The present invention relates to music instrument tuners, and more particularly to a more informative and stable high accuracy display interface.
Known music instrument tuners can take a wide variety of forms, in both physical configuration and tuning logic. Tuners for stringed instruments are especially difficult to design, because during performances the strings themselves can change characteristics and the playing length can be changed when a capo is applied. The performer desires a tuner that operates conveniently, quickly, and accurately so retuning does not interrupt the mood and ambiance of the performance.
Such tuners can feature a body to be secured to, e.g., the neck of a guitar, a digital display screen facing the performer, physical or virtual buttons for selecting a target frequency, and an indicator (or meter) system on the screen showing the degree to which the frequency of a plucked string deviates from the target frequency. The indictor can be numeric or symbolic. However, known tuners of this type are limited in that the metering system is inherently coarse (+/−15 cents) or if designed for finer tuning, the metering is unstable.
These limitations are overcome with the present invention, according to which a fine meter is provided within a coarse meter on the same display screen.
Relatively coarse and fine indications of tuning accuracy between a sensed frequency and a target frequency are displayed on a screen having a plurality of patterns of illumination elements, such as windows and respective illumination sources for each window. This can take a variety of forms beyond tuners for stringed instruments, including a method for tuning, a standalone tuning device, a tuner integrated with another device, a mobile device application or a computer or web based application, a software application, and/or a tuner display screen. The term “sensed waveform” as used herein should be understood as any input to the tuner that is commensurate with the frequency of the tone generated by an instrument to be tuned.
From a general perspective, the improvement comprises (a) illuminating a configuration of elements within a first pattern of elements to indicate the selected target frequency for tuning; (b) illuminating a configuration of elements within a different, second pattern in which the number of illuminated elements corresponds to the number of coarse increments of deviation or total coarse deviation of the sensed waveform relative to the target frequency; and (c) upon tuning to less than the minimum coarse deviation relative to the target frequency, illuminating a configuration of elements within a different, third pattern in which the number of illuminated windows corresponds to the number of fine increments of deviation or total fine deviation of the sensed waveform relative to the target frequency. These steps are substantially simultaneously implemented for both sharp and flat deviation in different regions of the display to arrive at a final tuning.
In one display embodiment, the second pattern of elements for coarse metering includes two laterally spaced apart, parallel, linear arrays or columns of window bars and the third pattern of elements includes window bars for fine metering in a linear array or column with the same number of windows, situated in the space between the arrays or columns of the second pattern. In this embodiment, the arrays are arranged together in a matrix of six rows with an inner column between two outer columns. When the deviation is greater than a maximum indicated coarse deviation (for example >/=50 cents), all of the window bars in the outer columns are illuminated with a first color (e.g., red) and none of the windows in the inner column are illuminated. The number of illuminated red windows decreases as the frequency of the played waveform approaches the target frequency. When the deviation is within the smallest coarse deviation from target (for example <7 cents) all windows in the inner column are illuminated with the second color (e.g., green). The user can continue tuning and as the play frequency approaches the best accuracy deviation (for example >/=1 cent sharp and >/=1 cent flat), the number of illuminated green bars decreases to the same optimum configuration for both sharp and flat. Of course, other indications of optimized tuning can be provided.
In this manner, the outer two columns of red meter windows mimic a normal, commercially available tuner (to within say +/−4 or 5 cents from target, which most musicians consider “in tune”). When the user has reached that relatively coarse degree of tuning, the display turns green indicating that the user is “in tune enough” for normal circumstances. If the user desires more accuracy, the center column of windows turns on with green illumination and presents the opportunity for tuning to +/−0.5 to +/−1.0 cents accuracy.
As a standalone, a fine meter for tuning within a few cents would be annoyingly unstable (jittery). However, because the presently disclosed outer, coarse meter is stable and steady and easy to use, the high accuracy meter will not be as annoying as conventional high accuracy interfaces, especially if the inventive tuner is designed for +/−0.7 cents accuracy or better. The user can choose to ignore or disable the higher accuracy indication. If the high accuracy center illumination is annoying to the user or the user does not require high accuracy, a switch can override the high accuracy processing, whereby preferably all three columns would operate the same at the same time.
In one tuner embodiment, the tuner comprises a body; means operatively connected to the body for selecting a target frequency or pitch for tuning; an input for receiving a sensed waveform commensurate with a vibration frequency generated by an instrument to be tuned; a processor responsive to the means for selecting the target frequency and said input, for generating a signal commensurate with the deviation of the sensed waveform relative to the target frequency; and a display screen on the body, responsive to the processor. The input includes but is not limited to a transducer, microphone or direct input connection. The screen has a plurality of patterns of illumination elements, including a first pattern for displaying the selected target frequency for tuning; a second pattern in which a plurality of illumination elements corresponds to a plurality of coarse increments of deviation of the sensed waveform relative to the target frequency; and a third pattern in which a different plurality of illumination elements corresponds to a plurality of fine increments of deviation of the sensed waveform relative to the target frequency. The fine tuning is facilitated by the third pattern of illumination elements located adjacent to the second pattern of illumination elements.
Thus, for fine tuning, frequency deviation and response to changes in string tension are indicated to the musician by a combination of four patterns of illumination elements, with two adjacent, coordinated patterns in one region of the display screen associated with sharp deviations and a different two adjacent, coordinated patterns of illumination elements in another region of the display screen associated with flat deviations.
Various embodiments of the screen display and associated logic according to the present invention can be implemented in a wide variety of tuner types and bodies.
Accordingly, a tuner “body” can be any kind of single or multi-purpose housing or casing having an input for receiving a sensed waveform commensurate with a vibration frequency generated by an instrument to be tuned; a processor responsive to the means for selecting the target frequency and to the input waveform, for generating a signal commensurate with the deviation of the sensed waveform relative to the target frequency; and a display screen responsive to the processor.
Any configuration of on-off switch or target frequency selection can be provided. For example, switch 30 can simply be on-off, whereas the two triangular buttons indicated at 34 can be used to select the target frequency.
The processor is responsive to the means for selecting the target frequency and the pickup for generating a signal commensurate with the deviation of the sensed vibration frequency relative to the target frequency. The circuitry for processing the transducer signal from the pickup, comparing it with the selectable target frequency, and generating a signal commensurate with the deviation is well-known in the art. A representative implementation of this aspect of the invention can be readily derived from the examples and associated descriptions for FIG. 8 of U.S. Pat. No. 7,968,778, issued Jun. 28, 2011 for “Tuner with Capo”, and FIG. 24 of U.S. Pat. No. 8,334,449 issued Dec. 18, 2012 for “Polyphonic Tuner”, the disclosures of which are hereby incorporated by reference. The detailed logic and circuitry for implementing the innovative features of the present invention can readily be derived from the following description and associated
The present description will proceed with a more detailed explanation of the way in which the region 44 illuminates to help the user tune the instrument while reducing the deviation from sharp toward zero deviation, but it should be appreciated that the lower region is illuminated with the same logic and that during the tuning operation the illumination may shift back and forth between the upper 44 and lower 46 regions until the user is satisfied with the accuracy of tuning.
As used herein, a pattern of illumination elements means the fixed plurality of physical or virtual elements, such a windows and associated sources of illumination, that are employed for a given function in a particular region such as 42, 44, or 46. A pattern generally consists of at least one array (such as a row or column or arc) of individual illumination elements. The patterns in the sharp and flat regions 44, 46 can be illuminated in many configurations, each illuminated configuration depending on the extent of deviation of the play frequency relative to the target frequency.
A very high degree of accuracy can be obtained according to the present invention, by use of coordinated illumination configurations whereby tuning can be performed at a relatively coarse degree of accuracy and, once this is achieved, further tuning can be achieved to a finer degree of accuracy with coordinated visualization in the same region 44, 46.
A tuning indicator is shown at 48 and the switch 50 can be set in one position for utilization of only the coarse tuning function, or set in another position where both the coarse and fine tuning are coordinated. Alternatively, the switch could be elsewhere and the battery level displayed at 50.
In region 44 a second pattern of a plurality of illumination windows is provided, in which the number of illuminated windows corresponds to the number of relatively large increments of deviation of the sense vibration frequency relative to the target frequency. In the illustrated embodiment, the second pattern is in the form of a linear array of a column of six windows indicated by end window 52 and another column of six windows indicated by end window 54, which are laterally spaced apart in parallel. The fine tuning is implemented with yet another pattern of illumination windows adjacent to the pattern for coarse tuning. In the illustrated embodiment, this pattern has the same number of illumination windows, in a column between the columns at 52 and 54, as represented by the end window 56, in parallel to the outer columns.
It should be appreciated that each column could have any plurality of illumination windows but, generally, at least five are preferred, and the windows can be shaped other than rectangular.
In the aggregate, the illumination windows in region 44 define a matrix of six rows by three columns. As will be described in greater detail below, the two coarse illumination windows in outer or left and right columns represented by 52 and 54 in any given row will illuminate together without any illumination of any of the windows in the inner or center column represented by 56. However, the end row 58 is of special significance as the target frequency is approached.
The distinction between coarse tuning associated with the outer columns per 52, 54 for a given target frequency such as 42 can be indicated in one color, such as red, whereas the further tuning in the fine accuracy regime can be represented by illumination in a different color such as green. In
Moving from left to right in
In the illustrated embodiment, for a total deviation of at least 7 cents, the same number of illumination windows in the left and right columns are illuminated in red, with none of the windows in the center column illuminated, whereas for a total deviation of less than 7 cents, none of the windows in the outer columns are illuminated in red and at least one window in the center column is illuminated in green.
With reference to
In this embodiment, the coarse tuning has a minimum total deviation (e.g., 7 cents sharp) and the fine tuning has a maximum total deviation (less than 7 cents sharp). With a given total deviation greater than the minimum total coarse deviation, the same number of windows in the coarse array are illuminated in one color (red) with none of the windows in the fine pattern illuminated, whereas with a total deviation of less than the minimum coarse deviation none of the windows in the coarse array are illuminated in red and at least one window in the fine array is illuminated in another color (green).
It should be appreciated that the illumination logic can be implemented in different shapes and relationships, i.e., not necessarily a rectangular screen and rectangular windows, with the target frequency displayed anywhere on or off the same screen. In general, however, the screen display will have a first pattern of illumination elements that displays a target frequency for tuning, a distinct second pattern of illumination elements that displays a variable subset of illumination elements in a first color for coarse tuning, a third pattern of illumination elements different from the second pattern of illumination elements, that displays a variable subset of illumination elements in a second color for fine tuning, wherein the third pattern of illumination elements is adjacent to the second pattern of illumination elements.
The associated method includes illuminating one pattern of a plurality of illumination elements in which the number of illuminated elements corresponds to the number of relatively coarse increments of deviation (or total deviation) of the cents vibration frequency relative to the target frequency. After illuminating the one pattern of illumination elements, illuminating another pattern of a plurality of illumination elements in which the number of illuminated elements in the other pattern corresponds to the number of relatively fine increments of deviation (or total deviation) of the sensed vibration frequency relative to the target frequency.
Depending on the extent of deviation, the user adjusts the string tension via peg 80 (only one of the six strings and pegs are shown), and then plucks the string 64 again as indicated at 82. This sequence is repeated for this string 64 with the display changing as shown in
Applicant claims the benefit under 35 U.S.C. 119(e) of U.S. Provisional Application No. 62/109,825 for “Dual Mode Tuner Display”, filed Jan. 30, 2015.
Number | Date | Country | |
---|---|---|---|
62109825 | Jan 2015 | US |