The present invention is directed to filters for wireless communications systems, and in particular, wireless basestation filters.
A wireless telecommunication system typically includes a plurality of base stations connected to a communication network. Each base station includes radio transceivers associated with a transmission tower. A typical base station includes one or more filters for processing RF signals. One such filter is known as a microwave cavity filter which includes resonators formed in cavities in order to provide a desired frequency response when signals are input to the filter.
One type of cavity filter design employs dual-mode resonators utilized in the cavity filters, providing desired filter functions while reducing the filter size compared to conventional cavity filters utilizing single mode resonators. However, many existing dual-mode resonators are difficult to manufacture due to the shape of the resonator structure. Other existing resonators that use hybrid modes, are too large and bulky for certain applications.
Accordingly, an objective of the present invention is to provide a structure for smaller basestation cavity filters which avoids the above-noted problems.
In one embodiment, the present invention provides a filter comprising; an enclosure having a cavity; a TM dual-mode resonator in the cavity, the TM dual-mode resonator having first and second modes and comprising a TM dielectric resonator body having a central portion with a plurality of arms extending outwardly from the central portion; and an input conductive member in the cavity. The input conductive member is disposed proximate the TM dual-mode resonator for coupling between the input conductive member and the TM dual-mode resonator.
Preferably, the dielectric resonator body comprises a cross shape, and the filter further comprises at least one tuning member that is adjacent one or more of the plurality of arms. The filter preferably further comprises a tuning member that is positioned adjacent or more of the plurality of arms, for tuning a magnetic field in the cavity. Preferably, all tuning is in the same direction.
In one example of the filter, at least two of the arms are offset relative to the central portion of the dielectric resonator body. In another example of the filter, the dielectric resonator body comprises an “X” shape, the cavity is essentially rectangular with essentially parallel top and bottom surfaces, and one arm of the dielectric resonator body is transverse relative to said cavity surfaces. Two or more arms of the dielectric resonator body can be transverse relative to said cavity surfaces, wherein a transmission zero is close to the bandbass of the filter.
In another example, the cavity can be essentially rectangular with essentially back and front surfaces, wherein the input conductive member is transverse relative to said cavity surfaces.
The filter can further comprise a first tuning member positioned proximate the dielectric resonator body in the cavity to preset the coupling, and a second tuning member positioned proximate the dielectric resonator body in the cavity for fine-tuning. The first tuning member comprises a step in a corner of the cavity, and the second tuning member comprises a tuning screw. The tuning members comprise metals covered with dielectric film.
In another example, the cavity is essentially rectangular with essentially parallel top and bottom surfaces, and essentially parallel front and back surfaces, and at least one arm of the dielectric resonator body is transverse relative to said cavity top and bottom surfaces, and the input conductive member is transverse relative to said top and bottom cavity surfaces.
In another aspect, the present invention provides another filter comprising; an enclosure having two cavities separated by a wall; two TM dual-mode resonators, each TM dual-mode resonator positioned in a corresponding cavity, each TM dual-mode resonator having first and second modes and comprising a TM dielectric resonator body having a central portion with a plurality of arms extending outwardly from the central portion; and two input conductive members, each input conductive members positioned in a corresponding cavity. Each input-conductive member is disposed proximate a corresponding TM dual-mode resonator for coupling between the input conductive member and the TM dual-mode resonator.
Preferably, the filter further comprises a tuning member for each cavity, positioned adjacent one or more of the plurality of arms of the dielectric resonator body in the cavity. A mode tuning member can be positioned adjacent two of the plurality of arms. The filter can include a tuning member for each cavity, positioned adjacent or more of the plurality of arms of the dielectric resonator body in the cavity, for tuning a magnetic field in the cavity. At least two of the arms of the dielectric resonator body in each cavity may be offset relative to the central portion of the dielectric resonator body. At least one dielectric resonator body preferably comprises an “X” shape.
In another example of the filter, for each cavity, a first tuning member is positioned proximate the dielectric resonator body in the cavity to preset the coupling, and a second tuning member positioned proximate the dielectric resonator body in the cavity for fine-tuning. For each cavity, the first tuning member comprises a step in a corner of the cavity, and the second tuning member comprises a tuning screw.
Further, each cavity is essentially rectangular with essentially parallel top and bottom surfaces, and essentially parallel front and back surfaces; at least one arm of the dielectric resonator body in each cavity is transverse relative to said cavity top and bottom surfaces; and the corresponding input conductive member is transverse relative to said top and bottom cavity surfaces.
In another aspect, the present invention provides another filter comprising; an enclosure having two cavities separated by a wall; two TM dual-mode resonators, each TM dual-mode resonator positioned in a corresponding cavity, each TM dual-mode resonator having first and second modes and comprising a TM dielectric resonator body having a central portion with a plurality of arms extending outwardly from the central portion; two input conductive members, each input conductive members positioned in a corresponding cavity, wherein each input conductive member is disposed proximate a corresponding TM dual-mode resonator for coupling between the input conductive member and the TM dual-mode resonator; and a cross-coupling member disposed in the two cavities via a opening in the wall for coupling between resonator modes.
The cross-coupling member is positioned adjacent the TM dielectric resonator bodies. In one example, the cross-coupling member providing coupling between resonator modes 1 and 4. Preferably, the cross-coupling member comprises a closed loop which is not connected to cavity surfaces, and can comprise an “8” shape. The cross-coupling member is printed on a double-sided substrate.
In another aspect, the present invention provides another filter comprising; an enclosure having a cavity; a TM dual-mode resonator in the cavity, the TM dual-mode resonator having first and second modes and comprising a TM dielectric resonator body having a central portion with a plurality of arms extending outwardly from the central portion, the dielectric resonator body comprising an “X” shape defining a tilt angle γ between two arms of the dielectric resonator body, wherein the tilt angle γ ranges from about 66 degrees to about 83 degrees, such that the smaller the tilt angle γ, the higher the coupling factor K12; and an input conductive member in the cavity, wherein the input conductive member is disposed proximate the TM dual-mode resonator for coupling between the input conductive member and the TM dual-mode resonator.
In one version, the dielectric resonator body is oriented in the cavity by an orientation angle relative to a centred point in the cavity whereby said arms of the dielectric resonator body are rotated around the centred point such that the arms are kept as far away as possible from the cavity surfaces to increase Q-value. A first arm of the dielectric resonator body is oriented in the cavity by an orientation angle φ relative to the input conductive member; and a second arm of the dielectric resonator body, adjacent to the first arm, is oriented in the cavity by an orientation angle θ relative to the input conductive member, such that the orientation angles θ and φ sets the total angle γ between the first and second arms.
The coupling Qe2 between the second arm and the input conductive member depends on the angle θ, wherein the coupling Qe2 is dependent on the angle θ. The coupling Qe1 between the first arm and the input conductive member depends on the angle φ, wherein the coupling Qe1 is dependent on the angle φ. The orientation angle θ can range from about 59 degrees to about 67 degrees. The orientation angle φ ranges from about 0 degrees to about 14 degrees.
In another version, the dielectric resonator body is oriented in the cavity by an orientation angle relative to the input conductive member, whereby said arms of the dielectric resonator body are rotated in the cavity such that the arms are kept as far away as possible from the cavity surfaces to increase Q-value.
The input conductive member can have a tilt angle relative to the cavity surfaces, such that orientation angles of the input conductive member relative to the arms of the dielectric resonator body are functions of the tilt angle of the input conductive member. Changing the tilt angle affects said orientation angles, resulting in changes in coupling between the arms and the input conductive member.
These, and other embodiments, features and advantages of the present invention will be apparent from the following specification taken in conjunction with the drawings.
The present invention provides a structure for smaller basestation filters. Specific embodiments and various features and aspects of the invention are described below.
The example filter 10 operates in the frequency range 1920-1980 MHz with four resonators (two cavities). Further, Table 1 below provides additional specifics:
In Table 1, f represents frequency, and K12, K23 represent resonance modes coupling coefficients for different frequencies. In addition, the coupling Qe from input pin to a resonator mode is about 23 at f=84.4 MHz.
In this example, the filter structure has a height and width of about 26 mm, represented by simulated performance data discussed further below. Smaller dimensions may also be provided, for example the size 22 mm may be preferred. All tuning is preferably from the same direction.
One approach is to use a screw or a step in the corner. However, this embodiment uses a step 26 to preset the coupling and a screw 28 for fine-tuning.
Referring back to
Coupling is accomplished with a closed loop coupling 110, which need not be connected to the cavity walls. The loop 110 is twisted in the form of a laying figure “8” for proper phase of the coupling. The loop 110 can for example be printed on a double-sided substrate card (e.g., Teflon substrate). Loops with different widths provide different position of the transmission zeroes.
Coupling with a quadruple can make double transmission zeroes very close to the passband.
To tune electric fields there have to be holes in the ceramic resonators 136, 139 in two orthogonal directions. This embodiment instead tunes the magnetic fields 121 (FIGS. 12A-B) close to the cavity walls 127. In each cavity, resonance modes 1 and 4 are easily tuned with a screw (e.g., 137A or 137B; 135A or 135B) from the top. Modes 2 and 3 are tuned with a metal bar 120 that is moved from the bottom and up. The bar can be moved with a screw from the top, placed in the corner. To prevent the moving bars from generating PIM the moving parts can be covered with a thin dielectric film.
Referring to the example in Table 3 below, the frequencies and the coupling between the modes are dependent on the dimensions of the ceramic resonators (150A, 150B in
As is known by those skilled in the art, in Table 3 the terms f1, f2, etc., represent resonance frequencies of first, second, etc., resonance modes, and the terms K0, K1, K12, K23, etc., represent resonance modes coupling coefficients.
In Table 3 “Gap” is the distance between the ceramic resonators and the metal pins of the input, and “Wall” is the width of the separating wall 15 between the cavities. The dimensions M1A, M1B, M2A, M2B, are shown in FIGS. 15A-B. The frequencies have the strongest dependence, wherein a change of 0.1 mm in dimensions can result in 10 MHz offset.
The filter may be first tuned with these dimensions to obtain a design centering. Then, when the filter is produced simpler tuning with the tuning screws can be performed.
The finished filter has only one small secondary effect in the tuning screws. Tuning of f1 will make a shift in K12 a few MHz. Table 4 below shows the difference in MHz when the screw for f1 changes 12 mm, and the bar for f2 changed 8 mm. K12 is changed with a 3 mm screw on the right and on the left side of the resonators.
Qe1 is the coupling from input pin 164 to resonator mode 1, and Qe2 is the coupling between input pin 164 and resonator mode 2. The Qe2 coupling depends on the angle θ. A smaller angle θ results in harder coupling from the input to mode 2, which results in a transmission zero at the higher side of the spectrum.
The total angle γ=θ+φ is chosen for the proper K12, and the tilt angle φ of the “cross” or “X” is chosen to obtain the proper Qe2. Even Qe1 is affected by the angle φ. However, this small change in Qe1 can be corrected with the distance between input pin and the resonator cross (or X). The value of Qe1 at φ=θ is a result of the metal screws in the cavity.
Simulations were performed in hfss. In one simulation, the filter structure included tuning screws and a coupling screw of 4 mm diameter with the length of 1 mm. The coupling screw is placed in the upper left corner of the cavity. All mechanical parts in the cavity will influence the fields and have to be included when performing design centring. The coupling can be set over a range wide enough to be used for base station filters.
The present invention has been described in considerable detail with reference to certain preferred versions thereof; however, other versions are possible. Therefore, the spirit and scope of the appended claims should not be limited to the description of the preferred versions contained herein.
The present application claims priority under 35 USC 119(e) of provisional patent application Ser. No. 60/651,182, filed on Feb. 9, 2005, incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60651182 | Feb 2005 | US |