A reflex or “red dot” sight superimposes a reticle, such as a simple red dot, on a typically unmagnified target. The advantage of a reflex sight is that it is theoretically parallax free, can be held at any distance from the eye, and can be used with both eyes open. Accordingly, the shooter may acquire a target without first carefully placing his eye on an eye-piece, closing the non-aiming eye and finding the target in a limited sight field-of-view. This permits a short range shooter to acquire a target far more rapidly than he could if looking through a telescopic sight.
At longer ranges (e.g. greater than 100 yards) it becomes necessary to use a telescopic sight. Heretofore the problem of installing both a reflex and a telescopic sight on the same gun has not been entirely solved, with suggested solutions sacrificing at least some optical qualities or user convenience.
From a more technical perspective, a reflex sight collimates the light from a luminous reticle and superimposes this light onto a view-window. This places the reticle at an infinite range and virtually eliminates the effects of parallax, when viewing a target that is effectively at an infinite range. Frequently the collimation is performed by a curved mirror that is placed to the side of the path of the light passing through the view-window. Unfortunately, the need to redirect the collimated light reflecting from the curved mirror so that it is superimposed on the view-window complicates the design and tends to reduce performance.
In a first separate aspect, the present invention may take the form of a combined reflex/telescopic sight that includes a telescopic optical element train and a view window, offset from the optical element train. A transition assembly is positioned to receive light from the optical element train and the view window. The transition assembly has an image display, a collimating lens-set positioned to transmit light to the image display and a luminous reticle. This assembly may be placed in a first mode in which light from the optical train travels through the collimating lens set to the image display and light from the view window is blocked. In a second transition assembly mode light from the optical train is blocked and light from the luminous reticle travels through the collimating lens set and is combined with light from the view window and a resulting combined image appears at the image display. Finally an actuation assembly is adapted to permit a user to switch the transition assembly between the first and second modes.
In a second separate aspect, the present invention may take the form of a telescopic sight that includes a housing defining a centerline, an image output, an optical train, within the housing, causing a reticle to appear to a user looking through the image output. A reticle position adjust mechanism has a reticle position actuator that when manipulated by a user causes the reticle to change position relative to the housing centerline. Finally, a reticle position adjust mechanism lock, having a lock actuator may be placed into either a locked position, in which the reticle position actuator is locked in place or an unlocked position, in which the reticle position actuator may be moved.
In a third separate aspect, the present invention may take the form of a method of switching from a reflex sight to a telescopic that makes use of a combined telescopic and reflex sight. This sight includes a view window, a telescopic optical train, offset from the view window, a collimating lens set and an image display adapted to receive light from the collimating lens set, a luminous reticle and a movable mirror placed in a first position adapted to reflect light from the luminous reticle to the collimating lens set and to block light from the telescopic optical train from entering a light path leading to the image display. The method includes the act of moving the movable mirror from the first position to a second position where it does not reflect light from the luminous reticle but reflects light from the telescopic optical train into a path leading to the image display and blocks light from the view window.
Exemplary embodiments are illustrated in referenced drawings. It is intended that the embodiments and figures disclosed herein are to be considered illustrative rather than restrictive.
Referring to
Referring to
Referring to
Referring to
Starting at the telescopic sight mode position shown in
Zoom slider 18 (
Elevation knob 20 is operatively connected to erector/cam tube 114 and pushes it to a further down position depending on how far knob 20 is rotated. An erector tube spring 147 resists this downward adjustment, pushing upwardly against tube 114. Windage adjust mechanism (not shown) works in the same way, and is also resisted by spring 147. A click ring 148 moves past a clicker post 150, causing a set of click sounds as knob 20 is turned, thereby informing a schooled user of the change in elevation adjustment.
Referring to
In one preferred embodiment objective lens 112 is 32 mm in diameter, but in an alternative preferred embodiment it is rectangular and is 40 mm in width. The reflex reticle is a 60 minute of angle (MOA) diameter circle with a 1 MOA dot in the center.
While a number of exemplary aspects and embodiments have been discussed above, those possessed of skill in the art will recognize certain modifications, permutations, additions and sub-combinations thereof. It is therefore intended that the following appended claims and claims hereafter introduced are interpreted to include all such modifications, permutations, additions and sub-combinations as are within their true spirit and scope.
This application claims priority from provisional application Ser. No. 61/274,698, filed Aug. 20, 2009, which is hereby incorporated by reference as if fully set forth herein.
Number | Date | Country | |
---|---|---|---|
61274698 | Aug 2009 | US |