The invention relates to compressible fluid type spring devices for vehicle suspensions. More specifically, the invention relates to airsprings of the type with a flexible type rubber sleeve having rolling lobes.
Airsprings having a sleeve for forming a closed chamber to receive a pressurized fluid are well known. Usually, the airspring sleeve includes a corded fabric or a nylon cord to strengthen the sleeve and retain the sleeve shape.
Rolling lobe type airsprings are well known in the art and are made with a sleeve having a chamber portion connected to a closure memebermember and an inverted rolling lobe portion connection to a piston that partially reciprocates in the chamber portion of the sleeve. The general formula for calculating a spring rate of such an airspring is well known and documented such as in U.S. Pat. No. 4,629,170.
An airspring is a load support member that utilizes the compressible characteristics of air for a spring effect. One method of changing the spring rate of an airspring is to change the effective area that is acted on by the internal pressure of the spring. This is done by altering the external shape of the piston which laterally supports part of the rolling lobe portion of the sleeve. Theoretically, there is no change in effective area or spring rate if the piston is straight sided or cylindrical. However, a reduced effective area is achieved by a frustoconical shaped piston that reduces size as it enters the chamber portion; and an increase in spring rate is achieved by a frustoconically shaped piston whose size increases as it enters the chamber portion.
In use, rolling lobe airsprings typically encounter angular displacements or torque which result in ride harshness. The ride harshness is pronounced at low amplitude undulation of the vehicle. Rolling lobe airsprings having one piston and one rolling lobe can only compensate for very small angular displacements. Also, rolling lobe airsprings having two substantially cylindrical pistons and two rolling lobes, due to the increased amount of piston travel, can only compensate for very small angular displacements.
In accordance with the invention, an airspring and method are provided. The airspring has a construction that can accommodate large angular displacement of the vehicle suspension. The airspring construction can also be used to vary the spring rate associated with a piston entering and exiting an air chamber. An airspring is provided which has a sleeve having two rolling lobes and two pistons.
The first rolling lobe is connected at an end of the first rolling lobe to a first piston. The second rolling lobe is connected at an end of the second rolling lobe to a second piston. Each of the first and second pistons includes a rolling surface that in conjunction with the first and second rolling lobes defines an effective area for each of the first and second pistons. The minimum effective area of the second piston is less than the minimum effective area of the first piston and the maximum effective area of the second piston is greater than the maximum effective area of the first piston.
In a preferred embodiment of the invention, the first piston is substantially frustoconicalcylindrical and the second piston is substantially frustoconcical. In an alternate embodiment, the geometric shape that determines the effective area need not be symmetrical about any axis and may describe any contour as required by a user.
An object of the invention is to provide an airspring design that includes two pistons and two rolling lobes with one of the pistons performing a majority of the longitudinal displacement.
An advantage of the invention is that large angular displacements of the vehicle suspension can be accommodated.
An airspring, indicated generally at 10, is illustrated in
FIG. 3 illustrates an example embodiment wherein the first piston 18 of the airspring 10 is coupled to a second portion 36 of a vehicle chassis, and the second piston 28 of the airspring 10 is coupled to a first portion 34 of the vehicle chassis. In the example of FIG. 3, the first piston 18 is fixed to the second portion 36 and the second piston 28 is fixed to the first portion 34 of the vehicle chassis. However, there could be another component (not shown) located between the first piston 18 and the second portion 36 of the vehicle chassis. There could also be another component (not shown) located between the second piston 28 and the first portion 34 of the vehicle chassis. For example, another frame or suspension component could be disposed between the first piston 18 and the second portion 36 of the vehicle chassis or between the second piston 28 and the first portion 34 of the vehicle chassis. The additional component could also be used to couple the first piston 18 to the second portion 36 of the vehicle chassis, or to couple the second piston 28 to the first portion 34 of the vehicle chassis.
The airspring 10 includes a sleeve 16 typically formed from a resilient material and embedded with a fibrous member of any suitable type such as made with synthetic fibers of nylon, rayon, polyester, fiberglass and aramid or natural fibers such as cotton. The sleeve 16 includes a closed chamber portion A-B for receiving pressurized air or fluid.
The chamber portion A-B interconnects a first rolling lobe A-C and a second rolling lobe B-D. Throughout this disclosure, the letters A-B are used to designate a chamber portion, the letters A-C are used to designate a first rolling lobe and the letters B-D are used to designate a second rolling lobe in order to facilitate an easy comparison of such portions in the various examples.
First rolling lobe A-C is connected at one end 24 to a first piston 18 by the use of a mounting member 20. The first piston 18 includes a rolling surface 22 which in conjunction with the first rolling lobe A-C defines an effective area which is acted on by the pressurized air in the closed chamber A-B.
Second rolling lobe B-D is connected at one end 26 to a second piston 28 by the use of a mounting member 30. The second piston 28 includes a rolling surface 32 which in conjunction with the second rolling lobe B-D defines an effective area which is acted on by the pressurized air in the closed chamber A-B.
In the preferred embodiment,
The behavior of the airspring is a function of the ratio of the effective area of the first piston, Ae1, and the effective area of the second piston, Ae2. The effective area for each piston is found by the following equation:
Ae=90 /4[(D1+D2)/2]2(0.9)
where D1 is the diameter of the lobe at the piston and D2 is the diameter of the piston at the tangent point of contact of the lobe on the piston surface. This equation may be adapted to accommodate a rolling surface, for example rolling surface 22 or 32, having a complex shape, meaning, the equation describing rolling surface 22 or 32 can be a first, second, third or greater order equation. The effective area equation then becomes:
Ae=π/4[(D1(x)+D2(x))/2]2(0.9)
where D1(x) and D2(x) are functions which are unique to each end and piston of the airspring. In particular, D2(x) is the first, second, third or greater order surface of revolution equation describing the shape of the piston rolling surface 22 or 32. D1(x) may also describe a cylindrical, conical, ellipsoidal or other geometric shape depending on the form of the sleeve 16 at the particular end. Therefore, the size of the effective area of each piston can be variable along an axis depending on the shape of the piston rolling surface and of the sleeve. The movement of the airspring can then be predicted based upon the following relationships:
Ae1>Ae2 (1)
Ae1=Ae2 (2)
Ae1<Ae2 (3)
For equation (1), the lobe will roll on the rolling surface of piston 2 at a rate determined by the shape of the piston 2 effective area, until the effective areas of both pistons 1 & 2 are equal as described in equation (2). For equation (2), neither lobe will roll on either piston rolling surface. For equation (3), the lobe will roll on the rolling surface of piston 1 at a rate determined by the shape of the piston 1 effective area, until the effective areas of both pistons 1 & 2 are equal as described in equation (2). Therefore, the airspring will operate properly so long as at least one point in the range of the size of the variable effective area of the first piston is equal to at least one point in the range of the size of the variable effective area of the second piston. The equal point values may be adjusted to determine the travel of each piston relative to the other, or relative to another fixed point remote from the airspring, such as a vehicle chassis.
The foregoing detailed description is used for purpose of illustration only and is not intended to limit the scope of the invention which is to be determined from the appended claims.
This application claims priority from U.S. Provisional application serial No. 60/139,056 filed Jun. 11, 1999.
Number | Name | Date | Kind |
---|---|---|---|
3028174 | Gawronski | Apr 1962 | A |
3045582 | Hirtretier | Jul 1962 | A |
3438309 | Boileau | Apr 1969 | A |
3549142 | Tilton | Dec 1970 | A |
3596895 | Hirtreiter | Aug 1971 | A |
3790147 | Owen | Feb 1974 | A |
3897941 | Hirtreiter et al. | Aug 1975 | A |
4378935 | Brown et al. | Apr 1983 | A |
4493481 | Merkle | Jan 1985 | A |
4518154 | Merkle | May 1985 | A |
4629170 | Warmuth, II | Dec 1986 | A |
4635745 | Myers et al. | Jan 1987 | A |
4650166 | Warmuth | Mar 1987 | A |
4688774 | Warmuth, II | Aug 1987 | A |
4718650 | Geno | Jan 1988 | A |
4911416 | Warmuth, II | Mar 1990 | A |
5080328 | Pees | Jan 1992 | A |
5129634 | Harris | Jul 1992 | A |
5326082 | Ecktman et al. | Jul 1994 | A |
5382006 | Arnold | Jan 1995 | A |
5413316 | Easter | May 1995 | A |
5449150 | Watanabe et al. | Sep 1995 | A |
5535994 | Safreed, Jr. | Jul 1996 | A |
Number | Date | Country |
---|---|---|
6-26554 | Feb 1994 | JP |
Entry |
---|
Gieck, Jack. “Riding on air: a history of air suspension/Jack Gieck.” Copyright 1999 Society of Automotive Engineers, Inc. 99-33364 CIP. |
Number | Date | Country | |
---|---|---|---|
60139056 | Jun 1999 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09587602 | Jun 2000 | US |
Child | 14311568 | US |