging (LiDAR) system is provided that includes a light source configured to generate a pulse signal that is transmitted by the LiDAR system, one or more mirrors configured to steer a returned light pulse associated with the transmitted pulse signal along an optical receive path, a dual lens assembly positioned along the optical receive path, wherein the dual lens assembly is constructed to reduce a numerical aperture of the returned light pulse and reduce a walk-off error associated with the one or more mirrors, and a fiber configured to receive the returned light pulse along the optical receive path from the dual lens assembly.
In another embodiment, a light detection and ranging (LiDAR) system is provided that includes a steering system operative to steer a plurality of returned light pulses along an optical receive path, a fiber configured to receive the plurality of returned light pulses along the optical receive path, the fiber comprising a core, and a dual lens assembly positioned along the optical receive path in between the steering system and the fiber, wherein the dual lens assembly optimizes a spot beam produced by the plurality returned light pulses for entry into the core.
The present application can be best understood by reference to the figures described below taken in conjunction with the accompanying drawing figures, in which like parts may be referred to by like numerals.
In the following description of examples, reference is made to the accompanying drawings which form a part hereof, and in which it is shown by way of illustration specific examples that can be practiced. It is to be understood that other examples can be used and structural changes can be made without departing from the scope of the disclosed examples.
Some LiDAR systems use an open air optical path or optical path with one or more lenses to receive and optimize detection of returned pulse signals. This has a disadvantage in that the detection mechanism needs to either be close to where the returned pulse enters the system or a potentially complex system needs to be in place to redirect the returned pulse signal to the detector. In some embodiments of the present technology, an optical fiber is used to direct returned light pulses to a light detector. This way, the detector can be placed in an arbitrary location relative to the signal steering system that receives the return signal. Further, the detector can be placed fairly close to the exit end of the fiber, thus improving the integrity and amount of the detected light signals. Depending on how the returned light pulse is received by the LiDAR system, errors (e.g., walk-off error) that reduce signal strength or place more stringent tolerances on the system may be reduced. Some embodiments of the present technology use a field lens to redirect returned light pulses into an optical fiber core or directly into a light detector, thus reducing the errors due to walk-off of the pulses. Embodiments discussed herein use a dual lens assembly to maximize light transfer into an optical fiber core by controlling the numerical aperture (NA) of the light and by minimizing walk-off errors.
Some LiDAR systems use the time-of-flight of light signals (e.g., light pulses) to determine the distance to objects in the path of the light. For example, with respect to
Referring back to
By directing many light pulses, as depicted in
If a corresponding light pulse is not received for a particular transmitted light pulse, then it can be determined that there are no objects within a certain range of LiDAR system 100 (e.g., the max scanning distance of LiDAR system 100). For example, in
In
The density of points in point cloud or image from a LiDAR system 100 is equal to the number of pulses divided by the field of view. Given that the field of view is fixed, to increase the density of points generated by one set of transmission-receiving optics, the LiDAR system should fire a pulse more frequently, in other words, a light source with a higher repetition rate is needed. However, by sending pulses more frequently the farthest distance that the LiDAR system can detect may be more limited. For example, if a returned signal from a far object is received after the system transmits the next pulse, the return signals may be detected in a different order than the order in which the corresponding signals are transmitted and get mixed up if the system cannot correctly correlate the returned signals with the transmitted signals. To illustrate, consider an exemplary LiDAR system that can transmit laser pulses with a repetition rate between 500 kHz and 1 MHz. Based on the time it takes for a pulse to return to the LiDAR system and to avoid mix-up of returned pulses from consecutive pulses in conventional LiDAR design, the farthest distance the LiDAR system can detect may be 300 meters and 150 meters for 500 kHz and 1 Mhz, respectively. The density of points of a LiDAR system with 500 kHz repetition rate is half of that with 1 MHz. Thus, this example demonstrates that, if the system cannot correctly correlate returned signals that arrive out of order, increasing the repetition rate from 500 kHz to 1 Mhz (and thus improving the density of points of the system) would significantly reduce the detection range of the system.
LiDAR system 100 can also include other components not depicted in
Some other light sources include one or more laser diodes, short-cavity fiber lasers, solid-state lasers, and/or tunable external cavity diode lasers, configured to generate one or more light signals at various wavelengths. In some examples, light sources use amplifiers (e.g., pre-amps or booster amps) include a doped optical fiber amplifier, a solid-state bulk amplifier, and/or a semiconductor optical amplifier, configured to receive and amplify light signals.
Returning to
Some implementations of signal steering systems include one or more optical redirection elements (e.g., mirrors or lens) that steers returned light signals (e.g., by rotating, vibrating, or directing) along a receive path to direct the returned light signals to the light detector. The optical redirection elements that direct light signals along the transmit and receive paths may be the same components (e.g., shared), separate components (e.g., dedicated), and/or a combination of shared and separate components. This means that in some cases the transmit and receive paths are different although they may partially overlap (or in some cases, substantially overlap).
Returning to
Controller 408 optionally is also configured to process data received from these components. In some examples, controller determines the time it takes from transmitting a light pulse until a corresponding returned light pulse is received; determines when a returned light pulse is not received for a transmitted light pulse; determines the transmitted direction (e.g., horizontal and/or vertical information) for a transmitted/returned light pulse; determines the estimated range in a particular direction; and/or determines any other type of data relevant to LiDAR system 100.
In some embodiments, returned light pulses collected by pulse steering system 700 are redirected into an optical fiber (e.g., fiber 710), which carries the returned light pulses to a photodetector. This allows the pulse steering system to be located in an arbitrary position with respect to the light detector.
In some embodiments of the present technology, a lens or other optical element is used in the optical receive path to increase the tolerance of walk-off error of the returned pulses. For example, in
In some embodiments of the present technology, the field lens 708 is configured to redirect returned light pulses traveling along paths 710 directly to a detector (e.g., an avalanche photodiode). In these embodiments, the steering system does not include a fiber. The returned light pulses are directed via the mirrors of the steering system to reach the detector. The detector can be placed fairly close to or directly on the field lens to improve the integrity of the detected signals.
The improved walk-off characteristics of embodiments of the present technology are shown in
In some embodiments, returned light pulses collected by pulse steering system 1200 are redirected into an optical fiber (e.g., fiber 1210), which carries the returned light pulses to a photodetector. This allows the pulse steering system to be located in an arbitrary position with respect to the light detector.
In some embodiments, a dual lens assembly or other optical element is used in the optical receive path to improve walk-off characteristics, increase the tolerance of walk-off error, and reduce numerical aperture (NA). For example, in
With reference to
In the side view shown in
It is believed that the disclosure set forth herein encompasses multiple distinct inventions with independent utility. While each of these inventions has been disclosed in its preferred form, the specific embodiments thereof as disclosed and illustrated herein are not to be considered in a limiting sense as numerous variations are possible. Each example defines an embodiment disclosed in the foregoing disclosure, but any one example does not necessarily encompass all features or combinations that may be eventually claimed. Where the description recites “a” or “a first” element or the equivalent thereof, such description includes one or more such elements, neither requiring nor excluding two or more such elements. Further, ordinal indicators, such as first, second or third, for identified elements are used to distinguish between the elements, and do not indicate a required or limited number of such elements, and do not indicate a particular position or order of such elements unless otherwise specifically stated.
Moreover, any processes described with respect to
It is to be understood that any or each module or state machine discussed herein may be provided as a software construct, firmware construct, one or more hardware components, or a combination thereof. For example, any one or more of the state machines or modules may be described in the general context of computer-executable instructions, such as program modules, that may be executed by one or more computers or other devices. Generally, a program module may include one or more routines, programs, objects, components, and/or data structures that may perform one or more particular tasks or that may implement one or more particular abstract data types. It is also to be understood that the number, configuration, functionality, and interconnection of the modules or state machines are merely illustrative, and that the number, configuration, functionality, and interconnection of existing modules may be modified or omitted, additional modules may be added, and the interconnection of certain modules may be altered.
Whereas many alterations and modifications of the present invention will no doubt become apparent to a person of ordinary skill in the art after having read the foregoing description, it is to be understood that the particular embodiments shown and described by way of illustration are in no way intended to be considered limiting. Therefore, reference to the details of the preferred embodiments is not intended to limit their scope.
This application is a continuation of U.S. application Ser. No. 16/545,220, entitled “DUAL LENS RECEIVE PATH FOR LIDAR SYSTEM”, filed Aug. 20, 2019, which claims the benefit of U.S. Provisional Application No. 62/720,350, filed Aug. 21, 2018, the disclosures of which are incorporated herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3897150 | Bridges et al. | Jul 1975 | A |
4119362 | Holzman | Oct 1978 | A |
4464048 | Farlow | Aug 1984 | A |
4676586 | Jones et al. | Jun 1987 | A |
5006721 | Cameron et al. | Apr 1991 | A |
5157451 | Taboada | Oct 1992 | A |
5319434 | Croteau et al. | Jun 1994 | A |
5336900 | Peters et al. | Aug 1994 | A |
5369661 | Yamaguchi et al. | Nov 1994 | A |
5442358 | Keeler et al. | Aug 1995 | A |
5504731 | Lee et al. | Apr 1996 | A |
5546188 | Wangler et al. | Aug 1996 | A |
5579153 | Laming et al. | Nov 1996 | A |
5657077 | Deangelis et al. | Aug 1997 | A |
5793491 | Wangler et al. | Aug 1998 | A |
5838239 | Stern et al. | Nov 1998 | A |
5864391 | Hosokawa et al. | Jan 1999 | A |
5926259 | Bamberger et al. | Jul 1999 | A |
5936756 | Nakajima | Aug 1999 | A |
6163378 | Khoury | Dec 2000 | A |
6317202 | Hosokawa et al. | Nov 2001 | B1 |
6594000 | Green et al. | Jul 2003 | B2 |
6650404 | Crawford | Nov 2003 | B1 |
6950733 | Stopczynski | Sep 2005 | B2 |
7128267 | Reichenbach et al. | Oct 2006 | B2 |
7202941 | Munro | Apr 2007 | B2 |
7345271 | Boehlau et al. | Mar 2008 | B2 |
7438492 | Braunecker et al. | Oct 2008 | B2 |
7440084 | Kane | Oct 2008 | B2 |
7440175 | Di et al. | Oct 2008 | B2 |
7489865 | Varshneya et al. | Feb 2009 | B2 |
7576837 | Liu et al. | Aug 2009 | B2 |
7830527 | Chen et al. | Nov 2010 | B2 |
7835068 | Brooks et al. | Nov 2010 | B1 |
7847235 | Krupkin et al. | Dec 2010 | B2 |
7880865 | Tanaka et al. | Feb 2011 | B2 |
7936448 | Albuquerque et al. | May 2011 | B2 |
7969558 | Hall | Jun 2011 | B2 |
7982861 | Abshire et al. | Jul 2011 | B2 |
8072582 | Meneely | Dec 2011 | B2 |
8190030 | Leclair et al. | May 2012 | B2 |
8471895 | Banks | Jun 2013 | B2 |
8736818 | Weimer et al. | May 2014 | B2 |
8749764 | Hsu | Jun 2014 | B2 |
8812149 | Doak | Aug 2014 | B2 |
8994928 | Shiraishi | Mar 2015 | B2 |
9048616 | Robinson | Jun 2015 | B1 |
9065243 | Asobe et al. | Jun 2015 | B2 |
9086273 | Gruver et al. | Jul 2015 | B1 |
9194701 | Bosch | Nov 2015 | B2 |
9255790 | Zhu | Feb 2016 | B2 |
9300321 | Zalik et al. | Mar 2016 | B2 |
9304316 | Weiss et al. | Apr 2016 | B2 |
9318724 | Gehring et al. | Apr 2016 | B2 |
9354485 | Fermann et al. | May 2016 | B2 |
9465175 | Shi et al. | Oct 2016 | B2 |
9510505 | Halloran et al. | Dec 2016 | B2 |
9575184 | Gilliland et al. | Feb 2017 | B2 |
9605998 | Nozawa | Mar 2017 | B2 |
9621876 | Federspiel | Apr 2017 | B2 |
9638799 | Goodwin et al. | May 2017 | B2 |
9696426 | Zuk | Jul 2017 | B2 |
9702966 | Batcheller et al. | Jul 2017 | B2 |
9804264 | Villeneuve et al. | Oct 2017 | B2 |
9810786 | Welford et al. | Nov 2017 | B1 |
9812838 | Villeneuve et al. | Nov 2017 | B2 |
9823353 | Eichenholz et al. | Nov 2017 | B2 |
9857468 | Eichenholz et al. | Jan 2018 | B1 |
9869754 | Campbell et al. | Jan 2018 | B1 |
9879990 | Klepsvik et al. | Jan 2018 | B2 |
9880263 | Droz et al. | Jan 2018 | B2 |
9880278 | Uffelen et al. | Jan 2018 | B2 |
9885778 | Dussan | Feb 2018 | B2 |
9897889 | Dussan | Feb 2018 | B2 |
9915726 | Bailey et al. | Mar 2018 | B2 |
9927915 | Frame et al. | Mar 2018 | B2 |
9958545 | Eichenholz et al. | May 2018 | B2 |
9989629 | LaChapelle | Jun 2018 | B1 |
10003168 | Villeneuve | Jun 2018 | B1 |
10012732 | Eichenholz et al. | Jul 2018 | B2 |
10007001 | LaChapelle et al. | Aug 2018 | B1 |
10042159 | Dussan et al. | Aug 2018 | B2 |
10081019 | Campbell et al. | Aug 2018 | B1 |
10073166 | Dussan | Sep 2018 | B2 |
10078133 | Dussan | Sep 2018 | B2 |
10094925 | LaChapelle | Oct 2018 | B1 |
10157630 | Vaughn et al. | Dec 2018 | B2 |
10191155 | Curatu | Jan 2019 | B2 |
10215847 | Scheim et al. | Feb 2019 | B2 |
10267898 | Campbell et al. | Apr 2019 | B2 |
10295656 | Li et al. | May 2019 | B1 |
10310058 | Campbell et al. | Jun 2019 | B1 |
10324170 | Engberg, Jr. et al. | Jun 2019 | B1 |
10324185 | McWhirter et al. | Jun 2019 | B2 |
10393877 | Hall et al. | Aug 2019 | B2 |
10429495 | Wang et al. | Oct 2019 | B1 |
10444356 | Wu et al. | Oct 2019 | B2 |
10451716 | Hughes et al. | Oct 2019 | B2 |
10466342 | Zhu et al. | Nov 2019 | B1 |
10502831 | Eichenholz | Dec 2019 | B2 |
10509112 | Pan | Dec 2019 | B1 |
10520602 | Villeneuve et al. | Dec 2019 | B2 |
10557923 | Watnik et al. | Feb 2020 | B2 |
10571567 | Campbell et al. | Feb 2020 | B2 |
10578720 | Hughes et al. | Mar 2020 | B2 |
10591600 | Villeneuve et al. | Mar 2020 | B2 |
10627491 | Hall et al. | Apr 2020 | B2 |
10641672 | Dussan et al. | May 2020 | B2 |
10663596 | Dussan et al. | May 2020 | B2 |
10683564 | LaChapelle | May 2020 | B1 |
10683585 | McWhirter | May 2020 | B2 |
10684360 | Campbell | Jun 2020 | B2 |
10852398 | Yu et al. | Dec 2020 | B2 |
10908262 | Dussan | Feb 2021 | B2 |
10908265 | Dussan | Feb 2021 | B2 |
10908268 | Zhou et al. | Feb 2021 | B2 |
10969475 | Li et al. | Apr 2021 | B2 |
10983218 | Hall et al. | Apr 2021 | B2 |
11002835 | Pan et al. | May 2021 | B2 |
11009605 | Li et al. | May 2021 | B2 |
11194048 | Burbank et al. | Dec 2021 | B1 |
20020136251 | Green et al. | Sep 2002 | A1 |
20020149757 | Kelsey et al. | Oct 2002 | A1 |
20040135992 | Munro | Jul 2004 | A1 |
20050013535 | Popescu | Jan 2005 | A1 |
20050033497 | Stopczynski | Feb 2005 | A1 |
20050190424 | Reichenbach et al. | Sep 2005 | A1 |
20050195383 | Breed et al. | Sep 2005 | A1 |
20050232541 | Mihailov et al. | Oct 2005 | A1 |
20060071846 | Yanagisawa et al. | Apr 2006 | A1 |
20060132752 | Kane | Aug 2006 | A1 |
20070091948 | Di et al. | Apr 2007 | A1 |
20070216995 | Bollond et al. | Sep 2007 | A1 |
20080174762 | Liu et al. | Jul 2008 | A1 |
20080193135 | Du et al. | Aug 2008 | A1 |
20090010644 | Varshneya et al. | Jan 2009 | A1 |
20090028193 | Islam | Jan 2009 | A1 |
20090051926 | Chen | Feb 2009 | A1 |
20090059201 | Willner et al. | Mar 2009 | A1 |
20090067453 | Mizuuchi et al. | Mar 2009 | A1 |
20090147239 | Zhu | Jun 2009 | A1 |
20090237639 | Shinozaki et al. | Sep 2009 | A1 |
20090262760 | Krupkin et al. | Oct 2009 | A1 |
20090316134 | Michael et al. | Dec 2009 | A1 |
20100006760 | Lee et al. | Jan 2010 | A1 |
20100020306 | Hall | Jan 2010 | A1 |
20100020377 | Borchers et al. | Jan 2010 | A1 |
20100027602 | Abshire et al. | Feb 2010 | A1 |
20100045965 | Meneely | Feb 2010 | A1 |
20100053715 | O'Neill et al. | Mar 2010 | A1 |
20100128109 | Banks | May 2010 | A1 |
20100271614 | Albuquerque et al. | Oct 2010 | A1 |
20110181864 | Schmitt et al. | Jul 2011 | A1 |
20110216792 | Chann et al. | Sep 2011 | A1 |
20120038903 | Weimer et al. | Feb 2012 | A1 |
20120124113 | Zalik et al. | May 2012 | A1 |
20120162749 | Gusev et al. | Jun 2012 | A1 |
20120221142 | Doak | Aug 2012 | A1 |
20130107016 | Federspeil | May 2013 | A1 |
20130116971 | Retkowski et al. | May 2013 | A1 |
20130241781 | Cooper et al. | Sep 2013 | A1 |
20130293867 | Hsu et al. | Nov 2013 | A1 |
20130293946 | Fermann et al. | Nov 2013 | A1 |
20130329279 | Nati et al. | Dec 2013 | A1 |
20130342822 | Shiraishi | Dec 2013 | A1 |
20140078514 | Zhu | Mar 2014 | A1 |
20140104594 | Gammenthaler | Apr 2014 | A1 |
20140168631 | Haslim et al. | Jun 2014 | A1 |
20140226140 | Chuang et al. | Aug 2014 | A1 |
20140347850 | Bosch | Nov 2014 | A1 |
20140350836 | Stettner et al. | Nov 2014 | A1 |
20150078123 | Batcheller et al. | Mar 2015 | A1 |
20150084805 | Dawber | Mar 2015 | A1 |
20150109603 | Kim et al. | Apr 2015 | A1 |
20150116692 | Zuk et al. | Apr 2015 | A1 |
20150139259 | Robinson | May 2015 | A1 |
20150158489 | Oh et al. | Jun 2015 | A1 |
20150338270 | Williams et al. | Nov 2015 | A1 |
20150355327 | Goodwin et al. | Dec 2015 | A1 |
20160003946 | Gilliland et al. | Jan 2016 | A1 |
20160047896 | Dussan | Feb 2016 | A1 |
20160047900 | Dussan | Feb 2016 | A1 |
20160061655 | Nozawa | Mar 2016 | A1 |
20160061935 | Mccloskey et al. | Mar 2016 | A1 |
20160100521 | Halloran et al. | Apr 2016 | A1 |
20160117048 | Frame et al. | Apr 2016 | A1 |
20160172819 | Ogaki | Jun 2016 | A1 |
20160178736 | Chung | Aug 2016 | A1 |
20160226210 | Zayhowski et al. | Aug 2016 | A1 |
20160245902 | Natnik | Aug 2016 | A1 |
20160273034 | Lundquist et al. | Sep 2016 | A1 |
20160291134 | Droz et al. | Oct 2016 | A1 |
20160313445 | Bailey et al. | Oct 2016 | A1 |
20160327646 | Scheim et al. | Nov 2016 | A1 |
20170003116 | Yee et al. | Jan 2017 | A1 |
20170153319 | Villeneuve et al. | Jun 2017 | A1 |
20170242104 | Dussan | Aug 2017 | A1 |
20170299721 | Eichenholz et al. | Oct 2017 | A1 |
20170307738 | Schwarz et al. | Oct 2017 | A1 |
20170365105 | Rao et al. | Dec 2017 | A1 |
20180031678 | Singer et al. | Feb 2018 | A1 |
20180040171 | Kundu et al. | Feb 2018 | A1 |
20180050704 | Tascione et al. | Feb 2018 | A1 |
20180069367 | Villeneuve et al. | Mar 2018 | A1 |
20180152891 | Pacala et al. | May 2018 | A1 |
20180158471 | Vaughn et al. | Jun 2018 | A1 |
20180164439 | Droz et al. | Jun 2018 | A1 |
20180156896 | O'Keeffe | Jul 2018 | A1 |
20180188355 | Bao et al. | Jul 2018 | A1 |
20180188357 | Li et al. | Jul 2018 | A1 |
20180188358 | Li et al. | Jul 2018 | A1 |
20180188371 | Bao et al. | Jul 2018 | A1 |
20180210084 | Zwölfer et al. | Jul 2018 | A1 |
20180275274 | Bao et al. | Sep 2018 | A1 |
20180284241 | Campbell et al. | Oct 2018 | A1 |
20180284242 | Campbell | Oct 2018 | A1 |
20180284286 | Eichenholz et al. | Oct 2018 | A1 |
20180329080 | Pacala et al. | Nov 2018 | A1 |
20180359460 | Pacala et al. | Dec 2018 | A1 |
20190025428 | Li et al. | Jan 2019 | A1 |
20190107607 | Danziger | Apr 2019 | A1 |
20190107823 | Campbell et al. | Apr 2019 | A1 |
20190120942 | Zhang et al. | Apr 2019 | A1 |
20190120962 | Gimpel et al. | Apr 2019 | A1 |
20190154804 | Eichenholz | May 2019 | A1 |
20190154807 | Steinkogler et al. | May 2019 | A1 |
20190212416 | Li et al. | Jul 2019 | A1 |
20190250254 | Campbell et al. | Aug 2019 | A1 |
20190257924 | Li et al. | Aug 2019 | A1 |
20190265334 | Zhang et al. | Aug 2019 | A1 |
20190265336 | Zhang et al. | Aug 2019 | A1 |
20190265337 | Zhang et al. | Aug 2019 | A1 |
20190265339 | Zhang et al. | Aug 2019 | A1 |
20190273365 | Zediker et al. | Sep 2019 | A1 |
20190277952 | Beuschel et al. | Sep 2019 | A1 |
20190310388 | LaChapelle | Oct 2019 | A1 |
20190369215 | Wang et al. | Dec 2019 | A1 |
20190369258 | Hall et al. | Dec 2019 | A1 |
20190383915 | Li et al. | Dec 2019 | A1 |
20200142070 | Hall et al. | May 2020 | A1 |
20200256964 | Campbell et al. | Aug 2020 | A1 |
20200284906 | Eichenholz et al. | Sep 2020 | A1 |
20200319310 | Hall et al. | Oct 2020 | A1 |
20200400798 | Rezk et al. | Dec 2020 | A1 |
20210088630 | Zhang | Mar 2021 | A9 |
Number | Date | Country |
---|---|---|
1677050 | Oct 2005 | CN |
204216401 | Mar 2015 | CN |
204758260 | Nov 2015 | CN |
204885804 | Dec 2015 | CN |
107864763 | Feb 2018 | CN |
108132472 | Jun 2018 | CN |
207457508 | Jun 2018 | CN |
207557485 | Jun 2018 | CN |
208314210 | Jan 2019 | CN |
208421228 | Jan 2019 | CN |
208705506 | Apr 2019 | CN |
106597471 | May 2019 | CN |
209280923 | Aug 2019 | CN |
108445468 | Nov 2019 | CN |
110031823 | Mar 2020 | CN |
108089201 | Apr 2020 | CN |
109116331 | Apr 2020 | CN |
109917408 | Apr 2020 | CN |
109116386 | May 2020 | CN |
109116387 | May 2020 | CN |
110031822 | May 2020 | CN |
211855309 | Oct 2020 | CN |
109188397 | Nov 2020 | CN |
109814088 | Nov 2020 | CN |
109917348 | Nov 2020 | CN |
110492856 | Nov 2020 | CN |
110736975 | Nov 2020 | CN |
109725320 | Dec 2020 | CN |
110780284 | Dec 2020 | CN |
110780283 | Jan 2021 | CN |
110784220 | Feb 2021 | CN |
212623082 | Feb 2021 | CN |
110492349 | Mar 2021 | CN |
109950784 | May 2021 | CN |
213182011 | May 2021 | CN |
213750313 | Jul 2021 | CN |
214151038 | Sep 2021 | CN |
109814082 | Oct 2021 | CN |
113491043 | Oct 2021 | CN |
214795200 | Nov 2021 | CN |
214795206 | Nov 2021 | CN |
214895784 | Nov 2021 | CN |
214895810 | Nov 2021 | CN |
215641806 | Jan 2022 | CN |
112639527 | Feb 2022 | CN |
215932142 | Mar 2022 | CN |
112578398 | Apr 2022 | CN |
0 757 257 | Feb 1997 | EP |
1 237 305 | Sep 2002 | EP |
1 923 721 | May 2008 | EP |
2 157 445 | Feb 2010 | EP |
2 395 368 | Dec 2011 | EP |
2 889 642 | Jul 2015 | EP |
1 427 164 | Mar 1976 | GB |
2000411 | Jan 1979 | GB |
2007144687 | Jun 2007 | JP |
2010035385 | Feb 2010 | JP |
2012026921 | Feb 2012 | JP |
2017-003347 | Jan 2017 | JP |
2017-138301 | Aug 2017 | JP |
10-2012-0013515 | Feb 2012 | KR |
10-2013-0068224 | Jun 2013 | KR |
10-2018-0107673 | Oct 2018 | KR |
2017110417 | Jun 2017 | WO |
2018125725 | Jul 2018 | WO |
2018129410 | Jul 2018 | WO |
2018129408 | Jul 2018 | WO |
2018129409 | Jul 2018 | WO |
2018129410 | Jul 2018 | WO |
2018175990 | Sep 2018 | WO |
2018182812 | Oct 2018 | WO |
2019079642 | Apr 2019 | WO |
2019165095 | Aug 2019 | WO |
2019165289 | Aug 2019 | WO |
2019165294 | Aug 2019 | WO |
2020013890 | Jan 2020 | WO |
Entry |
---|
Chen, X. et al. (Feb. 2010). “Polarization Coupling of Light and Optoelectronics Devices Based on Periodically Poled Lithium Niobate,” Shanghai Jiao Tong University, China, Frontiers in Guided Wave Optics and Optoelectronics, 24 pages. |
Goldstein, R. (Apr. 1986) “Electro-Optic Devices in Review, The Linear Electro-Optic (Pockels) Effect Forms the Basis for a Family of Active Devices,” Laser & Applications, FastPulse Technology, Inc., 6 pages. |
International Preliminary Report on Patentability, dated Jul. 9, 2019, for International Application No. PCT/US2018/012703, 10 pages. |
International Preliminary Report on Patentability, dated Jul. 9, 2019, for International Application No. PCT/US2018/012704, 7 pages. |
International Preliminary Report on Patentability, dated Jul. 9, 2019, for International Application No. PCT/US2018/012705, 7 pages. |
International Search Report and Written Opinion, dated Jan. 17, 2020, for International Application No. PCT/US2019/019276, 14 pages. |
International Search Report and Written Opinion, dated Jul. 9, 2019, for International Application No. PCT/US2019/018987, 17 pages. |
International Search Report and Written Opinion, dated Sep. 18, 2018, for International Application No. PCT/US2018/012116, 12 pages. |
International Search Report and Written Opinion, dated May 3, 2019, for International Application No. PCT/US2019/019272, 16 pages. |
International Search Report and Written Opinion, dated May 6, 2019, for International Application No. PCT/US2019/019264, 15 pages. |
International Search Report and Written Opinion, dated Jan. 3, 2019, for International Application No. PCT/US2018/056577, 15 pages. |
International Search Report and Written Opinion, dated Mar. 23, 2018, for International Application No. PCT/US2018/012704, 12 pages. |
International Search Report and Written Opinion, dated Jun. 7, 2018, for International Application No. PCT/US2018/024185, 9 pages. |
International Preliminary Report on Patentability, dated Apr. 30, 2020, for International Application No. PCT/US2018/056577, 8 pages. |
European Search Report, dated Jul. 17, 2020, for EP Application No. 18776977.3, 12 pages. |
Extended European Search Report, dated Jul. 10, 2020, for EP Application No. 18736738.8, 9 pages. |
Gunzung, Kim, et al. (Mar. 2, 2016). “A hybrid 3D LIDAR imager based on pixel-by-pixel scanning and DS-OCDMA,” pages Proceedings of SPIE [Proceedings of SPIE ISSN 0277-786X vol. 10524], SPIE, US, vol. 9751, pp. 975119-975119-8. |
Extended European Search Report, dated Jul. 22, 2020, for EP Application No. 18736685.1, 10 pages. |
Gluckman, J. (May 13, 2016). “Design of the processing chain for a high-altitude, airborne, single-photon lidar mapping instrument,” Proceedings of SPIE; [Proceedings of SPIE ISSN 0277-786X vol. 10524], SPIE, US, vol. 9832, 9 pages. |
Office Action Issued in Japanese Patent Application No. 2019-536019 dated Nov. 30, 2021, 6 pages. |
European Search Report, dated Jun. 17, 2021, for EP Application No. 18868896.4, 7 pages. |
“Fiber laser,” Wikipedia, https://en.wikipedia.org/wiki/Fiber_laser, 6 pages. |
International Search Report and Written Opinion, dated Mar. 19, 2018, for International Application No. PCT/US2018/012705, 12 pages. |
International Search Report and Written Opinion, dated Mar. 20, 2018, for International Application No. PCT/US2018/012703, 13 pages. |
“Mirrors”, Physics LibreTexts, https://phys.libretexts.org/Bookshelves/Optics/Supplemental_Modules_(Components)/Mirrors, (2021), 2 pages. |
“Why Wavelengths Matter in Fiber Optics”, FirstLight, https://www.firstlight.net/why-wavelengths-matter-in-fiber-optics/, (2021), 5 pages. |
Helser, George, “Laser damage threshold—Galvo Mirror vs Polygon mirror”, https://precisionlaserscanning.com/2016/03/laser-damage-threshold-galvo-mirror-vs-polygon-mirror/, Mar. 25, 2016, 4 pages. |
Paschotta, Rüdiger, “Mirrors,” https://www.rp-photonics.com/mirrors.html, 12 pages. |
Johnson, Lee, “Parabolic Mirror: How It Works & Types (w/ Examples)”, https://sciencing.com/parabolic-mirror-how-it-works-types-w-examples-diagram-13722364.html, updated Dec. 28, 2020, 14 pages. |
Office Action issued in Japanese Patent Application No. 2019-536925 dated Nov. 9, 2021, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20230152460 A1 | May 2023 | US |
Number | Date | Country | |
---|---|---|---|
62720350 | Aug 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16545220 | Aug 2019 | US |
Child | 18095502 | US |