The present invention relates to a self-calibration system for use with two or more microphones. In particular, the present invention is directed toward a self-calibration system for use in a cellular telephone or the like, where dual microphones may be used for a noise cancellation circuit or other ambient event detector processes. Other applications may include a microphone array circuit, and noise suppression circuit, or other applications where multiple microphones may be utilized and calibration between microphones may be required.
A personal audio device, such as a wireless telephone, may include a noise canceling circuit to reduce background noise in audio signals. One example of such a noise cancellation circuit is an adaptive noise cancellation circuit that adaptively generates an anti-noise signal from a reference microphone signal and injects the anti-noise signal into the speaker or other transducer output to cause cancellation of ambient audio sounds. An error microphone may also be provided proximate the speaker to measure the ambient sounds and transducer output near the transducer, thus providing an indication of the effectiveness of the noise canceling. A processing circuit uses the reference and/or error microphone, optionally along with a microphone provided for capturing near-end speech, to determine whether the noise cancellation circuit is incorrectly adapting or may incorrectly adapt to the instant acoustic environment and/or whether the anti-noise signal may be incorrect and/or disruptive and then take action in the processing circuit to prevent or remedy such conditions.
Examples of such adaptive noise cancellation systems are disclosed in published U.S. Patent Application 2012/0140943, published on Jun. 7, 2012, and Published U.S. Patent Application 2012/0207317, published on Aug. 16, 2012, both of which are incorporated herein by reference. Both of these references are assigned to the same assignee as the present application, and one names at least one inventor in common and thus are not “Prior Art” to the present application. However, they are provided to facilitate the understating of noise cancellation circuits as applied in the field of use. These references are provided by way of background only to illustrate one problem solved by the present invention. They should not be taken as limiting the present invention to any one type of multi-microphone application or noise cancellation circuit.
Referring now to
Wireless telephone 10 includes active noise canceling circuits and features that inject an anti-noise signal into speaker SPKR to improve intelligibility of the distant speech and other audio reproduced by speaker SPKR. A reference microphone R is provided for measuring the ambient acoustic environment and is positioned away from the typical position of a user's mouth, so that the near-end speech is minimized in the signal produced by reference microphone R. Prior art noise cancellation circuits rely on the use of two microphones (E and R). The embodiment of
In general, the noise cancellation techniques measure ambient acoustic events (as opposed to the output of speaker SPKR and/or the near-end speech) impinging on reference microphone R, and by also measuring the same ambient acoustic events impinging on error microphone E, the noise cancellation processing circuits of illustrated wireless telephone 10 adapt an anti-noise signal generated from the output of reference microphone R to have a characteristic that minimizes the amplitude of the ambient acoustic events at error microphone E. Since acoustic path P(z) (also referred to as the passive forward path) extends from reference microphone R to error microphone E, the noise cancellation circuits are essentially estimating acoustic path P(z) combined with removing effects of an electro-acoustic path S(z) (also referred to as secondary path) that represents the response of the audio output circuits of CODEC IC 20 and the acoustic/electric transfer function of speaker SPKR including the coupling between speaker SPKR and error microphone E in the particular acoustic environment, which is affected by the proximity and structure of ear 5 and other physical objects and human head structures that may be in proximity to wireless telephone 10, when wireless telephone is not firmly pressed to ear 5.
The dual microphone (R and NS) system of
Gain mismatch between the two microphones can reduce robustness and increase failures in detecting situations, such as close talk, scratch, howling and the like. If the gain from the two microphones differs, then the signal levels from the microphones will be different from one another, even when transmitting the same sound levels. In actual practice, some gain mismatch between the microphones is inevitable, due to manufacturing tolerances, microphone mounting and placement and the like. The absolute difference of amplitude frequency response could vary in a range of 0 to 10 dB or more.
Factory calibration of the microphones is one solution but provides only a partial solution to the problem. Microphone gain calibration provides only an overall gain calibration instead of a frequency response calibration. Moreover, even if calibrated at the factory, microphone response may drift over time.
Thus, it remains a requirement in the art to provide a way for calibrating a dual-microphone system when in use in the field, which provides a frequency response calibration in real-time.
A cellular telephone or other system with dual microphones self-calibrates itself on-the-fly. The system selects one of the microphones as a reference and calibrates the frequency response of the two microphones using the first microphone as a reference so that they have a matched frequency amplitude response.
To achieve this on-the-fly calibration, the system uses background noise for calibration purposes. While ambient (background) noise changes all the time, it usually falls back to the noise floor or “minima” at some time. The system tracks the slowly-changing ambient noise “minima” and uses this “minima” as a calibration signal. The signal power spectra of the noise minima at the two microphones are used to calibrate the respective microphone frequency response.
This technique is based on two assumptions. First, it assumes that the ambient noise is a diffused noise field, that is, not from a single point source or the like. Alternatively, the noise is from far field (a distance away from the microphone) so as to behave like a diffused noise field. With one or both assumptions, the noise power spectral density (PSD) from each microphone rshould be very close to one another if frequency amplitude responses of the two microphones are matched. The system may then adapt the frequency amplitude responses of the two microphones so that the PSD from each microphone matches the other, and the system is then calibrated. This calibration could occur any time the device is receiving noise and could be done continuously as the device is being used.
Noise minima is usually stationary or pseudo-stationary, or much more stationary than speech. The noise minima is proportionate to the noise power, as set forth, for example, in I. Cohen and B. Berdugo, Noise Estimation by Minima Controlled Recursive Averaging for Robust Speech Enhancement, IEEE Signal Processing Letters, Vol. 9, No. 1, January 2002, pp 12-15, incorporated herein by reference. Thus, the difference of the noise minima of the microphone signals yields the difference of the microphone gain.
Dual-microphone frequency amplitude response self-calibration is disclosed in the context of a two-microphone system, for example, using a near speech (NS) microphone for receiving a voice signal and a reference microphone (R) for measuring ambient noise for the noise cancellation circuit. However, dual-microphone frequency amplitude response self-calibration may be applied to other systems as well, including the three-microphone system disclosed in
Referring to
Noise minima may be tracked in the frequency domain as illustrated in block 110. In the routine shown in
Once the noise minima for both microphones have been tracked in block 110, in block 120, a calibrator calibrates the amplitude of each frequency bin. First, the gain difference between the two microphones R and NS is calculated per frequency bin from the minima of two microphones in step 110. The gain difference g[k] represents a ratio between the minima of the two microphones receiving the same ambient noise signal. The value g[k] is the microphone gain difference per frequency bin and may be calculated as follows:
g[k]=alpha*g[k]+(1-alpha)*xMinEnv[k]/yMinEnv[k] (1)
where xMinEnv[k] represents the minima level for a particular frequency bin k, for the signal x (e.g., Reference Microphone R) and yMinEnv[k] represents the minima level for a particular frequency bin k, for the signal y (e.g., Near Speech Microphone NS) and alpha represents a smoothing factor that smoothly updates the gain difference.
The order in which the noise minima (x versus y) are calculated is not necessarily important. Similarly, either microphone may be used as the reference microphone relative to the other, by suitably altering the numerator and denominator of equation (1) above.
As illustrated in block 150, from this gain difference, the amplitude and profile of a compensation filter 100 to one or both microphones may be adjusted so that the amplitude and frequency response of the filtered microphone outputs are normalized with regard to one another. The outputs from microphones R and NS are now suitably calibrated relative to one another as the signal levels from both microphones will be equivalent to one another for a given input. These calibrated microphone signals may then be passed to other ambient event detection processes 170 in the cell phone, such as noise cancellation or the like, for use as inputs for those processes. As the microphones are now calibrated relative to one another, the noise cancellation circuit, for example, will operate more effectively, as the relative signal strengths as well as frequency response for each of microphones R and NS will be equivalent for an equivalent audio input.
Block 120 outputs the gain difference per frequency bin g[k], where k represents an individual frequency bin. Frequency gain difference g[k] may be calculated according to equation (1) above, representing a ratio between the minima of the two microphones receiving the same ambient noise signal. As a cellular phone ages, it is possible a microphone may be aging, malfunctioning, broken, or clogged. Thus, in step 130, a determination is made whether the microphone is broken or clogged. If gain g[k] is out of a reasonable range, i.e., greater than 20 dB, then a determination is made that one of the two microphones R, NS is broken or clogged or damaged as determined in microphone condition detector block 140. In block 160, the user may be notified via a message on the device that one of the microphones is broken, clogged, or damaged, and the user may be directed to take the device for servicing. The device may also try to compensate for this error by shutting off or attenuating the noise cancellation circuit or taking other reparative action.
The calibration system, while disclosed in the context of noise cancellation, may be used for a number of applications, for example, in a cellular telephone, where multiple microphones are used to detect what are known as ambient events. These ambient events may include wind noise, scratch, howling, and close talk, as discussed above, or any scenario where signals from dual microphones need to be closely compared.
Equation (1) may be implemented in software as illustrated in Table I below. First, a value xMinEnv[k] (which will be g[k], eventually) is set to the minima of a previous value xTempEnv[k] or a power spectral density value for the frequency bin k. If the detector status is not equal to “OTHERS” (meaning there are no other ambient noise events detected) the value xTempEnv[k] is then calculated using Equation (1) above. If there are any ambient event detection results (from a plurality of such detectors in the system, not shown) other than “OTHERS”, which means there are no special events, alpha_min is used to update the Temp Envelope; otherwise, alpha_min_disturb is used to update it. This is different from the aforementioned paper by Cohen and Berdugo, in which they use a single smoothing factor because there are no other detectors involved.
The program then updates xMinEnv[k] to be the minima of itself or the PSD, and xTempEnv[k] likewise. The process is repeated for each frequency bin k within a desired range (e.g., frequency response range of the cellular telephone device, or a selected sub-range thereof).
In the dual-microphone frequency amplitude response self-calibration system and method, noise minima is calculated for each frequency bin at each microphone. From these noise minima calculations, a frequency gain difference g[k] may be calculated according to equation (1) above, representing a ratio between the minima of the two microphones receiving the same ambient noise signal. This ratio may then be used to correct the frequency response of one microphone relative to the other, so that for a given equivalent input, both microphones output the same or similar signal.
While disclosed in terms of calibrating by frequency bin, the dual-microphone frequency amplitude response self-calibration system and method may also be used to self-calibrate microphones by altering the wideband gain of one or more microphones. The frequency response of each microphone may be calculated in a similar manner as illustrated above in connection with
Various noise cancellation systems rely on the accuracy of the microphone signals in order to create an effective noise cancellation signal, which is subtracted from the speech signal. By providing this on-the-fly calibration, the dual-microphone frequency amplitude response self-calibration system and method provide improved noise cancellation, as the error signal is measured more accurately. In addition, the dual-microphone frequency amplitude response self-calibration system and method can also detect the presence of a damaged, broken, or clogged microphone, and can alert the user of this problem and/or disable or modify operation of the noise cancellation system to compensate for this problem.
While disclosed in the context of a cellular telephone with an adaptive noise cancellation system, the present invention may be applied to other types of noise cancellation systems as well as other systems using multiple microphones. For example, the dual-microphone frequency amplitude response self-calibration system and method may be applied to noise cancellation headsets for use in aviation and other applications such as dual microphone noise suppression, microphone array, beamforming and the like. The dual-microphone frequency amplitude response self-calibration system and method may also be used for stereo microphones and other multiple microphone setups, where microphones may require calibration with respect to one another.
While the preferred embodiment and various alternative embodiments of the invention have been disclosed and described in detail herein, it may be apparent to those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope thereof.
The present application claims priority from Provisional U.S. Patent Application No. 61/701,187 filed on Sep. 14, 2012, and incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4020567 | Webster | May 1977 | A |
4926464 | Schley-May | May 1990 | A |
4998241 | Brox et al. | Mar 1991 | A |
5018202 | Takahashi | May 1991 | A |
5021753 | Chapman | Jun 1991 | A |
5044373 | Northeved et al. | Sep 1991 | A |
5117401 | Feintuch | May 1992 | A |
5251263 | Andrea et al. | Oct 1993 | A |
5278913 | Delfosse et al. | Jan 1994 | A |
5321759 | Yuan | Jun 1994 | A |
5337365 | Hamabe et al. | Aug 1994 | A |
5359662 | Yuan et al. | Oct 1994 | A |
5377276 | Terai et al. | Dec 1994 | A |
5386477 | Popovich et al. | Jan 1995 | A |
5410605 | Sawada et al. | Apr 1995 | A |
5425105 | Lo et al. | Jun 1995 | A |
5445517 | Kondou et al. | Aug 1995 | A |
5465413 | Enge et al. | Nov 1995 | A |
5481615 | Eatwell | Jan 1996 | A |
5548681 | Gleaves et al. | Aug 1996 | A |
5550925 | Hori et al. | Aug 1996 | A |
5559893 | Krokstad et al. | Sep 1996 | A |
5586190 | Trantow et al. | Dec 1996 | A |
5668747 | Ohashi | Sep 1997 | A |
5687075 | Strothers | Nov 1997 | A |
5696831 | Inanaga et al. | Dec 1997 | A |
5740256 | Castello Da Costa et al. | Apr 1998 | A |
5809152 | Nakamura et al. | Sep 1998 | A |
5815582 | Claybaugh et al. | Sep 1998 | A |
5832095 | Daniels | Nov 1998 | A |
5852667 | Pan et al. | Dec 1998 | A |
5909498 | Smith | Jun 1999 | A |
5940519 | Kuo | Aug 1999 | A |
5991418 | Kuo | Nov 1999 | A |
6041126 | Terai et al. | Mar 2000 | A |
6181801 | Puthoff et al. | Jan 2001 | B1 |
6185300 | Romesburg | Feb 2001 | B1 |
6278786 | McIntosh | Aug 2001 | B1 |
6282176 | Hemkumar | Aug 2001 | B1 |
6304179 | Lolito et al. | Oct 2001 | B1 |
6317501 | Matsuo | Nov 2001 | B1 |
6418228 | Terai et al. | Jul 2002 | B1 |
6445799 | Taenzer et al. | Sep 2002 | B1 |
6522746 | Marchok et al. | Feb 2003 | B1 |
6542436 | Myllya | Apr 2003 | B1 |
6650701 | Hsiang et al. | Nov 2003 | B1 |
6683960 | Fujii et al. | Jan 2004 | B1 |
6738482 | Jaber | May 2004 | B1 |
6766292 | Chandran | Jul 2004 | B1 |
6792107 | Tucker et al. | Sep 2004 | B2 |
6940982 | Watkins | Sep 2005 | B1 |
7016504 | Shennib | Mar 2006 | B1 |
7058463 | Ruha et al. | Jun 2006 | B1 |
7110864 | Restrepo et al. | Sep 2006 | B2 |
7181030 | Rasmussen et al. | Feb 2007 | B2 |
7365669 | Melanson | Apr 2008 | B1 |
7368918 | Henson et al. | May 2008 | B2 |
7441173 | Restrepo et al. | Oct 2008 | B2 |
7466838 | Moseley | Dec 2008 | B1 |
7680456 | Muhammad et al. | Mar 2010 | B2 |
7742746 | Xiang et al. | Jun 2010 | B2 |
7742790 | Konchitsky et al. | Jun 2010 | B2 |
7817808 | Konchitsky et al. | Oct 2010 | B2 |
7885417 | Christoph | Feb 2011 | B2 |
7953231 | Ishida | May 2011 | B2 |
8085966 | Amsel | Dec 2011 | B2 |
8107637 | Asada et al. | Jan 2012 | B2 |
8165312 | Clemow | Apr 2012 | B2 |
8165313 | Carreras | Apr 2012 | B2 |
D666169 | Tucker et al. | Aug 2012 | S |
8251903 | LeBouef et al. | Aug 2012 | B2 |
8325934 | Kuo | Dec 2012 | B2 |
8331604 | Saito et al. | Dec 2012 | B2 |
8374358 | Buck et al. | Feb 2013 | B2 |
8401200 | Tiscareno et al. | Mar 2013 | B2 |
8442251 | Jensen et al. | May 2013 | B2 |
8526627 | Asao et al. | Sep 2013 | B2 |
8559661 | Tanghe | Oct 2013 | B2 |
8600085 | Chen et al. | Dec 2013 | B2 |
8775172 | Konchitsky et al. | Jul 2014 | B2 |
8804974 | Melanson | Aug 2014 | B1 |
8831239 | Bakalos | Sep 2014 | B2 |
8842848 | Donaldson et al. | Sep 2014 | B2 |
8848936 | Kwatra et al. | Sep 2014 | B2 |
8855330 | Taenzer | Oct 2014 | B2 |
8907829 | Naderi | Dec 2014 | B1 |
8908877 | Abdollahzadeh Milani et al. | Dec 2014 | B2 |
8942976 | Li et al. | Jan 2015 | B2 |
8948407 | Alderson et al. | Feb 2015 | B2 |
8948410 | Van Leest | Feb 2015 | B2 |
8958571 | Kwatra et al. | Feb 2015 | B2 |
8977545 | Zeng et al. | Mar 2015 | B2 |
9066176 | Hendrix et al. | Jun 2015 | B2 |
9071724 | Do et al. | Jun 2015 | B2 |
9076431 | Kamath et al. | Jul 2015 | B2 |
9082391 | Yermeche et al. | Jul 2015 | B2 |
9094744 | Le et al. | Jul 2015 | B1 |
9106989 | Li et al. | Aug 2015 | B2 |
9107010 | Abdollahzadeh Milani et al. | Aug 2015 | B2 |
9129586 | Bajic et al. | Sep 2015 | B2 |
9230532 | Lu et al. | Jan 2016 | B1 |
9264808 | Zhou et al. | Feb 2016 | B2 |
9294836 | Zhou et al. | Mar 2016 | B2 |
20030063759 | Brennan et al. | Apr 2003 | A1 |
20030072439 | Gupta | Apr 2003 | A1 |
20030185403 | Sibbald | Oct 2003 | A1 |
20040047464 | Yu et al. | Mar 2004 | A1 |
20040120535 | Woods | Jun 2004 | A1 |
20040165736 | Hetherington et al. | Aug 2004 | A1 |
20040167777 | Hetherington et al. | Aug 2004 | A1 |
20040196992 | Ryan | Oct 2004 | A1 |
20040202333 | Csermak et al. | Oct 2004 | A1 |
20040240677 | Onishi et al. | Dec 2004 | A1 |
20040242160 | Ichikawa et al. | Dec 2004 | A1 |
20040264706 | Ray et al. | Dec 2004 | A1 |
20050004796 | Trump et al. | Jan 2005 | A1 |
20050018862 | Fisher | Jan 2005 | A1 |
20050117754 | Sakawaki | Jun 2005 | A1 |
20050207585 | Christoph | Sep 2005 | A1 |
20050240401 | Ebenezer | Oct 2005 | A1 |
20060018460 | McCree | Jan 2006 | A1 |
20060035593 | Leeds | Feb 2006 | A1 |
20060055910 | Lee | Mar 2006 | A1 |
20060069556 | Nadjar et al. | Mar 2006 | A1 |
20060109941 | Keele, Jr. | May 2006 | A1 |
20060159282 | Borsch | Jul 2006 | A1 |
20060161428 | Fouret | Jul 2006 | A1 |
20060251266 | Saunders et al. | Nov 2006 | A1 |
20070030989 | Kates | Feb 2007 | A1 |
20070033029 | Sakawaki | Feb 2007 | A1 |
20070038441 | Inoue et al. | Feb 2007 | A1 |
20070047742 | Taenzer et al. | Mar 2007 | A1 |
20070076896 | Hosaka et al. | Apr 2007 | A1 |
20070208520 | Zhang et al. | Sep 2007 | A1 |
20080101589 | Horowitz et al. | May 2008 | A1 |
20080107281 | Togami et al. | May 2008 | A1 |
20080144853 | Sommerfeldt et al. | Jun 2008 | A1 |
20080177532 | Greiss et al. | Jul 2008 | A1 |
20080226098 | Haulick et al. | Sep 2008 | A1 |
20080240413 | Mohammad et al. | Oct 2008 | A1 |
20080240455 | Inoue et al. | Oct 2008 | A1 |
20080240457 | Inoue et al. | Oct 2008 | A1 |
20080269926 | Xiang et al. | Oct 2008 | A1 |
20090041260 | Jorgensen et al. | Feb 2009 | A1 |
20090046867 | Clemow | Feb 2009 | A1 |
20090060222 | Jeong et al. | Mar 2009 | A1 |
20090080670 | Solbeck et al. | Mar 2009 | A1 |
20090086990 | Christoph | Apr 2009 | A1 |
20090136057 | Taenzer | May 2009 | A1 |
20090175461 | Nakamura et al. | Jul 2009 | A1 |
20090175466 | Elko et al. | Jul 2009 | A1 |
20090238369 | Ramakrishnan et al. | Sep 2009 | A1 |
20090245529 | Asada et al. | Oct 2009 | A1 |
20090254340 | Sun et al. | Oct 2009 | A1 |
20090311979 | Husted et al. | Dec 2009 | A1 |
20100002891 | Shiraishi et al. | Jan 2010 | A1 |
20100014683 | Maeda et al. | Jan 2010 | A1 |
20100014685 | Wurm | Jan 2010 | A1 |
20100061564 | Clemow et al. | Mar 2010 | A1 |
20100082339 | Konchitsky et al. | Apr 2010 | A1 |
20100098263 | Pan et al. | Apr 2010 | A1 |
20100098265 | Pan et al. | Apr 2010 | A1 |
20100124335 | Wessling et al. | May 2010 | A1 |
20100124337 | Wertz et al. | May 2010 | A1 |
20100131269 | Park et al. | May 2010 | A1 |
20100142715 | Goldstein et al. | Jun 2010 | A1 |
20100150367 | Mizuno | Jun 2010 | A1 |
20100158330 | Guissin et al. | Jun 2010 | A1 |
20100166203 | Peissig et al. | Jul 2010 | A1 |
20100166206 | Macours | Jul 2010 | A1 |
20100195844 | Christoph et al. | Aug 2010 | A1 |
20100226210 | Kordis et al. | Sep 2010 | A1 |
20100239126 | Grafenberg et al. | Sep 2010 | A1 |
20100246855 | Chen | Sep 2010 | A1 |
20100260345 | Shridhar et al. | Oct 2010 | A1 |
20100266137 | Sibbald et al. | Oct 2010 | A1 |
20100272276 | Carreras et al. | Oct 2010 | A1 |
20100272284 | Joho et al. | Oct 2010 | A1 |
20100274564 | Bakalos et al. | Oct 2010 | A1 |
20100284546 | De Brunner et al. | Nov 2010 | A1 |
20100291891 | Ridgers et al. | Nov 2010 | A1 |
20100296668 | Lee et al. | Nov 2010 | A1 |
20100310086 | Magrath et al. | Dec 2010 | A1 |
20100322430 | Isberg | Dec 2010 | A1 |
20110007907 | Park et al. | Jan 2011 | A1 |
20110026724 | Doclo | Feb 2011 | A1 |
20110091047 | Konchitsky et al. | Apr 2011 | A1 |
20110096933 | Eastly | Apr 2011 | A1 |
20110099010 | Zhang | Apr 2011 | A1 |
20110106533 | Yu | May 2011 | A1 |
20110116654 | Chan et al. | May 2011 | A1 |
20110129098 | Delano et al. | Jun 2011 | A1 |
20110130176 | Magrath et al. | Jun 2011 | A1 |
20110158419 | Theverapperuma et al. | Jun 2011 | A1 |
20110206214 | Christoph et al. | Aug 2011 | A1 |
20110222701 | Donaldson et al. | Sep 2011 | A1 |
20110299695 | Nicholson | Dec 2011 | A1 |
20110305347 | Wurm | Dec 2011 | A1 |
20110317848 | Ivanov et al. | Dec 2011 | A1 |
20120057720 | Van Leest | Mar 2012 | A1 |
20120135787 | Kusunoki et al. | May 2012 | A1 |
20120140917 | Nicholson et al. | Jun 2012 | A1 |
20120140942 | Loeda | Jun 2012 | A1 |
20120140943 | Hendrix et al. | Jun 2012 | A1 |
20120148062 | Scarlett et al. | Jun 2012 | A1 |
20120155666 | Nair | Jun 2012 | A1 |
20120170766 | Alves et al. | Jul 2012 | A1 |
20120179458 | Oh | Jul 2012 | A1 |
20120185524 | Clark | Jul 2012 | A1 |
20120207317 | Abdollahzadeh Milani | Aug 2012 | A1 |
20120215519 | Park et al. | Aug 2012 | A1 |
20120250873 | Bakalos et al. | Oct 2012 | A1 |
20120259626 | Li et al. | Oct 2012 | A1 |
20120263317 | Shin et al. | Oct 2012 | A1 |
20120281850 | Hyatt | Nov 2012 | A1 |
20120300955 | Iseki et al. | Nov 2012 | A1 |
20120300958 | Klemmensen | Nov 2012 | A1 |
20120300960 | Mackay et al. | Nov 2012 | A1 |
20120308021 | Kwatra et al. | Dec 2012 | A1 |
20120308024 | Alderson et al. | Dec 2012 | A1 |
20120308025 | Hendrix et al. | Dec 2012 | A1 |
20120308026 | Kamath et al. | Dec 2012 | A1 |
20120308027 | Kwatra | Dec 2012 | A1 |
20120308028 | Kwatra et al. | Dec 2012 | A1 |
20120316872 | Stoltz et al. | Dec 2012 | A1 |
20130010982 | Elko et al. | Jan 2013 | A1 |
20130083939 | Fellers et al. | Apr 2013 | A1 |
20130156238 | Birch et al. | Jun 2013 | A1 |
20130195282 | Ohita et al. | Aug 2013 | A1 |
20130243198 | Van Rumpt | Sep 2013 | A1 |
20130243225 | Yokota | Sep 2013 | A1 |
20130259251 | Bakalos | Oct 2013 | A1 |
20130315403 | Samuelsson | Nov 2013 | A1 |
20130343571 | Rayala et al. | Dec 2013 | A1 |
20140016803 | Puskarich | Jan 2014 | A1 |
20140036127 | Pong et al. | Feb 2014 | A1 |
20140044275 | Goldstein et al. | Feb 2014 | A1 |
20140050332 | Nielsen et al. | Feb 2014 | A1 |
20140072134 | Po et al. | Mar 2014 | A1 |
20140086425 | Jensen et al. | Mar 2014 | A1 |
20140126735 | Gauger, Jr. | May 2014 | A1 |
20140146976 | Rundle | May 2014 | A1 |
20140169579 | Azmi | Jun 2014 | A1 |
20140177851 | Kitazawa et al. | Jun 2014 | A1 |
20140177890 | Hojland et al. | Jun 2014 | A1 |
20140211953 | Alderson et al. | Jul 2014 | A1 |
20140270222 | Hendrix et al. | Sep 2014 | A1 |
20140270224 | Zhou et al. | Sep 2014 | A1 |
20140294182 | Axelsson et al. | Oct 2014 | A1 |
20140307887 | Alderson | Oct 2014 | A1 |
20140307888 | Alderson et al. | Oct 2014 | A1 |
20140307890 | Zhou et al. | Oct 2014 | A1 |
20140314244 | Yong | Oct 2014 | A1 |
20140314246 | Hellman | Oct 2014 | A1 |
20140314247 | Zhang | Oct 2014 | A1 |
20140341388 | Goldstein | Nov 2014 | A1 |
20140369517 | Zhou et al. | Dec 2014 | A1 |
20150092953 | Abdollahzadeh Milani et al. | Apr 2015 | A1 |
20150104032 | Kwatra et al. | Apr 2015 | A1 |
20150161980 | Alderson et al. | Jun 2015 | A1 |
20150161981 | Kwatra | Jun 2015 | A1 |
20150163592 | Alderson | Jun 2015 | A1 |
20150189434 | Hendrix et al. | Jul 2015 | A1 |
20150256660 | Kaller et al. | Sep 2015 | A1 |
20150256953 | Kwatra et al. | Sep 2015 | A1 |
20150269926 | Alderson et al. | Sep 2015 | A1 |
20150296296 | Lu et al. | Oct 2015 | A1 |
20150365761 | Alderson et al. | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
102011013343 | Sep 2012 | DE |
0412902 | Feb 1991 | EP |
0756407 | Jan 1997 | EP |
0898266 | Feb 1999 | EP |
1691577 | Nov 2005 | EP |
1880699 | Jan 2008 | EP |
1947642 | Jul 2008 | EP |
2133866 | Dec 2009 | EP |
2237573 | Oct 2010 | EP |
2216774 | Aug 2011 | EP |
2395500 | Dec 2011 | EP |
2395501 | Dec 2011 | EP |
2551845 | Jan 2013 | EP |
2346657 | Oct 2007 | GB |
2455824 | Jun 2009 | GB |
2455828 | Jun 2009 | GB |
2484722 | Apr 2012 | GB |
1512832.5 | Jan 2016 | GB |
1519000.2 | Apr 2016 | GB |
06006246 | Jan 1994 | JP |
H06232755 | Aug 1994 | JP |
07098592 | Apr 1995 | JP |
07104769 | Apr 1995 | JP |
07240989 | Sep 1995 | JP |
07325588 | Dec 1995 | JP |
H11305783 | Nov 1999 | JP |
2000089770 | Mar 2000 | JP |
2002010355 | Jan 2002 | JP |
2004007107 | Jan 2004 | JP |
2006217542 | Aug 2006 | JP |
2007060644 | Mar 2007 | JP |
2008015046 | Jan 2008 | JP |
2010277025 | Dec 2010 | JP |
2011061449 | Mar 2011 | JP |
9113429 | Sep 1991 | WO |
9911045 | Mar 1999 | WO |
03015074 | Feb 2003 | WO |
WO03015275 | Feb 2003 | WO |
WO2004009007 | Jan 2004 | WO |
WO2004017303 | Feb 2004 | WO |
2006125061 | Nov 2006 | WO |
2006128768 | Dec 2006 | WO |
2007007916 | Jan 2007 | WO |
2007011337 | Jan 2007 | WO |
2007110807 | Oct 2007 | WO |
2007113487 | Nov 2007 | WO |
2009041012 | Apr 2009 | WO |
2009110087 | Sep 2009 | WO |
2010117714 | Oct 2010 | WO |
2010131154 | Nov 2010 | WO |
WO 2012107561 | Aug 2012 | WO |
2012134874 | Oct 2012 | WO |
2013106370 | Jul 2013 | WO |
2014172005 | Oct 2014 | WO |
2014172021 | Oct 2014 | WO |
2015038255 | Mar 2015 | WO |
2015088639 | Jun 2015 | WO |
2015088651 | Jun 2015 | WO |
2015088653 | Jun 2015 | WO |
2015134225 | Sep 2015 | WO |
2015191691 | Dec 2015 | WO |
PCTUS2015066260 | Apr 2016 | WO |
Entry |
---|
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2014/017343, mailed Aug. 8, 2014, 22 pages. |
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2014/018027, mailed Sep. 4, 2014, 14 pages. |
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2014/017374, mailed Sep. 8, 2014, 13 pages. |
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2014/019395, mailed Sep. 9, 2014, 14 pages. |
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2014/019469, mailed Sep. 12, 2014, 13 pages. |
Feng, Jinwei et al., “A broadband self-tuning active noise equaliser”, Signal Processing, Elsevier Science Publishers B.V. Amsterdam, NL, vol. 62, No. 2, Oct. 1, 1997, pp. 251-256. |
Zhang, Ming et al., “A Robust Online Secondary Path Modeling Method with Auxiliary Noise Power Scheduling Strategy and Norm Constraint Manipulation”, IEEE Transactions on Speech and Audio Processing, IEEE Service Center, New York, NY, vol. 11, No. 1, Jan. 1, 2003. |
Lopez-Gaudana, Edgar et al., “A hybrid active noise cancelling with secondary path modeling”, 51st Midwest Symposium on Circuits and Systems, 2008, MWSCAS 2008, Aug. 10, 2008, pp. 277-280. |
Widrow, B. et al., Adaptive Noise Cancelling; Principles and Applications, Proceedings of the IEEE, IEEE, New York, NY, U.S. vol. 63, No. 13, Dec. 1975, pp. 1692-1716. |
Morgan, Dennis R. et al., A Delayless Subband Adaptive Filter Architecture, IEEE Transactions on Signal Processing, IEEE Service Center, New York, New York. US, vol. 43, No. 8, Aug. 1995, pp. 1819-1829. |
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2014/040999, mailed Oct. 18, 2014, 12 pages. |
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2034/049407, mailed Jun. 18, 2914, 13 pages. |
James G. Ryan, Rafik A. Goubran, “Optimum near-field performance of microphone arrays subject to a far-field beampattern constraint”, 2248 J. Acoust. Soc. Am. 108, Nov. 2000. |
I. Cohen, B. Berdugo, “Noise Estimation by Minima Controlled Recursive Averaging for Robust Speech Enhancement”, IEEE Signal Processing Letters, vol. 9, No. 1, Jan. 2002. |
R. Martin, “Noise Power Spectral Density Estimation Based on Optimal Smoothing and Minimum Statistics”, IEEE Trans. on Speech and Audio Processing, col. 9, No. 5, Jul. 2001. |
R. Martin, “Spectral Subtraction Based on Minimum Statistics”, Proc. 7th EUSIPCO '94, Edinburgh, U.K., Sep. 13-16, 1994, pp. 1182-1195. |
I. Cohen, “Noise Spectrum Estimation in Adverse Environments: Improved Minima Controlled Recursive Averaging”, IEEE Trans. on Speech & Audio Proc., vol. 11, Issue 5, Sep. 2003. |
A.A. Miliani, G. Kannan, and I.M.S. Panahi, “On maximum achievable noise reduction in ANC systems”, in Proc. ICASSP, 2010, pp. 349-352, Mar. 2010. |
Campbell, Mikey, “Apple looking into self-adjusting earbud headphones with noise cancellation tech”, Apple Insider, Jul. 4, 2013, pp. 1-10 (10 pages in pdf), downloaded on May 14, 2014 from http://appleinsider.com/articles/13/07/04/apple-looking-into-self-adjusting-earbud-headphones-with-noise-cancellation-tech. |
Erkelens et al., “Tracking of Nonstationary Noise Based on Data-Driven Recursive Noise Power Estimation”, IEEE Transactions on Audio Speech, and Language Processing, vol. 16, No. 6, Aug. 2008. |
Rao et al., “A Novel Two Stage Single Channle Speech Enhancement Technique”, India Conference (INDICON) 2011 Annual IEEE, IEEE, Dec. 15, 2011. |
Rangachari et al., “A noise-estimation algorithm for highly non-stationary environments” Speech Communication, Elsevier Science Publishers, vol. 48, No. 2, Feb. 1, 2006. |
Jin, et al. “A simultaneous equation method-based online secondary path modeling algorithm for active noise control”, Journal of Sound and Vibration, Apr. 25, 2007, pp. 455-474, vol. 303, No. 3-5, London, GB. |
Toochinda, et al. “A Single-Input Two-Output Feedback Formulation for ANC Problems,” Proceedings of the 2001 American Control Conference, Jun. 2001, pp. 923-928, vol. 2, Arlington, VA. |
Kuo, et al., “Active Noise Control: A Tutorial Review,” Proceedings of the IEEE, Jun. 1999, pp. 943-973, vol. 87, No. 6, IEEE Press, Piscataway, NJ. |
Johns, et al., “Continuous-Time LMS Adaptive Recursive Filters,” IEEE Transactions on Circuits and Systems, Jul. 1991, pp. 769-778, vol. 38, No. 7, IEEE Press, Piscataway, NJ. |
Shoval, et al., “Comparison of DC Offset Effects in Four LMS Adaptive Algorithms,” IEEE Transactions on Circuits and Systems II: Analog and Digital Processing, Mar. 1995, pp. 176-185, vol. 42, Issue 3, IEEE Press, Piscataway, NJ. |
Mali, Dilip, “Comparison of DC Offset Effects on LMS Algorithm and its Derivatives,” International Journal of Recent Trends in Engineering, May 2009, pp. 323-328, vol. 1, No. 1, Academy Publisher. |
Kates, James M., “Principles of Digital Dynamic Range Compression,” Trends in Amplification, Spring 2005, pp. 45-76, vol. 9, No. 2, Sage Publications. |
Gao, et al., “Adaptive Linearization of a Loudspeaker,” IEEE International Conference on Acoustics, Speech, and Signal Processing, Apr. 14-17, 1991, pp. 3589-3592, Toronto, Ontario, CA. |
Silva, et al., “Convex Combination of Adaptive Filters With Different Tracking Capabilities,” IEEE International Conference on Acoustics, Speech, and Signal Processing, Apr. 15-20, 2007, pp. III 925-928, vol. 3, Honolulu, HI, USA. |
Akhtar, et al., “A Method for Online Secondary Path Modeling in Active Noise Control Systems,” IEEE International Symposium on Circuits and Systems, May 23-26, 2005, pp. 264-267, vol. 1, Kobe, Japan. |
Davari, et al., “A New Online Secondary Path Modeling Method for Feedforward Active Noise Control Systems,” IEEE International Conference on Industrial Technology, Apr. 21-24, 2008, pp. 1-6, Chengdu, China. |
Lan, et al., “An Active Noise Control System Using Online Secondary Path Modeling With Reduced Auxiliary Noise,” IEEE Signal Processing Letters, Jan. 2002, pp. 16-18, vol. 9, Issue 1, IEEE Press, Piscataway, NJ. |
Liu, et al., “Analysis of Online Secondary Path Modeling With Auxiliary Noise Scaled by Residual Noise Signal,” IEEE Transactions on Audio, Speech and Language Processing, Nov. 2010, pp. 1978-1993, vol. 18, Issue 8, IEEE Press, Piscataway, NJ. |
Pfann, et al., “LMS Adaptive Filtering with Delta-Sigma Modulated Input Signals”, IEEE Signal Processing Letters, vol. 5, No. 4, Apr. 1998. |
Milani, et al., “On Maximum Achievable Noise Reduction in ANC Systems”, Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2010, Mar. 14-19, 2010 pp. 349-352. |
Ryan, et al., “Optimum near-field performance of microphone arrays subject to a far-field beampattern constraint”, 2248 J. Acoust. Soc. Am. 108, Nov. 2000. |
Cohen, et al., “Noise Estimation by Minima Controlled Recursive Averaging for Robust Speech Enhancement”, IEEE Signal Processing Letters, vol. 9, No. 1, Jan. 2002. |
Martin, “Noise Power Spectral Density Estimation Based on Optimal Smoothing and Minimum Statistics”, IEEE Trans. on Speech and Audio Processing, col. 9, No. 5, Jul. 2001. |
Martin, “Spectral Subtraction Based on Minimum Statistics”, Proc. 7th EUSIPCO '94, Edinburgh, U.K., Sep. 13-16, 1994, pp. 1182-1195. |
Cohen, “Noise Spectrum Estimation in Adverse Environments: Improved Minima Controlled Recursive Averaging”, IEEE Trans. on Speech & Audio Proc., vol. 11, Issue 5, Sep. 2003. |
Parkins, et al., “Narrowband and broadband active control in an enclosure using the acoustic energy density”, J. Acoust. Soc. Am. Jul. 2000, pp. 192-203, vol. 108, issue 1, US. |
Rafaely, Boaz, “Active Noise Reducing Headset—an Overview”, The 2001 International Congress and Exhibition on Noise Control Engineering, Aug. 27-30, 2001, 10 pages (pp. 1-10 in pdf), The Netherlands. |
Ray, et al., “Hybrid Feedforward-Feedback Active Noise Reduction for Hearing Protection and Communication”, The Journal of the Acoustical Society of America, American Institute of Physics for the Acoustical Society of America, Jan. 2006, pp. 2026-2036, , vol. 120, No. 4, New York, NY. |
Number | Date | Country | |
---|---|---|---|
61701187 | Sep 2012 | US |