This invention concerns fluid agent discharge systems using devices configured to sequentially emit an atomized liquid-gas stream and another fluid agent, such as a gas, a liquid spray or a foam, for various applications such as suppressing a fire. The invention also encompasses methods for operating such systems, as well as emitters which can discharge two different fluid agents in sequence, and methods for operating such emitters.
Systems for atomizing and emitting liquids entrained in a liquid-gas stream find extensive use in various applications, notably fire suppression. Examples of such systems and their components are disclosed in U.S. Pat. No. 7,726,408 to Reilly et al. (hereby incorporated by reference), U.S. Pat. No. 7,686,093 to Reilly et al. (hereby incorporated by reference) and U.S. Pat. No. 7,721,811 to Reilly et al. (hereby incorporated by reference).
Such systems require a supply of pressurized gas for atomization and discharge, and the volume of available gas is often limited by practical considerations such as cost, tankage, and compressor volume flow rate. It is conceivable that the available gas may be exhausted during system use, thereby leaving the structure unprotected against re-ignition of the fire, or vulnerable to a second fire, until the system can be recharged with gas.
In one particular example, water based fire control and suppression sprinkler systems may be used to suppress fires which form in the presence of water soluble combustible liquids, such as ethylene oxide. Of particular concern is the suppression of fires which occur in storage facilities, such as within a bunker or tank holding the liquid. Such a system may generally include a plurality of individual sprinkler heads which are mounted within the tank or bunker in the gas space above the liquid level. The sprinkler heads are normally maintained in a closed condition and include a thermally responsive sensing member to determine when a fire condition has occurred within the bunker. Upon actuation of the thermally responsive member or members, the sprinkler heads open, permitting pressurized water at each of the sprinkler heads to freely flow therethrough for extinguishing the fire.
When actuated, traditional sprinkler heads release a spray of fire suppressing liquid, such as water, onto the area of the fire. The water spray, while somewhat effective, has several disadvantages. For example, the water spray exhibits limited modes of fire suppression. The spray, being composed of relatively large droplets providing a small total surface area, does not efficiently absorb heat and therefore cannot operate efficiently to prevent spread of the fire by lowering the temperature of the ambient air around the fire within the bunker. Large droplets also do not block radiative heat transfer effectively, thereby allowing the fire to spread by this mode. The spray furthermore does not efficiently displace oxygen from the ambient air at the liquid surface, nor is there usually sufficient downward momentum of the droplets to overcome the fire plume and attack the base of the fire. For these reasons atomizing systems, as described above, are advantageous in such applications, as they remedy the deficiencies of the simple water spray systems. However, should the atomizing system prematurely exhaust its gas supply, or exhaust its gas supply and have no means for safeguarding against re-ignition of the fire, it would be advantageous to be able to employ a back-up system, which does not suffer from the disadvantage of a limited gas supply for atomization and discharge.
For water soluble flammable liquids, it is further advantageous, once the fire is out, to supply diluting water to the bunker which will change the concentration of the liquid and render it non-flammable. This will prevent the fire from re-igniting. Sprinklers alone typically used in fire suppression systems simply do not have a rate of flow which makes this feature practical when a bunker or tank having a significant volume is considered.
There is clearly a need for a fire suppression system which operates in multiple fire suppression modes and which would be able to effectively fight a fire in atomization mode and also deliver a sufficient quantity of fire suppressing liquid, or other suppressant, such as foam or gas, as a back-up to prevent re-ignition of a fire and provide protection after the atomizing gas supply is exhausted.
One example embodiment of the invention concerns an emitter system comprising at least one emitter. The emitter comprises a nozzle having a nozzle inlet and a nozzle outlet. A duct, separate from the nozzle, has a duct inlet, and a duct outlet. The duct outlet is separate from and positioned adjacent to the nozzle outlet. A deflector having a deflector surface is positioned facing the nozzle outlet.
The example emitter system further comprises a source of pressurized gas connectable in fluid communication with the nozzle inlet, and a source of pressurized liquid connectable alternately with one of the duct inlet and the nozzle inlet. When the source of pressurized gas is connected with the nozzle inlet in combination with connecting the source of pressurized liquid with the duct inlet, the emitter discharges an atomized liquid-gas stream from the emitter; whereas connecting the source of pressurized liquid to the nozzle inlet results in discharge of a liquid stream from the nozzle.
In a particular practical example the emitter system comprises a first conduit providing fluid communication between the source of pressurized gas and the nozzle inlet and a first valve positioned within the first conduit for connecting the source of pressurized gas with the nozzle inlet. A second conduit provides fluid communication between the source of pressurized liquid and the duct inlet. A second valve is positioned within the second conduit for connecting the source of pressurized liquid with the duct inlet.
In one embodiment a third conduit provides fluid communication between the second valve and the first conduit. The second valve is adjustable in one of three configurations so as to:
a) prevent fluid communication between the source of pressurized liquid and both the nozzle inlet and the duct inlet;
b) connect the source of pressurized liquid in fluid communication only with the duct inlet; or
c) connect the source of pressurized liquid in fluid communication with the nozzle inlet.
In an alternate embodiment, a third conduit provides fluid communication between the source of pressurized liquid and the nozzle inlet, and a third valve is positioned within the third conduit for connecting the source of pressurized liquid with the nozzle inlet.
The invention also encompasses a fire suppression system, comprising at least one emitter. In an example fire suppression system the emitter comprises a nozzle having a nozzle inlet and a nozzle outlet. A duct, separate from the nozzle has a duct inlet and a duct outlet. The duct outlet is separate from and positioned adjacent to the nozzle outlet. A deflector having a deflector surface is positioned facing the nozzle outlet.
The fire suppression system further comprises a source of pressurized gas connectable in fluid communication with the nozzle inlet, and a source of pressurized liquid extinguishing agent connectable alternately with one of the duct inlet and the nozzle inlet. When the source of pressurized gas is connected with the nozzle inlet in combination with connecting the source of pressurized liquid extinguishing agent with the duct inlet an atomized liquid-gas stream is discharged from the emitter; whereas connecting the source of pressurized liquid extinguishing agent to the nozzle inlet results in discharge of a liquid extinguishing agent stream from the nozzle.
In a practical example, the fire suppression system according to the invention also comprises a first conduit providing fluid communication between the source of pressurized gas and the nozzle inlet. A first valve is positioned within the first conduit for connecting the source of pressurized gas with the nozzle inlet. A second conduit provides fluid communication between the source of pressurized liquid extinguishing agent and the duct inlet. A second valve is positioned within the second conduit for connecting the source of pressurized liquid extinguishing agent with the duct inlet.
In one embodiment, the fire suppression system may comprise a third conduit providing fluid communication between the second valve and the first conduit. The second valve is adjustable in one of three configurations so as to:
a) prevent fluid communication between the source of pressurized liquid extinguishing agent and both the nozzle inlet and the duct inlet;
b) connect the source of pressurized liquid extinguishing agent in fluid communication only with the duct inlet; or
c) connect the source of pressurized liquid extinguishing agent in fluid communication with the nozzle inlet.
The example fire suppression system may further comprise a fire detection device positioned proximate to the emitter, and a control system in communication with the first and second valves and the fire detection device. The control system receives signals from the fire detection device and:
a) opens the first valve and adjusts the second valve to connect the source of pressurized liquid extinguishing agent in fluid communication only with the inlet duct to discharge the atomized liquid-gas stream from the at least one emitter; or
b) adjusts the second valve to connect the source of pressurized liquid extinguishing agent in fluid communication with the nozzle inlet to discharge the liquid extinguishing agent stream from the nozzle.
The invention also encompasses a method of operating an emitter adapted to operate in two different modes. The emitter comprises a nozzle having a nozzle inlet and a nozzle outlet and a duct, separate from the nozzle. The duct has a duct inlet, and a duct outlet separate from and positioned adjacent to the nozzle outlet. A deflector having a deflector surface is positioned facing the nozzle outlet.
The method comprises:
selecting a mode of operation from the group consisting of:
a) discharging a liquid stream from the emitter and
b) discharging an atomized liquid-gas stream from the emitter.
In one embodiment, discharging the liquid stream from the emitter comprises:
connecting the nozzle inlet in fluid communication with a pressurized source of the liquid; and
discharging the liquid from the nozzle outlet.
The method further comprises breaking the liquid stream into a spray by impinging the liquid stream on a plurality of projections extending outwardly from the deflector surface.
In the example method, discharging an atomized liquid-gas stream from the emitter comprises:
connecting the nozzle inlet in fluid communication with a pressurized source of gas;
connecting the duct inlet in fluid communication with a pressurized source of a liquid;
discharging the gas from the nozzle outlet;
discharging the liquid from the duct outlet;
entraining the liquid in the gas to form a liquid-gas stream; and
projecting the liquid-gas stream from the emitter.
The invention further includes a method of operating a fire suppression system having an emitter adapted to operate in two different modes. In one example embodiment the emitter comprises a nozzle having a nozzle inlet and a nozzle outlet and a duct, separate from the nozzle. The duct has a duct inlet, and a duct outlet separate from and positioned adjacent to the nozzle outlet. A deflector having a deflector surface is positioned facing the nozzle outlet.
The method comprises selecting a mode of operation from the group consisting of:
a) discharging a fire suppressing liquid stream from the emitter and
b) discharging a fire suppressing atomized liquid-gas stream from the emitter.
Discharging the fire suppressing liquid stream from the emitter comprises:
selecting a fire suppressing liquid;
connecting the nozzle inlet in fluid communication with a pressurized source of the selected fire suppressing liquid; and
discharging the selected fire suppressing liquid from the nozzle outlet.
The method may further comprise breaking the fire suppressing liquid stream into a spray by impinging the fire suppressing liquid stream on a plurality of projections extending outwardly from the deflector surface.
Discharging a fire suppressing atomized liquid-gas stream from the emitter comprises:
connecting the nozzle inlet in fluid communication with a pressurized source of gas;
selecting a fire suppressing liquid;
connecting the duct inlet in fluid communication with a pressurized source of the fire suppressing liquid;
discharging the gas from the nozzle outlet;
discharging the fire suppressing liquid from the duct outlet;
entraining the fire suppressing liquid in the gas to form the fire suppressing atomized liquid-gas stream; and
projecting the fire suppressing atomized liquid-gas stream from the emitter.
The invention also encompasses an emitter. An example emitter comprises nozzle having a nozzle inlet and a nozzle outlet. A duct, separate from the nozzle, has a duct inlet, and a duct outlet separate from and positioned adjacent to the nozzle outlet. A deflector having a deflector surface is positioned facing the nozzle outlet. The deflector surface is positioned in spaced relation to the nozzle outlet and has a first surface portion comprising a flat surface oriented substantially perpendicularly to a gas flow from the nozzle outlet and a second surface portion oriented non-perpendicularly to the gas flow from the nozzle outlet. A plurality of projections extend outwardly from the deflector.
In one embodiment the projections are located in a plane and extend substantially radially outwardly from the deflector. The plane may be oriented substantially perpendicularly to the gas flow from the nozzle. The projections may be positioned downstream of the second surface portion.
As shown in
A deflector 40 has a deflector surface 42 which is positioned facing the nozzle outlet 28 and in spaced relation to it. In the example embodiment shown, the deflector surface 42 has a first, flat surface portion 44 oriented substantially perpendicularly to a gas flow from the nozzle outlet 28. It is found advantageous if the minimum diameter of the flat surface portion is approximately equal to the diameter of the nozzle outlet 28. A second surface portion 46 surrounds the flat surface portion 44 and is oriented non-perpendicularly to the gas flow from the nozzle outlet. In the example shown in
As shown in
With reference again to
Second valve 66 may be a three way valve and a third conduit 68 provides fluid communication between the second valve 66 and the first conduit 56. Connection to the first conduit 56 is preferably made between the first valve 60 and the emitters 12. In this embodiment the second valve 66 is adjustable in one of three configurations. In a first configuration, second valve 66 is closed to prevent fluid communication between the source of pressurized liquid 64 and both the nozzle inlet 26 and the duct inlet 34. In a second configuration, second valve 66 is adjusted to connect the source of pressurized liquid 64 in fluid communication only with the duct inlet 34. In a third configuration, second valve 66 is adjusted to connect the source of pressurized liquid 64 with the nozzle inlet 26.
In another emitter system embodiment 10a, illustrated in
As shown in
As shown in
The system components, namely, the valves 60, 6670 and 76 may be coordinated and controlled by a control system 80, which may comprise, for example, a microprocessor having a control panel display and resident software. The control system 80 communicates with the system components over communication lines 82 to receive information, such as signals from the fire detection devices 78 indicative of a fire, signals from transducers, such as position encoders 84 associated with the various valves and indicative of the valve status as open or closed, as well as pressure transducers 86 indicative of the availability of pressurized gas, and liquid level transducers 88 indicative of the availability of pressurized liquid. Communication lines 82 may be hardwired or may use wireless technology to communicate the signals between the transducers and the control system. The control system 80 also issues control commands to remotely open and close the various valves 60, 66, 70 and 76 during system operation. Note also that the various valves could also be manually operated as needed for system operation.
Emitter systems 10 and 10a are capable of operating in at least two distinct modes of operation. In one mode, the emitters 12 discharge an atomized liquid-gas stream. In another mode, a liquid stream is discharged from the nozzle. This liquid stream may be atomized to form a spray by impingement on projections 52 extending from the deflector 40 as noted above. As an example of emitter system operation, the operation of fire suppression system 10 is described below.
As shown in
When a fire in hazard zone 14 is detected by one or more of the detection devices 78, a signal or signals indicative of the fire are sent from the devices to the control system 80. The control system then selects a mode of operation for the emitter system. In this example, the control system first selects discharging an atomized liquid-gas stream from the emitters. To that end, as illustrated in
Once the fire is extinguished, the control system 80 receives signals to that effect from the fire detection devices 78. In response, the control system closes the first and second valves 60 and 66 to halt the discharge of the atomized liquid-gas stream from the emitters 12. The fire detection devices 78 continue to monitor the state of the fire hazard zone 14 however. If the original fire reignites, or if a second fire starts, the control system 80 is signaled by the devices 78 and again selects the mode of operation for the system 10. In this example, let us assume that the pressurized gas source 58 had been exhausted in fighting the first fire occurrence. The control system 80 knows this from the signals sent by the pressure transducer 86, which monitors the gas pressure within the source 58. This gas source has a finite capacity, and the system provides a way of fighting a reignited fire, or a separate fire which may occur later but before the gas source 58 can be recharged. In this situation, with no pressurized gas available during a fire, the control system selects discharging a liquid stream from the emitters. To that end the control system 80 adjusts the second valve 66 to connect the source of pressurized liquid 64 with the nozzle inlet 26. This permits liquid from the liquid source 64 to flow thorough the third conduit 68 and into the first conduit 56 where it is conducted to the nozzle 24. As shown in
Alternately, the control system 80 may select another source of pressurized liquid 72 to discharge from nozzles 24 of the emitters 12. This provides options for fire suppressing agents other than water, for example, foams, or water modified by additives which increase its heat absorbing characteristics. Control system 80 selects these agents by opening one or more of valves 76 (see
In the alternate system embodiment 10a shown in
Fire suppression systems as well as other emitter systems according to the invention using emitters as described herein and capable of discharging different types of agents in multiple modes of discharge provide great versatility and provide significant advantages over prior art systems which are limited to single modes of discharge and fewer discharge agents.
This application is based upon and claims priority to U.S. Provisional Application No. 61/370,998 filed Aug. 5, 2010, which provisional application is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61370998 | Aug 2010 | US |