Dual mode plasma arc torch for use with plasma arc treatment system and method of use thereof

Information

  • Patent Grant
  • 6313429
  • Patent Number
    6,313,429
  • Date Filed
    Thursday, August 27, 1998
    26 years ago
  • Date Issued
    Tuesday, November 6, 2001
    23 years ago
Abstract
A plasma arc torch that is capable of operating in a non-transferred arc mode and a transferred arc mode, and that is intended for use for use with a plasma arc treatment system. The plasma arc torch includes an electrode, a plasma gas ring and a nozzle. At least one power supply within the plasma arc treatment system is connected to the electrode, the nozzle and a workpiece. While the torch operates in a non-transferred arc mode, the non-transferred arc heats gas supplied by the plasma gas ring to create plasma gas that heats the workpiece to raise its conductivity. Once the workpiece is at an appropriately conductive level, the arc is automatically transferred since the ground point can now be found.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a method and apparatus for starting a plasma arc treatment system, and more particularly, to a plasma torch system that operates in a non-transferred arc (NTA) mode and a transferred arc (TA) mode without changing any mechanical element of the plasma device.




2. Description of the Prior Art




Plasma reactors have been the subject of numerous research and development projects, and often of patents, over the last several decades. By definition, such reactors make use of a plasma gas, forming a heat-generating arc column between two or more electrodes to heat the material to be processed to high temperature, and thus allow desired reactions to occur that would not be otherwise obtainable or economical. The plasma gas forming the arc column consists of a mixture of energetic and/or disassociated molecules, positively charged ions and free electrons obtained from the gas that is subjected to partial ionization by means of an electric arc (usually D.C.) formed between an anode and a cathode. Plasma arc treatment systems are used in applications such as metal melting, powder production, and hazardous waste treatment.




In practice, the plasma gas may often be used as a reactant. Thus, by way of example, oxygen or air may be used for carrying out oxidation. Carbon monoxide or hydrogen may be used for carrying out reduction. Chlorine may be used for carrying out chlorination and nitrogen for nitration.




In the plasma arc treatment chambers, a plasma device transfers electrical energy through a stream of gas so hot that the gas becomes an electrical conductor. The commonly owned U.S. Pat. No. 4,912,296, for example, discloses an advantageous construction for a plasma torch processing system. U.S. Pat. No. 4,770,109 and U.S. Pat. No. 5,136,137, both by the inventor of the aforementioned invention and also commonly owned, disclose and claim reactors for the treatment and melting of all types of materials, particularly hazardous waste, for which the present invention is particularly useful. Both patents are hereby incorporated by reference for all purposes.




Generally speaking, there are two types of plasma devices: non-transferred and transferred. In non-transferred arc devices, both electrodes are contained entirely within the device, for example, between two coaxial rings such that an electrical arc forms in the annular space between the coaxial rings. A gas is passed through the annular area and emitted from an end of the torch.




In transferred arc devices, one electrode is contained in the device and the other electrode is exterior and spaced apart from the device. The other electrode also is usually at the surface of the material to be treated and/or heated. In many circumstances, transferred arc devices are more efficient than non-transferred arc devices.




In the treatment of hazardous waste, equipment suitable for treating waste as described in the aforementioned patents includes a generally cylindrical tub open at the top, rotating about a vertical axis within a sealed chamber, a system for charging material into the tub, a movable plasma arc device mounted above the tub (referred to subsequently as the centrifuge) and electrical connections from an arc power supply to the plasma device and to the conductive base of the centrifuge.




A very important element of the waste treatment process is to melt the inorganic (usually oxide) components of the feed into a slag while evaporating water, organics and most salts. Such a slag is electrically conductive at high temperatures and non-conductive at low. Since the conductive bottom of the centrifuge may be covered by non-conductive slag if the process operation is interrupted, a way to transform the non-conductive layer to the conducting state is needed. The present invention is particularly effective for this purpose.




When the plasma arc treatment system is shut down, an amount of the slag, i.e., a slag skull, is left in the drum to form the slag for a subsequent use. During the down time, the slag cools and may solidify. As the slag temperature drops, the electrical conductivity of the slag also decreases. A problem that occurs when starting the plasma arc treatment system is that the electrical conductivity of the slag may have dropped to a level that will not sustain an arc between the torch and the grounding network. In order to start the treatment system and sustain an arc, the slag must be heated to increase the conductivity.




A conventional method of heating the slag is with an oxyacetylene torch or a non-transferred plasma arc device. In such a device, the plasma arc column permanently extends between the two “built-in” electrodes of the device, even if this column may be blown out of the same by the injected plasma gas, and thereby form an elongated loop.




Plasma arc treatment systems have been developed that include a plasma device that can operate in either a non-transferred arc mode or a transferred arc mode. In such systems, parts must be changed in order to switch between the two modes. This is time consuming and additionally can allow the slag to cool, thus lowering its conductivity. These systems also require an operator to switch between the modes in some type of physical and mechanical fashion. Therefore, these systems are subject to operator error and set-up error. Additionally, they often operate in a preset manner, i.e., the time for switching is predetermined, and thus if this predisposed time is wrong, then valuable time can be wasted in switching between modes at an inappropriate time, i.e., too early, and thus the slag is not yet in a conductive state, or, alternatively, too late and the more efficient and more desirable transferred arc mode is not entered soon enough.




An even bigger problem are systems that do not operate in both modes. In one such system, the non-conductive materials, such as glass, are usually chipped away in order to find a ground path for the transferred arc. This chipping procedure is time consuming and damages refractory systems that line the internal walls of the plasma arc treatment system. Graphite or other electrically conductive metallic rods have also been used with success but have a short operational life in oxidizing environments.




SUMMARY OF THE INVENTION




A plasma arc treatment system in accordance with the present invention and a method of use thereof addresses the shortcomings of the prior art.




In accordance with one aspect of the present invention, a method of operating a plasma arc treatment system that treats a workpiece comprises providing a plasma arc device that includes an electrode, a plasma gas ring and a nozzle, and providing at least one power supply with a first terminal connected to the electrode, a second terminal connected to the nozzle and a third terminal connected to the workpiece. Gas is supplied to the plasma gas ring and power is provided to the electrode and the nozzle such that a potential difference is created between the electrode and the nozzle thus creating an arc within the gas to create plasma gas. The workpiece is heated with the plasma gas to thereby raise the temperature of the workpiece to a conducting temperature and the arc is automatically transferred from between the electrode and the nozzle to between the electrode and the workpiece once the temperature of the workpiece reaches the conducting temperature (such that the ground point is found by the arc).




In accordance with another aspect of the present invention, two power supplies are provided, a first of which has a positive terminal connected to the electrode and a negative terminal connected to electrical ground, and a second of which has a positive terminal connected to the electrode and a negative terminal connected to the nozzle.




In accordance with a further aspect of the present invention, a method of operating a plasma arc treatment system that treats a melt bath comprises providing a plasma arc device that includes an electrode, a plasma gas ring and a nozzle, and providing at least one power supply having one terminal connected to the electrode, one terminal connected to the nozzle and one terminal connected to the material to be heated. Gas is supplied to the plasma gas ring and power is supplied to the electrode and the nozzle such that a potential difference is created between the electrode and the nozzle thus creating an arc within the gas to form a plasma gas. The workpiece is heated with the plasma gas to a temperature wherein the conductivity of the workpiece is such that adequate current (generally about 100 amperes) may be carried by the workpiece. The arc is then transferred from between the electrode and the nozzle to between the electrode and the workpiece.




In accordance with another aspect of the present invention, a plasma arc treatment system comprises a housing, an interior space defined within the housing, an electrical ground below the interior space, a workpiece within the interior space, a plasma arc device that includes an electrode, a plasma gas ring and a nozzle, and at least one power supply including a first terminal, a second terminal, and a third terminal. The first terminal is connected to the electrode, the second terminal is connected to the nozzle, and the third terminal is connected to the workpiece.




In accordance with a further aspect of the present invention, the plasma arc treatment comprises first and second power supplies each including a first terminal and a second terminal. The first power supply first terminal is connected to the electrode, the first power supply second terminal is connected to electrical ground, the second power supply first terminal is connected to the electrode, and the second power supply second terminal is connected to the nozzle.




Accordingly, the present invention provides a plasma arc treatment system that includes a torch system that can electrically transition between non-transferred arc mode and transferred arc mode. Each mode of electrical current transfer operates simultaneously but also independently of each other. The hot plasma generated by the non-transferred arc is used to reduce the voltage needed to carry current between the workpiece and the torch. The arc transfers when an electrical ground point is found, without requiring mechanical switching. Thus, operator influence is not required nor is a changing of parts necessary for transferring between non transferred arc mode and transferred arc mode. If electrical ground is not found, then the heat from the non-transferred arc is utilized to bring the workpiece or melt bath to an electrically conductive state.




The plasma arc device is in a constant arc-on situation where the non-transferred and transferred modes proportion according to process conditions.




Other features and advantages of the present invention will be understood upon reading and understanding the detailed description of the preferred exemplary embodiments, found here and below, in conjunction with reference to the drawings, in which like numerals represent like elements.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a cross-section of plasma treatment system containing a melt bath;





FIG. 2

is a schematic of a dual-mode torch with a two power supply configuration;





FIG. 3

is a schematic of a dual-mode torch schematic with a single power supply configuration; and





FIG. 4

is a schematic of a power supply for use with the dual-mode torch of FIG.


3


.











DETAILED DESCRIPTION OF THE PREFERRED EXEMPLARY EMBODIMENTS




A plasma arc treatment system


10


includes a housing


11


and an interior space


12


containing slag or a workpiece


14


. The housing contains an opening


26


for introducing material to be treated and an opening


27


for gas to be removed. An opening for removing condensed phase material is used but not shown. As previously discussed, workpiece


14


may be any of various forms of hazardous and non-hazardous waste, organic matter, inorganic matter, metal, etc. The plasma arc treatment system also includes a plasma arc torch


16


that includes an electrode therein (not shown), a plasma gas ring (not shown), and a nozzle


18


. The system further may include two power supplies (shown in

FIG. 2

) but, as will be described further herein, may have only one power supply.




A material receiving drum


20


is mounted within interior space


12


. Material receiving drum


20


is preferably rotatable with respect to housing


11


but may also be fixed with respect to the housing. The bottom of the material receiving drum is preferably covered by an appropriate, e.g., conductive refractory


22


. The conductive refractory is preferably made at least partially of graphite, carbon and/or silicon carbide. The conductive refractory may also include a steel matrix for increasing the conductivity of the refractory. When treating metal, the conductive refractory layer may be omitted.




Preferably, at least the bottom of the drum is maintained at ground. This may be accomplished with an electrical grounding network


23


that may include a conducting member


24


. Known arrangements may be used to maintain the drum base


25


at ground potential.




With respect to

FIG. 2

, the first terminal


30


,


32


of both power supplies


34


,


36


are attached to electrode


38


. First power supply


34


has a second terminal


40


connected to electrical ground and workpiece


14


while second terminal


42


of the second power supply


36


is connected to nozzle


18


.




Accordingly, during operation, power supplies


34


,


36


create a positive electrical potential at electrode


38


. Terminal


42


of power supply


36


creates an electrical potential at nozzle


18


which is negative with respect to that of electrode


38


. Thus, an arc


44


develops between the electrode and the nozzle due to the difference in potential. Gas is supplied by plasma gas ring


46


in such a manner as to create a swirling or vortex motion within device


16


. Arc


44


converts the gas into plasma gas. This plasma gas creates heat and is used to heat workpiece


14


in a manner as described previously with respect to a non-transferred mode of operation for a plasma arc torch.




When workpiece


14


is sufficiently heated and reaches a conductive state, arc


44


is automatically transferred, as indicated by broken line


44




a,


to workpiece


14


because of the electrical ground potential of drum


20


and workpiece


14


as the current searches for a return path.




Nozzle


18


is preferably relatively short such that arc


44


projects outwardly therefrom in a substantially J-shape. In a preferred embodiment, the length of nozzle


18


is substantially twice the diameter of the nozzle opening. As can be seen in

FIG. 1

, arc


44


ends outwardly from nozzle


18


and terminates on front face


45


of the nozzle. With longer nozzles, arc


44


terminates within nozzle


18


or elsewhere with torch


16


.




Due to the heat created by arc


44


at front face


45


of the nozzle, nozzle


18


needs to be cooled, preferably water cooled. If not properly cooled, the nozzle, which is preferably made of copper to promote conductivity, will melt.




In order to facilitate the automatic transfer of the arc, the potential at nozzle


18


“floats” during the non-transferred mode of operation. Nozzle


18


is, for example, initially at a potential of negative 100 volts, while electrode


38


is maintained at a potential of 500 volts. When the current at the nozzle is less than one amp, the potential at nozzle


18


generally has reached, for example, 150 volts, while electrode


38


is maintained at, for example, 500 volts. Meanwhile, workpiece


14


has been heated to such a conductive state that it carries between 50 amps and 100 amps or more. At this time, due to the difference in potential between electrode


38


and ground versus the difference in potential between electrode


38


and nozzle


18


, the arc as indicated by


44




a,


will have transferred.




During operation, the hot plasma gas generated by the non-transferred arc is used to reduce the electrical resistance between the workpiece and the device. The power for the transferred portion of the arc is initiated at the same time as that for the non-transferred arc. Having this full electrical potential present with a reduced resistance, the arc transfers when an electrical ground point is found. Accordingly, the switch between non-transferred mode and transferred mode takes place without operator influence. If an appropriate ground point is not found by the arc, then the heat from the non-transferred arc is utilized to bring the workpiece to an electrically conductive state. This electrical system transfers very quickly because it applies full power supply open circuit voltage across the transfer gap.




Thus, the plasma arc treatment system operates simultaneously in the non-transferred arc mode and the transferred arc mode, automatically transferring the arc at the most suitable time. There is no predisposition for the transfer, no changing of parts needed, and no physical switching necessary. Thus, time required for the process is reduced and chance for operator error is also reduced.





FIG. 3

illustrates an alternative embodiment wherein only one power supply


50


′ is used. An example of a power supply


50


′ for use with the embodiment of

FIG. 3

is schematically illustrated in FIG.


4


. Power supply


50


′ includes a three phase transformer


60


and two controlled rectifiers


61




a, b,


each having a first terminal


52





a, b,


and a second terminal


54





a, b.


Two control op-amps


62




a, b


are provided to control the rectifiers. Outputs


63




a, b


of the op-amps are input to their respective rectifiers


61




a, b


while inputs


64




a, b


are shunted with their respective rectifier's second terminal


54





a, b.


Inputs


65




a, b


are the control setpoints for the op-amps and thereby the rectifiers.




Terminal


52





a, b


is connected to electrode


38


. Terminal


54





a


is connected to workpiece


14


while terminal


54





b


is connected to nozzle


18


. Within power supply


50


′, transformer


60


is used to deliver AC to the two independent rectifiers, which then deliver DC to the electrode, the nozzle and the workpiece.




As with the embodiment that uses two power supplies, the potential at nozzle


18


floats. Nozzle


18


is once again preferably short and of a length sufficient to allow the arc to extend out of the bore defined within the nozzle, terminating on front face


45


of the nozzle. Preferably, the length of the nozzle is approximately twice the diameter of the bore. Once again, nozzle


18


needs to be cooled, preferably water cooled.




Control op-amps


62


control the rectifiers such that the voltages at nozzle


18


and workpiece


14


are effectively monitored to allow for automatic transfer of the arc from nozzle


18


to workpiece


14


. The control setpoints of the op-amps drive the rectifiers such that the potential at nozzle


18


will increase as the current along line


66




b


decreases and the current along line


66




a


increases. This occurs as the workpiece heats during the non-transferred mode and thus its conductivity increases until such time as the arc automatically transfers from nozzle


18


to workpiece


14


. Generally, this occurs once workpiece


14


carries approximately one amp.




Once again, an example of a range of voltages includes electrode


38


having a potential of positive 500 volts initially, nozzle


18


having a potential of negative 100 volts initially, and workpiece


14


having a potential of zero volts or being at ground. During operation and leading up to the transfer of the arc, the potential at nozzle


18


floats and eventually finishes, for example, at positive 150 volts while electrode


38


is maintained at, for example, positive 500 volts and workpiece


14


remains at ground.




An advantage of the single power supply embodiment having a single primary transformer and two rectifier circuits is that the primary transformer KVA rating, which determines the amount of iron and copper needed, does not need to be higher than that needed for the bridge that delivers transferred arc current between the electrode and the workpiece.




Preferably, terminals


52





a, b


(electrode) polarities are positive and terminal


54





a


is connected to ground (workpiece). However, the polarity may be changed to make the electrode negative with appropriate changes in electrode material. The polarities may likewise also be changed in the two power supply embodiment.




Although the invention has been described with reference to specific exemplary embodiments, it will be appreciated that it is intended to cover all modifications and equivalents within the scope of the appended claims.



Claims
  • 1. A method of operating a plasma arc system that treats a workpiece, the method comprising:providing a plasma arc device that includes an electrode, a plasma gas ring and a nozzle; providing at least one power supply having a first terminal connected to the electrode, a second terminal connected to the nozzle and a third terminal connected to ground and to the workpiece; supplying gas to the plasma gas ring; applying a first electrical potential to the electrode and applying a second electrical potential different from the first potential to the nozzle such that a potential difference is created therebetween; initiating a first arc between the electrode and the nozzle to form a plasma gas; heating the workpiece with the plasma gas to thereby raise the temperature of the workpiece to a conducting temperature; and automatically initiating a second arc between the electrode and the workpiece whenever the temperature of the workpiece reaches the conducting temperature such that a ground point is found by the second arc without extinguishing the first arc.
  • 2. The method of claim 1 comprising providing two power supplies, a first of which has a first terminal connected to the electrode and a second terminal connected to electrical ground, and a second of which has a first terminal connected to the electrode and a second terminal connected to the nozzle.
US Referenced Citations (37)
Number Name Date Kind
2874265 Reed et al. Feb 1959
3248874 Grina May 1966
3935825 Matthews et al. Feb 1976
4014296 Astrom Mar 1977
4220843 Borer et al. Sep 1980
4312637 Loftus Jan 1982
4321877 Schmidt et al. Mar 1982
4324971 Frappier Apr 1982
4549065 Camacho et al. Oct 1985
4559439 Camacho et al. Dec 1985
4580032 Carkhuff Apr 1986
4587397 Camacho et al. May 1986
4653677 Peters et al. Mar 1987
4678888 Camacho et al. Jul 1987
4745256 Shubert May 1988
4770109 Schlienger Sep 1988
4791268 Sanders et al. Dec 1988
4830280 Yankoff May 1989
4864096 Wolf et al. Sep 1989
4912296 Schlienger Mar 1990
5017754 Drouet et al. May 1991
5227603 Doolette et al. Jul 1993
5301620 Nagel et al. Apr 1994
5331906 Sonoda et al. Jul 1994
5362939 Hanus et al. Nov 1994
5376767 Heanley et al. Dec 1994
5408494 Schlienger Apr 1995
5416297 Luo et al. May 1995
5440094 Zapletal et al. Aug 1995
5451738 Alvi et al. Sep 1995
5451740 Hanus et al. Sep 1995
5484978 Hedberg et al. Jan 1996
5548097 Couch, Jr. et al. Aug 1996
5548611 Cusick et al. Aug 1996
5573564 Richards Nov 1996
5601734 Luo et al. Feb 1997
5831237 Daniel Nov 1998