DUAL-MOTOR PROPULSION ASSEMBLY

Information

  • Patent Application
  • 20230303243
  • Publication Number
    20230303243
  • Date Filed
    May 05, 2023
    a year ago
  • Date Published
    September 28, 2023
    7 months ago
Abstract
Provided in this disclosure is a dual-motor propulsion assembly, and corresponding methods of operation, that is configured for use in an electric aircraft. Dual-motor propulsion assembly provides redundant systems by including vertically stacked motors, wherein one motor may still power a propulsor of the assembly if the other motor malfunctions or becomes inoperative.
Description
FIELD OF THE INVENTION

The present invention generally relates to the field of motors for electric aircraft. In particular, the present invention is directed to a dual-motor propulsion assembly of an electric aircraft and corresponding methods.


BACKGROUND

In the operation of aircrafts, it is essential for a motor of a propulsor of the aircraft to remain fully functional in order for the aircraft to safely take off, maneuver, and land. During some flights, a motor of an aircraft may experience a malfunction or failure, which will place the aircraft in an unsafe mode and compromise the safety of the aircraft, passengers, and onboard cargo.


SUMMARY OF THE DISCLOSURE

In an aspect, a dual-motor propulsion system of an electric aircraft is disclosed. The system includes a flight component attached to an electric aircraft, wherein the flight component is configured to maneuver an electric aircraft through a fluid medium. The system further includes a redundant sensor arrangement that is communicatively connected to a plurality of motors, wherein the redundant sensor arrangement is configured to detect at least a flight parameter associated with the electric aircraft. The plurality of motors include a first motor and a second motor arranged in a vertically stacked configuration, wherein each motor of the plurality of motors includes an encoderless motor, wherein the plurality of motors additionally includes sprag clutches that connect the first motor and the second motor to a shaft, wherein the flight component is connected to the shaft, and the shaft is configured to extend through the plurality of motors in the vertically stacked configuration. The system further includes a flight controller communicatively connected to the redundant sensor arrangement and the plurality of motors, wherein the flight controller is configured to selectively instruct one or more of the plurality of motors to provide motive power to the flight component as a function of the at least a flight parameter.


In another aspect, a method of use of a dual-motor propulsion system in an electric aircraft is disclosed. The method includes maneuvering, using a flight component, the electric aircraft through a fluid medium and detecting, using a redundant sensor arrangement that is communicatively connected to a plurality of motors, at least a flight parameter associated with the electric aircraft. The method further includes providing, using a plurality of motors comprising a first motor and a second motor arranged in a vertically stacked configuration, motive power to the flight component attached to the electric aircraft, wherein each motor of the plurality of motors includes an encoderless motor, wherein the plurality of motors additionally includes sprag clutches that connect the first motor and the second motor to a shaft, wherein the flight component is mechanically connected to the shaft, and the shaft is configured to extend through the plurality of motors in the vertically stacked configuration. The method further including instructing, using a flight controller that is communicatively connected to the redundant sensor arrangement and the plurality of motors, wherein the flight controller is configured to selectively instruct one or more of the plurality of motors to provide motive power to the flight component as a function of the at least a flight parameter.


These and other aspects and features of non-limiting embodiments of the present invention will become apparent to those skilled in the art upon review of the following description of specific non-limiting embodiments of the invention in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

For the purpose of illustrating the invention, the drawings show aspects of one or more embodiments of the invention. However, it should be understood that the present invention is not limited to the precise arrangements and instrumentalities shown in the drawings, wherein:



FIG. 1 is a block diagram of an exemplary embodiment of a propulsion system of an electric aircraft in accordance with one or more embodiments of the present disclosure;



FIG. 2 is an illustration of a perspective view of an exemplary embodiment of an electric aircraft in accordance with one or more embodiments of the present disclosure;



FIG. 3 is a block diagram of an exemplary embodiment of a flight controller in accordance with one or more embodiments of the present disclosure;



FIG. 4 is a flow chart of an exemplary method of use of a propulsion system in accordance with one or more exemplary embodiments of the present disclosure; and



FIG. 5 is a block diagram of an exemplary embodiment of a computing device in accordance with one or more exemplary embodiments of the present disclosure thereof.





The drawings are not necessarily to scale and may be illustrated by phantom lines, diagrammatic representations and fragmentary views. In certain instances, details that are not necessary for an understanding of the embodiments or that render other details difficult to perceive may have been omitted.


DETAILED DESCRIPTION

At a high level, aspects of the present disclosure are directed to a dual-motor propulsion assembly of an electric aircraft. Propulsion systems are utilized in an electric aircraft to power a flight component, such as a propulsor, to achieve a desired movement, such as torque and/or attitude, of an electric aircraft. In an embodiment, a dual-motor propulsion assembly includes two motors, where one motor is stacked atop of the other motor. A dual-motor propulsion assembly provides redundant flight control of an electric aircraft, where if one motor of the dual-motor propulsion assembly fails, the other motor may operate the propulsion assembly.


In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, that the present invention may be practiced without these specific details. As used herein, the word “exemplary” or “illustrative” means “serving as an example, instance, or illustration.” Any implementation described herein as “exemplary” or “illustrative” is not necessarily to be construed as preferred or advantageous over other implementations. All of the implementations described below are exemplary implementations provided to enable persons skilled in the art to make or use the embodiments of the disclosure and are not intended to limit the scope of the disclosure, which is defined by the claims. For purposes of description herein, the terms “upper”, “lower”, “left”, “rear”, “right”, “front”, “vertical”, “horizontal”, “inner”, “outer”, and derivatives thereof shall relate to the invention as oriented in FIG. 1. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary or the following detailed description. It is also to be understood that the specific devices and processes illustrated in the attached drawings, and described in the following specification, are simply embodiments of the inventive concepts defined in the appended claims. Hence, specific dimensions and other physical characteristics relating to the embodiments disclosed herein are not to be considered as limiting, unless the claims expressly state otherwise.


Referring now to the drawings, FIG. 1 illustrates an exemplary embodiment of a dual-motor propulsion assembly 100 of an electric aircraft 104 in accordance with one or more embodiments of the present disclosure. In one or more embodiments of the present disclosure, dual-motor propulsion assembly 100 includes a flight component, such as propulsor 108. As used in this disclosure, a “flight component” is a portion of an electric aircraft that can be used to maneuver and/or move an electric aircraft through a fluid medium, such as a propulsor 108. For the purposes of this disclosure, a “propulsor” is a component or device used to propel a craft by exerting force on a fluid medium, which may include a gaseous medium such as air or a liquid medium such as water. Propulsor 108 may include any device or component that consumes electrical power on demand to propel an electric aircraft in a direction while on ground or in-flight. For example, and without limitation, propulsor may include a rotor, propeller, paddle wheel, and the like thereof. In an embodiment, propulsor may include a plurality of blades that radially extend from a hub of the propulsor so that the blades may convert a rotary motion from a motor into a swirling slipstream. In an embodiment, blade may convert rotary motion to push an aircraft forward or backward. For instance, and without limitation, propulsor 108 may include an assembly including a rotating power-driven hub, to which several radially-extending airfoil-section blades are fixedly attached thereto, where the whole assembly rotates about a central longitudinal axis A. The blade pitch of a propeller may, for example, be fixed, manually variable to a few set positions, automatically variable (e.g., a “constant-speed” type), or any combination thereof. In an exemplary embodiment, propellers for an aircraft may be designed to be fixed to their hub at an angle similar to the thread on a screw makes an angle to the shaft; this angle may be referred to as a pitch or pitch angle which will determine the speed of the forward movement as the blade rotates. In one or more exemplary embodiments, propulsor 108 may include a vertical propulsor or a forward propulsor. A forward propulsor may include a propulsor configured to propel aircraft 104 in a forward direction. A vertical propulsor may include a propulsor configured to propel aircraft 104 in an upward direction. One of ordinary skill in the art would understand upward to comprise the imaginary axis protruding from the earth at a normal angle, configured to be normal to any tangent plane to a point on a sphere (i.e. skyward). In an embodiment, vertical propulsor can be a propulsor that generates a substantially downward thrust, tending to propel an aircraft in an opposite, vertical direction and provides thrust for maneuvers. Such maneuvers can include, without limitation, vertical take-off, vertical landing, hovering, and/or rotor-based flight such as “quadcopter” or similar styles of flight.


In one or more embodiments, propulsor 108 can include a thrust element which may be integrated into the propulsor. The thrust element may include, without limitation, a device using moving or rotating foils, such as one or more rotors, an airscrew, or propeller, a set of airscrews or propellers such as contra-rotating propellers, a moving or flapping wing, or the like. Further, a thrust element, for example, can include without limitation a marine propeller or screw, an impeller, a turbine, a pump-jet, a paddle or paddle-based device, or the like. In one or more embodiments, propulsor 108 may include a pusher component. As used in this disclosure a “pusher component” is a component that pushes and/or thrusts an aircraft through a medium. As a non-limiting example, pusher component may include a pusher propeller, a paddle wheel, a pusher motor, a pusher propulsor, and the like. Pusher component may be configured to produce a forward thrust. As used in this disclosure a “forward thrust” is a thrust that forces aircraft through a medium in a horizontal direction, wherein a horizontal direction is a direction parallel to the longitudinal axis. For example, forward thrust may include a force of 1145 N to force electric aircraft 104 in a horizontal direction along a longitudinal axis of electric aircraft 104. As a further non-limiting example, pusher component may twist and/or rotate to pull air behind it and, at the same time, push electric aircraft 104 forward with an equal amount of force. In an embodiment, and without limitation, the more air forced behind aircraft, the greater the thrust force with which electric aircraft 104 is pushed horizontally will be. In another embodiment, and without limitation, forward thrust may force electric aircraft 104 through the medium of relative air. Additionally or alternatively, plurality of propulsor may include one or more puller components. As used in this disclosure a “puller component” is a component that pulls and/or tows an aircraft through a medium. As a non-limiting example, puller component may include a flight component such as a puller propeller, a puller motor, a tractor propeller, a puller propulsor, and the like. Additionally, or alternatively, puller component may include a plurality of puller flight components.


In one or more embodiments, dual-motor propulsion assembly 100 includes a plurality of motors, which includes a first motor 112 and a second motor 116 (also referred to herein in the singular as “motor” or plural as “motors”). Each motor 112,116 is mechanically connected to a flight component, such as propulsor 108, of electric aircraft 104. Motors 112,116 are each configured to convert an electrical energy and/or signal into a mechanical movement of a flight component, such as, for example, by rotating a shaft attached to propulsor 108 that subsequently rotates propulsor 108 about a longitudinal axis A of shaft. In one or more embodiments, motors 112,116 may be driven by direct current (DC) electric power. For instance, and without limitation, a motor may include a brushed DC motor or the like. In one or more embodiments, motors 112,116 may be a brushless DC electric motor, a permanent magnet synchronous motor, a switched reluctance motor, and/or an induction motor. In other embodiments, motors 112,116 may be driven by electric power having varying or reversing voltage levels, such as alternating current (AC) power as produced by an alternating current generator and/or inverter, or otherwise varying power, such as produced by a switching power source. Persons skilled in the art, upon reviewing the entirety of this disclosure, will be aware of various alternative or additional forms and/or configurations that a motor may take or exemplify as consistent with this disclosure. In addition to inverter and/or switching power source, a circuit driving motor may include electronic speed controllers (not shown) or other components for regulating motor speed, rotation direction, torque, and/or dynamic braking.


With continued reference to FIG. 1, the first motor 112 and the second motor 116 may include an encoderless motor. An encoderless motor is a type of motor that operates without a position sensor, such as an encoder or resolver. Instead, it uses an algorithm to estimate the rotor position based on the measured current and/or voltage signals. Encoderless motors may be used in applications where the use of position sensors is not practical or cost-effective, such as in high-speed motors or harsh environments. The estimation algorithm used in encoderless motors typically involves a mathematical model of the motor, which takes into account the electrical, mechanical, and magnetic properties of the motor. The algorithm uses the measured voltage and current signals to calculate the position and velocity of the rotor, based on the known model parameters. The algorithm may involve a combination of motor physics and control theory, and it can be implemented using different approaches, depending on the specific motor and application requirements. One approach to the algorithm used in encoderless motors is the observer-based approach, which is based on the idea of using an observer to estimate the unmeasured states of the motor, such as the rotor position and velocity. The observer is a mathematical model that takes the measured inputs (voltage and current) and outputs (motor speed and torque) and estimates the unmeasured states based on the known motor dynamics. The observer-based approach typically involves two main steps: the state estimation and the feedback control. In the state estimation step, the observer uses the measured inputs and outputs to estimate the rotor position and velocity. The observer model includes a set of equations that describe the motor dynamics and relate the estimated states to the measured inputs and outputs. In the feedback control step, the estimated states are used to generate control signals that are applied to the motor in order to achieve the desired performance. The control algorithm can be a standard control technique, such as proportional-integral-derivative (PID) control, or a more advanced control method, such as model predictive control (MPC) or adaptive control. The accuracy of the encoderless motor algorithm may depend on several factors, such as the quality of the voltage and current measurements, the accuracy of the motor model, and the stability of the control algorithm. In some cases, the algorithm may need to be calibrated or fine-tuned in order to achieve the desired performance. However, with proper design and implementation, encoderless motors can provide accurate and reliable operation, even in harsh or noisy environments.


In one or more embodiments, each motor 112,116 may include a rotor coaxial disposed within a stator. As understood a rotor is a portion of an electric motor that rotates with respect to a stator, which remains stationary relative to a corresponding electric aircraft. In one or more embodiments, assembly 100 includes a shaft that extends through each motor 112,116. Motors 112,116 may be arranged such that one motor may be stacked atop the other motor. For example, and without limitation, first motor 112 and second motor 116 may share an axis, such as, for example, motors 112,116 may be coaxially positioned along longitudinal axis A of shaft 120 while first motor 112 may be positioned closer to a flight component than second motor 116 along longitudinal axis A. In one or more embodiments, assembly 100 may include a clutch. For example, and without limitation, each motor 112,116 may include a clutch 124,128, respectively, that engages or disengages shaft 120 upon receipt of an command from a controller, as discussed further in this disclosure. Each clutch 124,128 may include an electro-mechanical clutch. In one or more embodiments, clutches 124, 128 are configured to engage or disengage a power transmission to each motor 112,116, respectively. In one or more embodiments, a clutch may include a sprag clutch, electromagnetic clutch, a sacrificial weak component to break at a threshold torque, one-time breakaway clutch, such as a sheering element that would break free at a designated torque, and/or any other clutch component.


Still in referring to FIG. 1, each clutch 124,128 may include a freewheel clutch. As used in the current disclosure, a “freewheel clutch” is a clutch that selectively disengages or engages one or more of the plurality of motors from the driveshaft. In an embodiment, the a freewheel clutch may consist of a plurality saw-toothed, spring-loaded discs pressing against each other with the toothed sides together, somewhat like a ratchet. Rotating in one direction, the saw teeth of the drive disc may lock with the teeth of the driven disc, making it rotate at the same speed. If the drive disc slows down or stops rotating, the teeth of the driven disc slip over the drive disc teeth and continue rotating. In other embodiments A more sophisticated and rugged design has spring-loaded steel rollers inside a driven cylinder. Rotating in one direction, the rollers lock with the cylinder making it rotate in unison. Rotating slower, or in the opposite direction, the steel rollers just slip inside the cylinder. In other embodiments, in rotorcraft such as aircraft 100, a rotorcraft's blades may need to spin faster than its drive engines. For example, it may be especially important in the event of an engine failure where a freewheel in the main transmission lets each motor 112,116 continue to spin independent of the drive system. This may provide for continued flight control and an autorotation landing. A freewheel clutch may include a sprag clutch. As used in the current disclosure, a “sprag clutch” is a freewheel clutch that allows the clutch to spin in only one direction. The operation of a sprag clutch may be based on the principle of wedging action. When the input member rotates in the forward direction, the sprags may be forced to roll along the inclined surface of the outer race, which wedges them against the inner race and causes the clutch to transmit torque. However, when the input member tries to rotate in the opposite direction, the sprags may be forced to roll backwards along the inclined surface, which disengages them from the inner race and allows the output or driven member to rotate freely. A sprag clutch employs, non-revolving asymmetric figure-eight shaped sprags, or other elements allowing single direction rotation, are used. For example. when the unit rotates in one direction the rollers slip or free-wheel, but when a torque is applied in the opposite direction, the sprags tilt slightly, producing a wedging action and binding because of friction.


Still referring to FIG. 1, assembly 100 includes a sensor configured to detect a motor characteristic of motors 112,116. In one or more embodiments, a sensor may include a first sensor 132 communicatively connected to first motor 112, and a second sensor 136 communicatively connected to second motor 116. As used in this disclosure, a “sensor” is a device that is configured to detect an event and/or a phenomenon and transmit information and/or datum related to the detection. For instance, and without limitation, a sensor may transform an electrical and/or physical stimulation into an electrical signal that is suitable to be processed by an electrical circuit, such as controller 140. A sensor may generate a sensor output signal, which transmits information and/or datum related to a detection by the sensor. A sensor output signal may include any signal form described in this disclosure, for example digital, analog, optical, electrical, fluidic, and the like. In some cases, a sensor, a circuit, and/or a controller may perform one or more signal processing steps on a signal. For instance, a sensor, circuit, and/or controller may analyze, modify, and/or synthesize a signal in order to improve the signal, for instance by improving transmission, storage efficiency, or signal to noise ratio.


In one or more embodiments, each motor 112,116 may include or be connected to one or more sensors detecting one or more conditions and/or characteristics of motors 112,116. One or more conditions may include, without limitation, voltage levels, electromotive force, current levels, temperature, current speed of rotation, position sensors, torque, and the like. For instance, and without limitation, one or more sensors may be used to detect torque, or to detect parameters used to determine torque, as described in further detail below. One or more sensors may include a plurality of current sensors, voltage sensors, speed or position feedback sensors, such as encoders, and the like. A sensor may communicate a current status of motor to a person operating system or a computing device; computing device may include any computing device as described below, including without limitation, a controller, a processor, a microprocessor, a control circuit, a flight controller, or the like. In one or more embodiments, computing device may use sensor feedback to calculate performance parameters of motor, including without limitation a torque versus speed operation envelope. Persons skilled in the art, upon reviewing the entirety of this disclosure, will be aware of various devices and/or components that may be used as or included in a motor or a circuit operating a motor, as used and described herein.


In one or more embodiments, each sensor 132,136 may detect a motor characteristic, such as position, displacement, and/or speed, of a component of each motor 112,116, respectively. For the purposes of this disclosure, a “motor characteristic” is a physical or electrical phenomenon associated with an operation and/or condition of a motor. In one or more embodiments, a sensor of assembly 100 may generate a failure datum as a function of a motor characteristic and transmit the failure datum to a controller. For example, and without limitation, each sensor 132,136 may transmit an output signal that, for example, includes failure datum to a controller, as discussed further in this disclosure. For the purposes of this disclosure, “failure datum” is an electrical signal representing information related to a motor characteristic of a motor and/or components thereof. Failure datum may include any condition that reduces the predetermined output of the motors. Failure datum may include data regarding a motor that is temporarily or permanently experiencing a reduced output capacity. A failure datum may include an identification of the reduced capacity of a motor without deeming the motor as inoperable. In a non-limiting example, failure datum may include information regarding the reduced torque output of a first motor 112 or a second motor 116. In some embodiments, one motor may be commanded to produce more torque when the other motor is experiencing a malfunction as indicated by the failure datum. In an embodiment, a failure datum may include data related to a motor malfunction or failure, such as in an inoperable motor. As used in the current disclosure, an “inoperable motor” is a motor that is experiencing a severe malfunction. This malfunction include the complete inoperability of the motor for any amount of time. An inoperable motor may include a motor that cannot be operated or is not functional. This can be due to a variety of reasons such as mechanical or electrical failures, lack of maintenance, or damage to the motor. An inoperable motor can also refer to a motor that is incapable of performing its intended function due to limitations or design flaws. In any case, an inoperable motor is unable to function as it was designed to and may require repair or replacement to restore it to proper working condition.


In one or more embodiments, each sensor 132,136 may include a plurality of sensors in the form of individual sensors or a sensor suite working in tandem or individually. A sensor suite may include a sensor array having a plurality of independent sensors, where any number of the described sensors may be used to detect any number of physical or electrical quantities associated with an electric vehicle. For example, sensor suite may include a plurality of sensors where each sensor detects the same physical phenomenon. Independent sensors may include separate sensors measuring physical or electrical quantities that may be powered by and/or in communication with circuits independently, where each may signal sensor output to a control circuit such as a user graphical interface. In a non-limiting example, there may be a plurality of sensors housed in and/or on electric vehicle and/or components thereof, such as battery pack of electric aircraft, measuring temperature, electrical characteristic such as voltage, amperage, resistance, or impedance, or any other parameters and/or quantities as described in this disclosure. In one or more embodiments, use of a plurality of independent sensors may also result in redundancy configured to employ more than one sensor that measures the same phenomenon, those sensors being of the same type, a combination of, or another type of sensor not disclosed, to detect a specific characteristic and/or phenomenon.


In one or more embodiments, each sensor 132,136 may include an electrical sensor. An electrical sensor may be configured to measure a voltage across a component, electrical current through a component, and resistance of a component. In one or more non-limiting embodiments, an electrical sensor may include a voltmeter, ammeter, ohmmeter, and the like. For example, and without limitation, an electrical sensor may measure power from a power source of an electric aircraft being provided to a motor.


In one or more embodiments, each sensor 132,136 may include a temperature sensor. In one or more embodiments, a temperature sensor may include thermocouples, thermistors, thermometers, infrared sensors, resistance temperature sensors (RTDs), semiconductor based integrated circuits (IC), and the like. “Temperature”, for the purposes of this disclosure, and as would be appreciated by someone of ordinary skill in the art, is a measure of the heat energy of a system. Temperature, as measured by any number or combinations of sensors present, may be measured in Fahrenheit (° F.), Celsius (° C.), Kelvin (° K), or another scale alone, or in combination.


Still referring to FIG. 1, each sensor 132,136 may include a motion sensor. A motion sensor refers to a device or component configured to detect physical movement of an object or grouping of objects. One of ordinary skill in the art would appreciate, after reviewing the entirety of this disclosure, that motion may include a plurality of types including but not limited to: spinning, rotating, oscillating, gyrating, jumping, sliding, reciprocating, or the like. A motion sensor may include, torque sensor, gyroscope, accelerometer, position, sensor, magnetometer, inertial measurement unit (IMU), pressure sensor, force sensor, proximity sensor, displacement sensor, vibration sensor, or the like.


In one or more embodiments, each sensor 132,136 may include various other types of sensors configured to detect a physical phenomenon of each motor 112,116, respectively. For instance, each sensor 132,136 may include photoelectric sensors, radiation sensors, infrared sensors, and the like. Each sensor 132,136 may include contact sensors, non-contact sensors, or a combination thereof. In one or more embodiments, each sensor 132,136 may include digital sensors, analog sensors, or a combination thereof. Each sensor 132,136 may include digital-to-analog converters (DAC), analog-to-digital converters (ADC, A/D, A-to-D), a combination thereof, or other signal conditioning components used in transmission of measurement data to a destination, such as controller 140, over a wireless and/or wired connection.


In one or more embodiments, each sensor 132,136 may include an encoder. In one or more embodiments, first motor 112 may include a first encoder 144, and second motor 116 may include a second encoder 148. In one or more embodiments, each encoder 144,148 may be configured to detect a rotation angle of a motor, where the encoder converts an angular position and/or motion of a shaft of each motor 112,116, respectively, to an analog and/or digital output signal. In some cases, for example, each encoder 144,148 may include a rotational encoder and/or rotary encoder that is configured to sense a rotational position of a pilot control, such as a throttle level, and/or motor component; in this case, the rotational encoder digitally may sense rotational “clicks” by any known method, such as without limitation magnetically, optically, and the like. In one or more embodiments, encoders 144,148 may include a mechanical encoder, optical encoder, on-axis magnetic encoder, and/or an off-axis magnetic encoder. In one or more embodiments, an encoder includes an absolute encoder or an incremental encoder. For example, and without limitation, encoders 144,148 may include an absolute encoder, which continues to monitor position information related to corresponding motors 112,116 even when encoders 144,148 are no longer receiving power from, for example, a power source of electric aircraft 104. Once power is returned to encoders 144,148, encoders 144,148 may provide the detected position information to a controller. In another example, and without limitation, encoder 144,148 may include an incremental encoder, where changes in position of motor are monitored and immediately reported by the encoders 144,148. In one or more embodiments, encoders 144,148 may include a closed feedback loop or an open feedback loop. In one or more exemplary embodiments, an encoder is configured to determine a motion of a motor, such as a speed in revolutions per minute of the motor. An encoder may be configured to transmit an output signal, which includes feedback, to a controller and/or motor; as a result, the motor may operate based on the received feedback from the encoder. For example, and without limitation, a clutch of a motor may engage a shaft of assembly 100 if the motor is determined to be operational based on feedback from a corresponding encoder. However, if a motor is determined to be inoperative based on feedback from a corresponding encoder, then a clutch of the motor may be disengaged form the shaft so that the other motor may engage the shaft and provide motive power to the flight component attached to the shaft.


Still referring to FIG. 1, dual-motor propulsion assembly 100 includes a controller 140. In one or more embodiments, controller 140 is communicatively connected to the plurality of motors. In one or more embodiments, controller 140 is communicatively connected to each motor 112,116. In one or more embodiments, controller 140 may be communicatively connected to a sensor. For instance, and without limitation, controller 140 may be communicatively connected to each sensor 132,136. In other embodiments, controller 140 may be communicatively connected to each clutch 124,128. For the purposes of this disclosure, “communicatively connected” is a process whereby one device, component, or circuit is able to receive data from and/or transmit data to another device, component, or circuit. A communicative connection may be performed by wired or wireless electronic communication; either directly or by way of one or more intervening devices or components. In an embodiment, a communicative connection includes electrically connecting an output of one device, component, or circuit to an input of another device, component, or circuit. Communicative connection may be performed via a bus or other facility for intercommunication between elements of a computing device. Communicative connection may include indirect connections via “wireless” connection, low power wide area network, radio communication, optical communication, magnetic, capacitive, or optical coupling, or the like. In one or more embodiments, a communicative connection may be wireless and/or wired. For example, controller 140 may communicative with sensors 132,136 and/or clutches via a controller area network (CAN) communication.


In one or more embodiments, controller 140 may include a flight controller (shown in FIG. 4), computing device (shown in FIG. 5), a central processing unit (CPU), a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a control circuit, a combination thereof, or the like. In one or more embodiments, output signals, such as motor datum, from sensors 132,136 and/or controller 140 may be analog or digital. Controller 140 may convert output signals from a sensor to a usable form by the destination of those signals. The usable form of output signals from sensors 132,136 and through controller 140 may be either digital, analog, a combination thereof, or an otherwise unstated form. Processing by controller 140 may be configured to trim, offset, or otherwise compensate the outputs of sensors. Based on output of the sensors, controller 140 may determine the output to send to a downstream component. Controller 140 may perform signal amplification, operational amplifier (Op-Amp), filter, digital/analog conversion, linearization circuit, current-voltage change circuits, resistance change circuits such as Wheatstone Bridge, an error compensator circuit, a combination thereof or otherwise undisclosed components.


In one or more embodiments, controller 140 may include a timer that works in conjunction to determine regular intervals. In other embodiments, controller 140 may continuously update datum provided by sensors 132,136. Furthermore, data from sensors 132,136 may be continuously stored on a memory component of controller 140. A timer may include a timing circuit, internal clock, or other circuit, component, or part configured to keep track of elapsed time and/or time of day. For example, in non-limiting embodiments, a memory component may save a critical event datum and/or condition datum from sensors 132,136, such as failure datum, every 30 seconds, every minute, every 30 minutes, or another time period according to a timer.


Controller 140 may be designed and/or configured to perform any method, method step, or sequence of method steps in any embodiment described in this disclosure, in any order and with any degree of repetition. For instance, controller 140 may be configured to perform a single step or sequence repeatedly until a desired or commanded outcome is achieved. Repetition of a step or a sequence of steps may be performed iteratively and/or recursively using outputs of previous repetitions as inputs to subsequent repetitions, aggregating inputs and/or outputs of repetitions to produce an aggregate result, reduction or decrement of one or more variables such as global variables, and/or division of a larger processing task into a set of iteratively addressed smaller processing tasks. Controller 140 may perform any step or sequence of steps as described in this disclosure in parallel, such as simultaneously and/or substantially simultaneously performing a step two or more times using two or more parallel threads, processor cores, or the like; division of tasks between parallel threads and/or processes may be performed according to any protocol suitable for division of tasks between iterations. Persons skilled in the art, upon reviewing the entirety of this disclosure, will be aware of various ways in which steps, sequences of steps, processing tasks, and/or data may be subdivided, shared, or otherwise dealt with using iteration, recursion, and/or parallel processing. Controller 140, as well as any other components or combination of components, may be connected to a controller area network (CAN), which may interconnect all components for signal transmission and reception.


In one or more embodiments, controller 140 may receive a transmitted output signal, such as failure datum, from sensors 132,136. For example, and without limitation, first sensor 132 may detect that first motor 112 has received a pilot command from a pilot via a pilot control of electric aircraft 104, such as a throttle actuation indicating a desired motor speed increase. First sensor 132 may then detect a motor characteristic of first motor 112. Subsequently, first encoder 144 may transmit failure datum to controller 140 if first sensor 132 detects that motor is inoperative, such as for example, if first motor 112 does not move in response to the pilot command. As a result, controller 140 may alert, for example, a pilot of the inoperativeness and transmit a signal to second motor to move the flight component. For example, second motor may engage shaft 120 and rotate shaft 120 about longitudinal axis A to provide motive power to propulsor 108 so that propulsor moves as intended by the pilot command of the pilot. Therefore, second motor 116 provides redundancy such that, if first motor 112 fails, propulsor 108 may remain operational as second motor 116 continues to move propulsor 108. System redundancies performed by controller 140 and/or motors 112,116 may include any systems for redundant flight control as described in U.S. Nonprovisional application Ser. No. 17/404,614, filed on Aug. 17, 2021, and entitled “SYSTEMS AND METHODS FOR REDUNDANT FLIGHT CONTROL IN AN AIRCRAFT,” the entirety of which is incorporated herein by reference.


With continued reference to FIG. 1, controller 140 may be configured maintain a set of flight parameters throughout the flight. As used in the current disclosure, a “flight parameter” is one or more measurements or variables that are used to describe the flight characteristics of an aircraft. Flight parameters may include altitude, velocity, airspeed, heading, pitch, roll, vertical speed, acceleration, Mach number, fuel quantity, batter status, battery efficiency, battery temperature, and the like. Flight parameters may be detected using sensors such as altitude sensors, inertial measurement units (IMUs), temperature sensors, battery sensors, GPS tracking, and the like. Controller 140 may compare the detected flight parameters to the desired flight parameters to determine any necessary motor adjustments. Controller 140 may automatically maintain one or more flight parameters by adjusting the position or the output of the plurality of motors. Should a motor experience a reduced output for whatever reason, controller 140 may command the other motors to compensate automatically. This may be done without the need for a failure determination. The compensation may comprise an adjustment of the torque output of one or both motors. The compensation may also comprise an adjustment of the position of one or both motors. In an embodiment, one motor may be commanded to produce more torque when the other fails, even without a determination of an inoperable motor. In an non-limiting example, if sensors 132,136 provide an indication to controller 140 that the aircraft is losing altitude because the reduced capacity of a first motor 112. Controller 140 may compensate for the lost output of the first motor 112 using the second motor 116. This may be done by increasing the torque output of the second motor 116 to compensate for the lost torque output of the first motor 116. A controller 140 may make these adjustments automatically without deeming the first motor 112 as inoperable.


Continuing to reference FIG. 1, system 100 may include a plurality of inverters 152. An inverter 152 is configured to convert a direct current (DC) from an energy source to an alternating current. An “inverter,” as used in this this disclosure, is an electronic device or circuitry that changes direct current (DC) to alternating current (AC). A plurality of inverters 152 may include a first inverter and a second inverter. An inverter (also called a power inverter) may be entirely electronic or may include at least a mechanism (such as a rotary apparatus) and electronic circuitry. In some embodiments, static inverters may not use moving parts in conversion process. Inverters may not produce any power itself; rather, inverters may convert power produced by a DC power source. Inverters 152 may often be used in electrical power applications where high currents and voltages are present; circuits that perform a similar function, as inverters, for electronic signals, having relatively low currents and potentials, may be referred to as oscillators. In some cases, circuits that perform opposite function to an inverter, converting AC to DC, may be referred to as rectifiers. Inverter 152 may be configured to accept direct current and produce alternating current. As used in this disclosure, “alternating current” is a flow of electric charge that periodically reverses direction. In some cases, an alternating current may continuously change magnitude overtime; this is in contrast to what may be called a pulsed direct current. As used herein, “direct current” is a flow of electric charge in only one direction. Alternatively or additionally, in some cases an alternating current may not continuously vary with time, but instead exhibit a less smooth temporal form. For example, exemplary non-limiting AC waveforms may include a square wave, a triangular wave (i.e., sawtooth), a modifier sine wave, a pulsed sine wave, a pulse width modulated wave, and/or a sine wave. Specifically, first inverter and/or second inverter may supply AC power to drive a first electric motor 112 and/or a second electric motor 116. First inverter and/or second inverter may be entirely electronic or a combination of mechanical elements and electronic circuitry. First inverter and/or second inverter may allow for variable speed and torque of the motor based on the demands of the vehicle. An inverter may be used to connect the motors to a flight controller. In a non-limiting example, a first/second inverter may be electrically connected to the first/second motor respectively. The first/second motor may be communicatively connected to the flight controller by way of first/second inverter. In some embodiments, first inverter and/or second inverter may be used a controller for first electric motor 112 and/or second electric motor 116. In some embodiments, first inverter may be configured to control first electric motor 112. In some embodiments, second inverter may be configured to control second electric motor 116. In some embodiments, first and/or second inverter may control first electric motor and/or second electric motor as a function of signals from controller 140 and/or a flight controller. Inverter may be communicatively connected to both the motors 112/116 and the flight controller.


Referring now to FIG. 2, an exemplary embodiment of an electric aircraft 104 is illustrated. As used in this disclosure an “aircraft” is any vehicle that may fly by gaining support from the air. As a non-limiting example, aircraft may include airplanes, helicopters, commercial and/or recreational aircrafts, instrument flight aircrafts, drones, electric aircrafts, airliners, rotorcrafts, vertical takeoff and landing aircrafts, jets, airships, blimps, gliders, paramotors, and the like. Aircraft 104 may include an electrically powered aircraft. In embodiments, electrically powered aircraft may be an electric vertical takeoff and landing (eVTOL) aircraft. Electric aircraft may be capable of rotor-based cruising flight, rotor-based takeoff, rotor-based landing, fixed-wing cruising flight, airplane-style takeoff, airplane-style landing, and/or any combination thereof. Electric aircraft may include one or more manned and/or unmanned aircrafts. Electric aircraft may include one or more all-electric short takeoff and landing (eSTOL) aircrafts. For example, and without limitation, eVTOL aircrafts may accelerate plane to a flight speed on takeoff and decelerate plane after landing. In an embodiment, and without limitation, electric aircraft may be configured with an electric propulsion assembly. Electric propulsion assembly may include any electric propulsion assembly as described in U.S. Nonprovisional application Ser. No. 16/603,225, filed on Dec. 4, 2019, and entitled “AN INTEGRATED ELECTRIC PROPULSION ASSEMBLY,” the entirety of which is incorporated herein by reference.


As used in this disclosure, a vertical take-off and landing (eVTOL) aircraft is an aircraft that can hover, take off, and land vertically. An eVTOL, as used in this disclosure, is an electrically powered aircraft typically using an energy source, of a plurality of energy sources to power aircraft. To optimize the power and energy necessary to propel aircraft 100, eVTOL may be capable of rotor-based cruising flight, rotor-based takeoff, rotor-based landing, fixed-wing cruising flight, airplane-style takeoff, airplane style landing, and/or any combination thereof. Rotor-based flight, as described herein, is where the aircraft generates lift and propulsion by way of one or more powered rotors or blades coupled with an engine, such as a “quad-copter,” multi-rotor helicopter, or other vehicle that maintains its lift primarily using downward thrusting propulsors. “Fixed-wing flight”, as described herein, is where an aircraft is capable of flight using wings and/or foils that generate lift caused by the aircraft's forward airspeed and the shape of the wings and/or foils, such as airplane-style flight.


With continued reference to FIG. 2, a number of aerodynamic forces may act upon the electric aircraft 104 during flight. Forces acting on an electric aircraft 104 during flight may include, without limitation, thrust, the forward force produced by the rotating element of the electric aircraft 104 and acts parallel to the longitudinal axis. Another force acting upon electric aircraft 104 may be, without limitation, drag, which may be defined as a rearward retarding force which is caused by disruption of airflow by any protruding surface of the electric aircraft 104 such as, without limitation, the wing, rotor, and fuselage. Drag may oppose thrust and acts rearward parallel to the relative wind. A further force acting upon electric aircraft 104 may include, without limitation, weight, which may include a combined load of the electric aircraft 104 itself, crew, baggage, and/or fuel. Weight may pull electric aircraft 104 downward due to the force of gravity. An additional force acting on electric aircraft 104 may include, without limitation, lift, which may act to oppose the downward force of weight and may be produced by the dynamic effect of air acting on the airfoil and/or downward thrust from the propulsor of the electric aircraft. Lift generated by the airfoil may depend on speed of airflow, density of air, total area of an airfoil and/or segment thereof, and/or an angle of attack between air and the airfoil. For example, and without limitation, electric aircraft 104 are designed to be as lightweight as possible. Reducing the weight of the aircraft and designing to reduce the number of components is essential to optimize the weight. To save energy, it may be useful to reduce weight of components of an electric aircraft 104, including without limitation propulsors and/or propulsion assemblies. In some embodiments, electric aircraft 104 may include at least on vertical propulsor 204. In an embodiment, electric aircraft 104 may include at least one forward propulsor 208. In an embodiment, the motor may eliminate need for many external structural features that otherwise might be needed to join one component to another component. The motor may also increase energy efficiency by enabling a lower physical propulsor profile, reducing drag and/or wind resistance. This may also increase durability by lessening the extent to which drag and/or wind resistance add to forces acting on electric aircraft 104 and/or propulsors.


In one or more embodiments, a motor of electric aircraft 104, which may be mounted on a structural feature of an aircraft. Design of motors 112,116 may enable them to be installed external to the structural member (such as a boom, nacelle, or fuselage) for easy maintenance access and to minimize accessibility requirements for the structure. This may improve structural efficiency by requiring fewer large holes in the mounting area. This design may include two main holes in the top and bottom of the mounting area to access bearing cartridge. Further, a structural feature may include a component of aircraft 104. As a further non-limiting example, a structural feature may include without limitation a wing, a spar, an outrigger, a fuselage, or any portion thereof; persons skilled in the art, upon reviewing the entirety of this disclosure, will be aware of many possible features that may function as at least a structural feature. At least a structural feature may be constructed of any suitable material or combination of materials, including without limitation metal such as aluminum, titanium, steel, or the like, polymer materials or composites, fiberglass, carbon fiber, wood, or any other suitable material. As a non-limiting example, at least a structural feature may be constructed from additively manufactured polymer material with a carbon fiber exterior; aluminum parts or other elements may be enclosed for structural strength, or for purposes of supporting, for instance, vibration, torque or shear stresses imposed by at least propulsor 104. Persons skilled in the art, upon reviewing the entirety of this disclosure, will be aware of various materials, combinations of materials, and/or constructions techniques.


Now referring to FIG. 3, an exemplary embodiment 300 of a flight controller 304 is illustrated. As used in this disclosure a “flight controller” is a computing device of a plurality of computing devices dedicated to data storage, security, distribution of traffic for load balancing, and flight instruction. Flight controller 304 may include and/or communicate with any computing device as described in this disclosure, including without limitation a microcontroller, microprocessor, digital signal processor (DSP) and/or system on a chip (SoC) as described in this disclosure. Further, flight controller 304 may include a single computing device operating independently, or may include two or more computing device operating in concert, in parallel, sequentially or the like; two or more computing devices may be included together in a single computing device or in two or more computing devices. In embodiments, flight controller 304 may be installed in an aircraft, may control the aircraft remotely, and/or may include an element installed in the aircraft and a remote element in communication therewith.


In an embodiment, and still referring to FIG. 3, flight controller 304 may include a signal transformation component 308. As used in this disclosure a “signal transformation component” is a component that transforms and/or converts a first signal to a second signal, wherein a signal may include one or more digital and/or analog signals. For example, and without limitation, signal transformation component 308 may be configured to perform one or more operations such as preprocessing, lexical analysis, parsing, semantic analysis, and the like thereof. In an embodiment, and without limitation, signal transformation component 308 may include one or more analog-to-digital convertors that transform a first signal of an analog signal to a second signal of a digital signal. For example, and without limitation, an analog-to-digital converter may convert an analog input signal to a 10-bit binary digital representation of that signal. In another embodiment, signal transformation component 308 may include transforming one or more low-level languages such as, but not limited to, machine languages and/or assembly languages. For example, and without limitation, signal transformation component 308 may include transforming a binary language signal to an assembly language signal. In an embodiment, and without limitation, signal transformation component 308 may include transforming one or more high-level languages and/or formal languages such as but not limited to alphabets, strings, and/or languages. For example, and without limitation, high-level languages may include one or more system languages, scripting languages, domain-specific languages, visual languages, esoteric languages, and the like thereof. As a further non-limiting example, high-level languages may include one or more algebraic formula languages, business data languages, string and list languages, object-oriented languages, and the like thereof.


Still referring to FIG. 3, signal transformation component 308 may be configured to optimize an intermediate representation 312. As used in this disclosure an “intermediate representation” is a data structure and/or code that represents the input signal. Signal transformation component 308 may optimize intermediate representation as a function of a data-flow analysis, dependence analysis, alias analysis, pointer analysis, escape analysis, and the like thereof. In an embodiment, and without limitation, signal transformation component 308 may optimize intermediate representation 312 as a function of one or more inline expansions, dead code eliminations, constant propagation, loop transformations, and/or automatic parallelization functions. In another embodiment, signal transformation component 308 may optimize intermediate representation as a function of a machine dependent optimization such as a peephole optimization, wherein a peephole optimization may rewrite short sequences of code into more efficient sequences of code. Signal transformation component 308 may optimize intermediate representation to generate an output language, wherein an “output language,” as used herein, is the native machine language of flight controller 304. For example, and without limitation, native machine language may include one or more binary and/or numerical languages.


In an embodiment, and without limitation, signal transformation component 308 may include transform one or more inputs and outputs as a function of an error correction code. An error correction code, also known as error correcting code (ECC), is an encoding of a message or lot of data using redundant information, permitting recovery of corrupted data. An ECC may include a block code, in which information is encoded on fixed-size packets and/or blocks of data elements such as symbols of predetermined size, bits, or the like. Reed-Solomon coding, in which message symbols within a symbol set having q symbols are encoded as coefficients of a polynomial of degree less than or equal to a natural number k, over a finite field F with q elements; strings so encoded have a minimum hamming distance of k+1, and permit correction of (q−k−1)/2 erroneous symbols. Block code may alternatively or additionally be implemented using Golay coding, also known as binary Golay coding, Bose-Chaudhuri, Hocquenghuem (BCH) coding, multidimensional parity-check coding, and/or Hamming codes. An ECC may alternatively or additionally be based on a convolutional code.


In an embodiment, and still referring to FIG. 3, flight controller 304 may include a reconfigurable hardware platform 316. A “reconfigurable hardware platform,” as used herein, is a component and/or unit of hardware that may be reprogrammed, such that, for instance, a data path between elements such as logic gates or other digital circuit elements may be modified to change an algorithm, state, logical sequence, or the like of the component and/or unit. This may be accomplished with such flexible high-speed computing fabrics as field-programmable gate arrays (FPGAs), which may include a grid of interconnected logic gates, connections between which may be severed and/or restored to program in modified logic. Reconfigurable hardware platform 316 may be reconfigured to enact any algorithm and/or algorithm selection process received from another computing device and/or created using machine-learning processes.


Still referring to FIG. 3, reconfigurable hardware platform 316 may include a logic component 320. As used in this disclosure a “logic component” is a component that executes instructions on output language. For example, and without limitation, logic component may perform basic arithmetic, logic, controlling, input/output operations, and the like thereof. Logic component 320 may include any suitable processor, such as without limitation a component incorporating logical circuitry for performing arithmetic and logical operations, such as an arithmetic and logic unit (ALU), which may be regulated with a state machine and directed by operational inputs from memory and/or sensors; logic component 320 may be organized according to Von Neumann and/or Harvard architecture as a non-limiting example. Logic component 320 may include, incorporate, and/or be incorporated in, without limitation, a microcontroller, microprocessor, digital signal processor (DSP), Field Programmable Gate Array (FPGA), Complex Programmable Logic Device (CPLD), Graphical Processing Unit (GPU), general purpose GPU, Tensor Processing Unit (TPU), analog or mixed signal processor, Trusted Platform Module (TPM), a floating point unit (FPU), and/or system on a chip (SoC). In an embodiment, logic component 320 may include one or more integrated circuit microprocessors, which may contain one or more central processing units, central processors, and/or main processors, on a single metal-oxide-semiconductor chip. Logic component 320 may be configured to execute a sequence of stored instructions to be performed on the output language and/or intermediate representation 312. Logic component 320 may be configured to fetch and/or retrieve the instruction from a memory cache, wherein a “memory cache,” as used in this disclosure, is a stored instruction set on flight controller 304. Logic component 320 may be configured to decode the instruction retrieved from the memory cache to opcodes and/or operands. Logic component 320 may be configured to execute the instruction on intermediate representation 312 and/or output language. For example, and without limitation, logic component 320 may be configured to execute an addition operation on intermediate representation 312 and/or output language.


In an embodiment, and without limitation, logic component 320 may be configured to calculate a flight element 324. As used in this disclosure a “flight element” is an element of datum denoting a relative status of aircraft. For example, and without limitation, flight element 324 may denote one or more torques, thrusts, airspeed velocities, forces, altitudes, groundspeed velocities, directions during flight, directions facing, forces, orientations, and the like thereof. For example, and without limitation, flight element 324 may denote that aircraft is cruising at an altitude and/or with a sufficient magnitude of forward thrust. As a further non-limiting example, flight status may denote that is building thrust and/or groundspeed velocity in preparation for a takeoff. As a further non-limiting example, flight element 324 may denote that aircraft is following a flight path accurately and/or sufficiently.


Still referring to FIG. 3, flight controller 304 may include a chipset component 328. As used in this disclosure a “chipset component” is a component that manages data flow. In an embodiment, and without limitation, chipset component 328 may include a northbridge data flow path, wherein the northbridge dataflow path may manage data flow from logic component 320 to a high-speed device and/or component, such as a RAM, graphics controller, and the like thereof. In another embodiment, and without limitation, chipset component 328 may include a southbridge data flow path, wherein the southbridge dataflow path may manage data flow from logic component 320 to lower-speed peripheral buses, such as a peripheral component interconnect (PCI), industry standard architecture (ICA), and the like thereof. In an embodiment, and without limitation, southbridge data flow path may include managing data flow between peripheral connections such as ethernet, USB, audio devices, and the like thereof. Additionally or alternatively, chipset component 328 may manage data flow between logic component 320, memory cache, and a flight component 332. As used in this disclosure a “flight component” is a portion of an aircraft that can be moved or adjusted to affect one or more flight elements. For example, flight component 332 may include a component used to affect the aircrafts' roll and pitch which may comprise one or more ailerons. As a further example, flight component 332 may include a rudder to control yaw of an aircraft. In an embodiment, chipset component 328 may be configured to communicate with a plurality of flight components as a function of flight element 324. For example, and without limitation, chipset component 328 may transmit to an aircraft rotor to reduce torque of a first lift propulsor and increase the forward thrust produced by a pusher component to perform a flight maneuver.


In an embodiment, and still referring to FIG. 3, flight controller 304 may be configured generate an autonomous function. As used in this disclosure an “autonomous function” is a mode and/or function of flight controller 304 that controls aircraft automatically. For example, and without limitation, autonomous function be part of an autopilot mode where an autonomous function may perform one or more aircraft maneuvers, take offs, landings, altitude adjustments, flight leveling adjustments, turns, climbs, and/or descents. As a further non-limiting example, autonomous function may adjust one or more airspeed velocities, thrusts, torques, and/or groundspeed velocities. As a further non-limiting example, autonomous function may perform one or more flight path corrections and/or flight path modifications as a function of flight element 324. In an embodiment, autonomous function may include one or more modes of autonomy such as, but not limited to, autonomous mode, semi-autonomous mode, and/or non-autonomous mode. As used in this disclosure “autonomous mode” is a mode that automatically adjusts and/or controls aircraft and/or the maneuvers of aircraft in its entirety. For example, autonomous mode may denote that flight controller 304 will adjust the aircraft. As used in this disclosure a “semi-autonomous mode” is a mode that automatically adjusts and/or controls a portion and/or section of aircraft. For example, and without limitation, semi-autonomous mode may denote that a pilot will control the propulsors, wherein flight controller 304 will control the ailerons and/or rudders. As used in this disclosure “non-autonomous mode” is a mode that denotes a pilot will control aircraft and/or maneuvers of aircraft in its entirety.


In an embodiment, and still referring to FIG. 3, flight controller 304 may generate autonomous function as a function of an autonomous machine-learning model. As used in this disclosure an “autonomous machine-learning model” is a machine-learning model to produce an autonomous function output given flight element 324 and a pilot signal 336 as inputs; this is in contrast to a non-machine learning software program where the commands to be executed are determined in advance by a user and written in a programming language. As used in this disclosure a “pilot signal” is an element of datum representing one or more functions a pilot is controlling and/or adjusting. For example, pilot signal 336 may denote that a pilot is controlling and/or maneuvering ailerons, wherein the pilot is not in control of the rudders and/or propulsors. In an embodiment, pilot signal 336 may include an implicit signal and/or an explicit signal. For example, and without limitation, pilot signal 336 may include an explicit signal, wherein the pilot explicitly states there is a lack of control and/or desire for autonomous function. As a further non-limiting example, pilot signal 336 may include an explicit signal directing flight controller 304 to control and/or maintain a portion of aircraft, a portion of the flight plan, the entire aircraft, and/or the entire flight plan. As a further non-limiting example, pilot signal 336 may include an implicit signal, wherein flight controller 304 detects a lack of control such as by a malfunction, torque alteration, flight path deviation, and the like thereof. In an embodiment, and without limitation, pilot signal 336 may include one or more explicit signals to reduce torque, and/or one or more implicit signals that torque may be reduced due to reduction of airspeed velocity. In an embodiment, and without limitation, pilot signal 336 may include one or more local and/or global signals. For example, and without limitation, pilot signal 336 may include a local signal that is transmitted by a pilot and/or crew member. As a further non-limiting example, pilot signal 336 may include a global signal that is transmitted by air traffic control and/or one or more remote users that are in communication with the pilot of aircraft. In an embodiment, pilot signal 336 may be received as a function of a tri-state bus and/or multiplexor that denotes an explicit pilot signal should be transmitted prior to any implicit or global pilot signal.


Still referring to FIG. 3, autonomous machine-learning model may include one or more autonomous machine-learning processes such as supervised, unsupervised, or reinforcement machine-learning processes that flight controller 304 and/or a remote device may or may not use in the generation of autonomous function. As used in this disclosure “remote device” is an external device to flight controller 304. Additionally or alternatively, autonomous machine-learning model may include one or more autonomous machine-learning processes that a field-programmable gate array (FPGA) may or may not use in the generation of autonomous function. Autonomous machine-learning process may include, without limitation machine learning processes such as simple linear regression, multiple linear regression, polynomial regression, support vector regression, ridge regression, lasso regression, elasticnet regression, decision tree regression, random forest regression, logistic regression, logistic classification, K-nearest neighbors, support vector machines, kernel support vector machines, naïve bayes, decision tree classification, random forest classification, K-means clustering, hierarchical clustering, dimensionality reduction, principal component analysis, linear discriminant analysis, kernel principal component analysis, Q-learning, State Action Reward State Action (SARSA), Deep-Q network, Markov decision processes, Deep Deterministic Policy Gradient (DDPG), or the like thereof.


In an embodiment, and still referring to FIG. 3, autonomous machine-learning model may be trained as a function of autonomous training data, wherein autonomous training data may correlate a flight element, pilot signal, and/or simulation data to an autonomous function. For example, and without limitation, a flight element of an airspeed velocity, a pilot signal of limited and/or no control of propulsors, and a simulation data of required airspeed velocity to reach the destination may result in an autonomous function that includes a semi-autonomous mode to increase thrust of the propulsors. Autonomous training data may be received as a function of user-entered valuations of flight elements, pilot signals, simulation data, and/or autonomous functions. Flight controller 304 may receive autonomous training data by receiving correlations of flight element, pilot signal, and/or simulation data to an autonomous function that were previously received and/or determined during a previous iteration of generation of autonomous function. Autonomous training data may be received by one or more remote devices and/or FPGAs that at least correlate a flight element, pilot signal, and/or simulation data to an autonomous function. Autonomous training data may be received in the form of one or more user-entered correlations of a flight element, pilot signal, and/or simulation data to an autonomous function.


Still referring to FIG. 3, flight controller 304 may receive autonomous machine-learning model from a remote device and/or FPGA that utilizes one or more autonomous machine learning processes, wherein a remote device and an FPGA is described above in detail. For example, and without limitation, a remote device may include a computing device, external device, processor, FPGA, microprocessor, and the like thereof. Remote device and/or FPGA may perform the autonomous machine-learning process using autonomous training data to generate autonomous function and transmit the output to flight controller 304. Remote device and/or FPGA may transmit a signal, bit, datum, or parameter to flight controller 304 that at least relates to autonomous function. Additionally or alternatively, the remote device and/or FPGA may provide an updated machine-learning model. For example, and without limitation, an updated machine-learning model may be comprised of a firmware update, a software update, an autonomous machine-learning process correction, and the like thereof. As a non-limiting example a software update may incorporate a new simulation data that relates to a modified flight element. Additionally or alternatively, the updated machine learning model may be transmitted to the remote device and/or FPGA, wherein the remote device and/or FPGA may replace the autonomous machine-learning model with the updated machine-learning model and generate the autonomous function as a function of the flight element, pilot signal, and/or simulation data using the updated machine-learning model. The updated machine-learning model may be transmitted by the remote device and/or FPGA and received by flight controller 304 as a software update, firmware update, or corrected autonomous machine-learning model. For example, and without limitation autonomous machine learning model may utilize a neural net machine-learning process, wherein the updated machine-learning model may incorporate a gradient boosting machine-learning process.


Still referring to FIG. 3, flight controller 304 may include, be included in, and/or communicate with a mobile device such as a mobile telephone or smartphone. Further, flight controller may communicate with one or more additional devices as described below in further detail via a network interface device. The network interface device may be utilized for commutatively connecting a flight controller to one or more of a variety of networks, and one or more devices. Examples of a network interface device include, but are not limited to, a network interface card (e.g., a mobile network interface card, a LAN card), a modem, and any combination thereof. Examples of a network include, but are not limited to, a wide area network (e.g., the Internet, an enterprise network), a local area network (e.g., a network associated with an office, a building, a campus, or other relatively small geographic space), a telephone network, a data network associated with a telephone/voice provider (e.g., a mobile communications provider data and/or voice network), a direct connection between two computing devices, and any combinations thereof. The network may include any network topology and can may employ a wired and/or a wireless mode of communication.


In an embodiment, and still referring to FIG. 3, flight controller 304 may include, but is not limited to, for example, a cluster of flight controllers in a first location and a second flight controller or cluster of flight controllers in a second location. Flight controller 304 may include one or more flight controllers dedicated to data storage, security, distribution of traffic for load balancing, and the like. Flight controller 304 may be configured to distribute one or more computing tasks as described below across a plurality of flight controllers, which may operate in parallel, in series, redundantly, or in any other manner used for distribution of tasks or memory between computing devices. For example, and without limitation, flight controller 304 may implement a control algorithm to distribute and/or command the plurality of flight controllers. As used in this disclosure a “control algorithm” is a finite sequence of well-defined computer implementable instructions that may determine the flight component of the plurality of flight components to be adjusted. For example, and without limitation, control algorithm may include one or more algorithms that reduce and/or prevent aviation asymmetry. As a further non-limiting example, control algorithms may include one or more models generated as a function of a software including, but not limited to Simulink by MathWorks, Natick, Massachusetts, USA. In an embodiment, and without limitation, control algorithm may be configured to generate an auto-code, wherein an “auto-code,” is used herein, is a code and/or algorithm that is generated as a function of the one or more models and/or software's. In another embodiment, control algorithm may be configured to produce a segmented control algorithm. As used in this disclosure a “segmented control algorithm” is control algorithm that has been separated and/or parsed into discrete sections. For example, and without limitation, segmented control algorithm may parse control algorithm into two or more segments, wherein each segment of control algorithm may be performed by one or more flight controllers operating on distinct flight components.


In an embodiment, and still referring to FIG. 3, control algorithm may be configured to determine a segmentation boundary as a function of segmented control algorithm. As used in this disclosure a “segmentation boundary” is a limit and/or delineation associated with the segments of the segmented control algorithm. For example, and without limitation, segmentation boundary may denote that a segment in the control algorithm has a first starting section and/or a first ending section. As a further non-limiting example, segmentation boundary may include one or more boundaries associated with an ability of flight component 332. In an embodiment, control algorithm may be configured to create an optimized signal communication as a function of segmentation boundary. For example, and without limitation, optimized signal communication may include identifying the discrete timing required to transmit and/or receive the one or more segmentation boundaries. In an embodiment, and without limitation, creating optimized signal communication further comprises separating a plurality of signal codes across the plurality of flight controllers. For example, and without limitation the plurality of flight controllers may include one or more formal networks, wherein formal networks transmit data along an authority chain and/or are limited to task-related communications. As a further non-limiting example, communication network may include informal networks, wherein informal networks transmit data in any direction. In an embodiment, and without limitation, the plurality of flight controllers may include a chain path, wherein a “chain path,” as used herein, is a linear communication path comprising a hierarchy that data may flow through. In an embodiment, and without limitation, the plurality of flight controllers may include an all-channel path, wherein an “all-channel path,” as used herein, is a communication path that is not restricted to a particular direction. For example, and without limitation, data may be transmitted upward, downward, laterally, and the like thereof. In an embodiment, and without limitation, the plurality of flight controllers may include one or more neural networks that assign a weighted value to a transmitted datum. For example, and without limitation, a weighted value may be assigned as a function of one or more signals denoting that a flight component is malfunctioning and/or in a failure state.


Still referring to FIG. 3, the plurality of flight controllers may include a master bus controller. As used in this disclosure a “master bus controller” is one or more devices and/or components that are connected to a bus to initiate a direct memory access transaction, wherein a bus is one or more terminals in a bus architecture. Master bus controller may communicate using synchronous and/or asynchronous bus control protocols. In an embodiment, master bus controller may include flight controller 304. In another embodiment, master bus controller may include one or more universal asynchronous receiver-transmitters (UART). For example, and without limitation, master bus controller may include one or more bus architectures that allow a bus to initiate a direct memory access transaction from one or more buses in the bus architectures. As a further non-limiting example, master bus controller may include one or more peripheral devices and/or components to communicate with another peripheral device and/or component and/or the master bus controller. In an embodiment, master bus controller may be configured to perform bus arbitration. As used in this disclosure “bus arbitration” is method and/or scheme to prevent multiple buses from attempting to communicate with and/or connect to master bus controller. For example and without limitation, bus arbitration may include one or more schemes such as a small computer interface system, wherein a small computer interface system is a set of standards for physical connecting and transferring data between peripheral devices and master bus controller by defining commands, protocols, electrical, optical, and/or logical interfaces. In an embodiment, master bus controller may receive intermediate representation 312 and/or output language from logic component 320, wherein output language may include one or more analog-to-digital conversions, low bit rate transmissions, message encryptions, digital signals, binary signals, logic signals, analog signals, and the like thereof described above in detail.


Still referring to FIG. 3, master bus controller may communicate with a slave bus. As used in this disclosure a “slave bus” is one or more peripheral devices and/or components that initiate a bus transfer. For example, and without limitation, slave bus may receive one or more controls and/or asymmetric communications from master bus controller, wherein slave bus transfers data stored to master bus controller. In an embodiment, and without limitation, slave bus may include one or more internal buses, such as but not limited to a/an internal data bus, memory bus, system bus, front-side bus, and the like thereof. In another embodiment, and without limitation, slave bus may include one or more external buses such as external flight controllers, external computers, remote devices, printers, aircraft computer systems, flight control systems, and the like thereof.


In an embodiment, and still referring to FIG. 3, control algorithm may optimize signal communication as a function of determining one or more discrete timings. For example, and without limitation master bus controller may synchronize timing of the segmented control algorithm by injecting high priority timing signals on a bus of the master bus control. As used in this disclosure a “high priority timing signal” is information denoting that the information is important. For example, and without limitation, high priority timing signal may denote that a section of control algorithm is of high priority and should be analyzed and/or transmitted prior to any other sections being analyzed and/or transmitted. In an embodiment, high priority timing signal may include one or more priority packets. As used in this disclosure a “priority packet” is a formatted unit of data that is communicated between the plurality of flight controllers. For example, and without limitation, priority packet may denote that a section of control algorithm should be used and/or is of greater priority than other sections.


Still referring to FIG. 3, flight controller 304 may also be implemented using a “shared nothing” architecture in which data is cached at the worker, in an embodiment, this may enable scalability of aircraft and/or computing device. Flight controller 304 may include a distributer flight controller. As used in this disclosure a “distributer flight controller” is a component that adjusts and/or controls a plurality of flight components as a function of a plurality of flight controllers. For example, distributer flight controller may include a flight controller that communicates with a plurality of additional flight controllers and/or clusters of flight controllers. In an embodiment, distributed flight control may include one or more neural networks. For example, neural network also known as an artificial neural network, is a network of “nodes,” or data structures having one or more inputs, one or more outputs, and a function determining outputs based on inputs. Such nodes may be organized in a network, such as without limitation a convolutional neural network, including an input layer of nodes, one or more intermediate layers, and an output layer of nodes. Connections between nodes may be created via the process of “training” the network, in which elements from a training dataset are applied to the input nodes, a suitable training algorithm (such as Levenberg-Marquardt, conjugate gradient, simulated annealing, or other algorithms) is then used to adjust the connections and weights between nodes in adjacent layers of the neural network to produce the desired values at the output nodes. This process is sometimes referred to as deep learning.


Still referring to FIG. 3, a node may include, without limitation a plurality of inputs xi that may receive numerical values from inputs to a neural network containing the node and/or from other nodes. Node may perform a weighted sum of inputs using weights wi that are multiplied by respective inputs xi. Additionally or alternatively, a bias b may be added to the weighted sum of the inputs such that an offset is added to each unit in the neural network layer that is independent of the input to the layer. The weighted sum may then be input into a function ω, which may generate one or more outputs y. Weight wi applied to an input xi may indicate whether the input is “excitatory,” indicating that it has strong influence on the one or more outputs y, for instance by the corresponding weight having a large numerical value, and/or a “inhibitory,” indicating it has a weak effect influence on the one more inputs y, for instance by the corresponding weight having a small numerical value. The values of weights wi may be determined by training a neural network using training data, which may be performed using any suitable process as described above. In an embodiment, and without limitation, a neural network may receive semantic units as inputs and output vectors representing such semantic units according to weights wi that are derived using machine-learning processes as described in this disclosure.


Still referring to FIG. 3, flight controller may include a sub-controller 340. As used in this disclosure a “sub-controller” is a controller and/or component that is part of a distributed controller as described above; for instance, flight controller 304 may be and/or include a distributed flight controller made up of one or more sub-controllers. For example, and without limitation, sub-controller 340 may include any controllers and/or components thereof that are similar to distributed flight controller and/or flight controller as described above. Sub-controller 340 may include any component of any flight controller as described above. Sub-controller 340 may be implemented in any manner suitable for implementation of a flight controller as described above. As a further non-limiting example, sub-controller 340 may include one or more processors, logic components and/or computing devices capable of receiving, processing, and/or transmitting data across the distributed flight controller as described above. As a further non-limiting example, sub-controller 340 may include a controller that receives a signal from a first flight controller and/or first distributed flight controller component and transmits the signal to a plurality of additional sub-controllers and/or flight components.


Still referring to FIG. 3, flight controller may include a co-controller 344. As used in this disclosure a “co-controller” is a controller and/or component that joins flight controller 304 as components and/or nodes of a distributer flight controller as described above. For example, and without limitation, co-controller 344 may include one or more controllers and/or components that are similar to flight controller 304. As a further non-limiting example, co-controller 344 may include any controller and/or component that joins flight controller 304 to distributer flight controller. As a further non-limiting example, co-controller 344 may include one or more processors, logic components and/or computing devices capable of receiving, processing, and/or transmitting data to and/or from flight controller 304 to distributed flight control system. Co-controller 344 may include any component of any flight controller as described above. Co-controller 344 may be implemented in any manner suitable for implementation of a flight controller as described above.


In an embodiment, and with continued reference to FIG. 3, flight controller 304 may be designed and/or configured to perform any method, method step, or sequence of method steps in any embodiment described in this disclosure, in any order and with any degree of repetition. For instance, flight controller 304 may be configured to perform a single step or sequence repeatedly until a desired or commanded outcome is achieved; repetition of a step or a sequence of steps may be performed iteratively and/or recursively using outputs of previous repetitions as inputs to subsequent repetitions, aggregating inputs and/or outputs of repetitions to produce an aggregate result, reduction or decrement of one or more variables such as global variables, and/or division of a larger processing task into a set of iteratively addressed smaller processing tasks. Flight controller may perform any step or sequence of steps as described in this disclosure in parallel, such as simultaneously and/or substantially simultaneously performing a step two or more times using two or more parallel threads, processor cores, or the like; division of tasks between parallel threads and/or processes may be performed according to any protocol suitable for division of tasks between iterations. Persons skilled in the art, upon reviewing the entirety of this disclosure, will be aware of various ways in which steps, sequences of steps, processing tasks, and/or data may be subdivided, shared, or otherwise dealt with using iteration, recursion, and/or parallel processing.


Referring now to FIG. 4, a flow chart of an exemplary embodiment of the method 405 of use of dual-motor propulsion assembly 100 is shown in accordance with one or more embodiments of the present disclosure. As shown in step 405, method 400 includes generating, by controller 140, a command. As shown in step 410, method 400 includes receiving, by a first motor and a second motor, the command, where second motor is able to provide motive power to the flight component if the first motor is inoperative. As shown in step 415, method 400 includes moving, by an actuator, the flight component, such as the propulsor. In one or more embodiments, method 400 may also include the step of detecting, by a sensor communicatively connected to the controller and first motor 112 and second motor 116, the attitude command from controller 140, detecting, by the sensor, that first motor 112 is inoperative; and generating a failure datum corresponding to the inoperativeness of first motor 112.


It is to be noted that any one or more of the aspects and embodiments described herein may be conveniently implemented using one or more machines (e.g., one or more computing devices that are utilized as a user computing device for an electronic document, one or more server devices, such as a document server, etc.) programmed according to the teachings of the present specification, as will be apparent to those of ordinary skill in the computer art. Appropriate software coding can readily be prepared by skilled programmers based on the teachings of the present disclosure, as will be apparent to those of ordinary skill in the software art. Aspects and implementations discussed above employing software and/or software modules may also include appropriate hardware for assisting in the implementation of the machine executable instructions of the software and/or software module.


Such software may be a computer program product that employs a machine-readable storage medium. A machine-readable storage medium may be any medium that is capable of storing and/or encoding a sequence of instructions for execution by a machine (e.g., a computing device) and that causes the machine to perform any one of the methodologies and/or embodiments described herein. Examples of a machine-readable storage medium include, but are not limited to, a magnetic disk, an optical disc (e.g., CD, CD-R, DVD, DVD-R, etc.), a magneto-optical disk, a read-only memory “ROM” device, a random access memory “RAM” device, a magnetic card, an optical card, a solid-state memory device, an EPROM, an EEPROM, and any combinations thereof. A machine-readable medium, as used herein, is intended to include a single medium as well as a collection of physically separate media, such as, for example, a collection of compact discs or one or more hard disk drives in combination with a computer memory. As used herein, a machine-readable storage medium does not include transitory forms of signal transmission.


Such software may also include information (e.g., data) carried as a data signal on a data carrier, such as a carrier wave. For example, machine-executable information may be included as a data-carrying signal embodied in a data carrier in which the signal encodes a sequence of instruction, or portion thereof, for execution by a machine (e.g., a computing device) and any related information (e.g., data structures and data) that causes the machine to perform any one of the methodologies and/or embodiments described herein.


Examples of a computing device include, but are not limited to, an electronic book reading device, a computer workstation, a terminal computer, a server computer, a handheld device (e.g., a tablet computer, a smartphone, etc.), a web appliance, a network router, a network switch, a network bridge, any machine capable of executing a sequence of instructions that specify an action to be taken by that machine, and any combinations thereof. In one example, a computing device may include and/or be included in a kiosk.



FIG. 5 shows a diagrammatic representation of one embodiment of a computing device in the exemplary form of a computer system 500 within which a set of instructions for causing a control system to perform any one or more of the aspects and/or methodologies of the present disclosure may be executed. It is also contemplated that multiple computing devices may be utilized to implement a specially configured set of instructions for causing one or more of the devices to perform any one or more of the aspects and/or methodologies of the present disclosure. Computer system 500 includes a processor 504 and a memory 508 that communicate with each other, and with other components, via a bus 512. Bus 512 may include any of several types of bus structures including, but not limited to, a memory bus, a memory controller, a peripheral bus, a local bus, and any combinations thereof, using any of a variety of bus architectures.


Processor 504 may include any suitable processor, such as without limitation a processor incorporating logical circuitry for performing arithmetic and logical operations, such as an arithmetic and logic unit (ALU), which may be regulated with a state machine and directed by operational inputs from memory and/or sensors; processor 504 may be organized according to Von Neumann and/or Harvard architecture as a non-limiting example. Processor 504 may include, incorporate, and/or be incorporated in, without limitation, a microcontroller, microprocessor, digital signal processor (DSP), Field Programmable Gate Array (FPGA), Complex Programmable Logic Device (CPLD), Graphical Processing Unit (GPU), general purpose GPU, Tensor Processing Unit (TPU), analog or mixed signal processor, Trusted Platform Module (TPM), a floating point unit (FPU), and/or system on a chip (SoC).


Memory 508 may include various components (e.g., machine-readable media) including, but not limited to, a random-access memory component, a read only component, and any combinations thereof. In one example, a basic input/output system 516 (BIOS), including basic routines that help to transfer information between elements within computer system 500, such as during start-up, may be stored in memory 508. Memory 508 may also include (e.g., stored on one or more machine-readable media) instructions (e.g., software) 520 embodying any one or more of the aspects and/or methodologies of the present disclosure. In another example, memory 508 may further include any number of program modules including, but not limited to, an operating system, one or more application programs, other program modules, program data, and any combinations thereof.


Computer system 500 may also include a storage device 524. Examples of a storage device (e.g., storage device 524) include, but are not limited to, a hard disk drive, a magnetic disk drive, an optical disc drive in combination with an optical medium, a solid-state memory device, and any combinations thereof. Storage device 524 may be connected to bus 512 by an appropriate interface (not shown). Example interfaces include, but are not limited to, SCSI, advanced technology attachment (ATA), serial ATA, universal serial bus (USB), IEEE 1394 (FIREWIRE), and any combinations thereof. In one example, storage device 524 (or one or more components thereof) may be removably interfaced with computer system 500 (e.g., via an external port connector (not shown)). Particularly, storage device 524 and an associated machine-readable medium 528 may provide nonvolatile and/or volatile storage of machine-readable instructions, data structures, program modules, and/or other data for computer system 500. In one example, software 520 may reside, completely or partially, within machine-readable medium 528. In another example, software 520 may reside, completely or partially, within processor 504.


Computer system 500 may also include an input device 532. In one example, a user of computer system 500 may enter commands and/or other information into computer system 500 via input device 532. Examples of an input device 532 include, but are not limited to, an alpha-numeric input device (e.g., a keyboard), a pointing device, a joystick, a gamepad, an audio input device (e.g., a microphone, a voice response system, etc.), a cursor control device (e.g., a mouse), a touchpad, an optical scanner, a video capture device (e.g., a still camera, a video camera), a touchscreen, and any combinations thereof. Input device 532 may be interfaced to bus 512 via any of a variety of interfaces (not shown) including, but not limited to, a serial interface, a parallel interface, a game port, a USB interface, a FIREWIRE interface, a direct interface to bus 512, and any combinations thereof. Input device 532 may include a touch screen interface that may be a part of or separate from display 536, discussed further below. Input device 532 may be utilized as a user selection device for selecting one or more graphical representations in a graphical interface as described above.


A user may also input commands and/or other information to computer system 500 via storage device 524 (e.g., a removable disk drive, a flash drive, etc.) and/or network interface device 540. A network interface device, such as network interface device 540, may be utilized for connecting computer system 500 to one or more of a variety of networks, such as network 544, and one or more remote devices 548 connected thereto. Examples of a network interface device include, but are not limited to, a network interface card (e.g., a mobile network interface card, a LAN card), a modem, and any combination thereof. Examples of a network include, but are not limited to, a wide area network (e.g., the Internet, an enterprise network), a local area network (e.g., a network associated with an office, a building, a campus or other relatively small geographic space), a telephone network, a data network associated with a telephone/voice provider (e.g., a mobile communications provider data and/or voice network), a direct connection between two computing devices, and any combinations thereof. A network, such as network 544, may employ a wired and/or a wireless mode of communication. In general, any network topology may be used. Information (e.g., data, software 520, etc.) may be communicated to and/or from computer system 500 via network interface device 540.


Computer system 500 may further include a video display adapter 552 for communicating a displayable image to a display device, such as display device 536. Examples of a display device include, but are not limited to, a liquid crystal display (LCD), a cathode ray tube (CRT), a plasma display, a light emitting diode (LED) display, and any combinations thereof. Display adapter 552 and display device 536 may be utilized in combination with processor 504 to provide graphical representations of aspects of the present disclosure. In addition to a display device, computer system 500 may include one or more other peripheral output devices including, but not limited to, an audio speaker, a printer, and any combinations thereof. Such peripheral output devices may be connected to bus 512 via a peripheral interface 556. Examples of a peripheral interface include, but are not limited to, a serial port, a USB connection, a FIREWIRE connection, a parallel connection, and any combinations thereof.


The foregoing has been a detailed description of illustrative embodiments of the invention. Various modifications and additions can be made without departing from the spirit and scope of this invention. Features of each of the various embodiments described above may be combined with features of other described embodiments as appropriate in order to provide a multiplicity of feature combinations in associated new embodiments. Furthermore, while the foregoing describes a number of separate embodiments, what has been described herein is merely illustrative of the application of the principles of the present invention. Additionally, although particular methods herein may be illustrated and/or described as being performed in a specific order, the ordering is highly variable within ordinary skill to achieve methods, systems, and software according to the present disclosure. Accordingly, this description is meant to be taken only by way of example, and not to otherwise limit the scope of this invention.


Exemplary embodiments have been disclosed above and illustrated in the accompanying drawings. It will be understood by those skilled in the art that various changes, omissions, and additions may be made to that which is specifically disclosed herein without departing from the spirit and scope of the present invention.


The foregoing has been a detailed description of illustrative embodiments of the invention. Various modifications and additions can be made without departing from the spirit and scope of this invention. Features of each of the various embodiments described above may be combined with features of other described embodiments as appropriate in order to provide a multiplicity of feature combinations in associated new embodiments. Furthermore, while the foregoing describes a number of separate embodiments, what has been described herein is merely illustrative of the application of the principles of the present invention. Additionally, although particular methods herein may be illustrated and/or described as being performed in a specific order, the ordering is highly variable within ordinary skill to achieve embodiments according to this disclosure. Accordingly, this description is meant to be taken only by way of example, and not to otherwise limit the scope of this invention.


Exemplary embodiments have been disclosed above and illustrated in the accompanying drawings. It will be understood by those skilled in the art that various changes, omissions and additions may be made to that which is specifically disclosed herein without departing from the spirit and scope of the present invention.

Claims
  • 1. A dual-motor propulsion system of an electric aircraft, the system comprising: a flight component attached to an electric aircraft, wherein the flight component is configured to maneuver an electric aircraft through a fluid medium;a redundant sensor arrangement that is communicatively connected to a plurality of motors, wherein the redundant sensor arrangement is configured to detect at least a flight parameter associated with the electric aircraft;the plurality of motors comprising a first motor and a second motor arranged in a vertically stacked configuration, wherein each motor of the plurality of motors comprises an encoderless motor, wherein the plurality of motors additionally comprises: sprag clutches that connect the first motor and the second motor to a shaft, wherein the flight component is connected to the shaft; andthe shaft is configured to extend through the plurality of motors in the vertically stacked configuration; anda flight controller communicatively connected to the redundant sensor arrangement and the plurality of motors, wherein the flight controller is configured to selectively instruct one or more of the plurality of motors to provide motive power to the flight component as a function of the at least a flight parameter.
  • 2. The system of claim 1, wherein the at least a flight parameter comprises an altitude associated with the electric aircraft.
  • 3. The system of claim 1, wherein the at least a flight parameter comprises a velocity associated with the electric aircraft.
  • 4. The system of claim 1, wherein the flight controller is additionally configured to selectively instruct one or more of the plurality of motors to provide motive power to the flight component as a function of a failure datum.
  • 5. The system of claim 4, wherein the failure datum comprises an inoperable motor.
  • 6. The system of claim 4, wherein the failure datum comprises a reduced torque output of the first motor.
  • 7. The system of claim 1, wherein the redundant sensor arrangement comprises two or more inertial measurement units (IMUs).
  • 8. The system of claim 1, wherein the redundant sensor arrangement comprises two or more current sensors.
  • 9. The system of claim 1, wherein the electric aircraft comprises an electric vertical take-off and landing (eVTOL) aircraft.
  • 10. The system of claim 1, further comprising: a first inverter electrically connected to the first motor, wherein the first motor is communicatively connected to the flight controller by way of the first inverter; and;a second inverter electrically connected to the second motor, the second motor, wherein the second motor is communicatively connected to the flight controller by way of the second inverter.
  • 11. A method of use of a dual-motor propulsion system in an electric aircraft, the method comprising: maneuvering, using a flight component, the electric aircraft through a fluid medium;detecting, using a redundant sensor arrangement that is communicatively connected to a plurality of motors, at least a flight parameter associated with the electric aircraft;providing, using a plurality of motors comprising a first motor and a second motor arranged in a vertically stacked configuration, motive power to the flight component attached to the electric aircraft, wherein each motor of the plurality of motors comprises an encoderless motor, wherein the plurality of motors additionally comprises: sprag clutches that connect the first motor and the second motor to a shaft, wherein the flight component is mechanically connected to the shaft; andthe shaft is configured to extend through the plurality of motors in the vertically stacked configuration;instructing, using a flight controller that is communicatively connected to the redundant sensor arrangement and the plurality of motors, wherein the flight controller is configured to selectively instruct one or more of the plurality of motors to provide motive power to the flight component as a function of the at least a flight parameter.
  • 12. The method of claim 11, wherein the at least a flight parameters comprises an altitude associated with the electric aircraft.
  • 13. The method of claim 11, wherein the at least a flight parameter comprises a velocity associated with the electric aircraft.
  • 14. The method of claim 11, wherein the method additionally comprises selectively instructing, using the flight controller, one or more of the plurality of motors to provide motive power to the flight component as a function of a failure datum.
  • 15. The method of claim 14, wherein the failure datum comprises an inoperable motor.
  • 16. The method of claim 14, wherein the failure datum comprises a reduced torque output of the first motor.
  • 17. The method of claim 11, wherein the redundant sensor arrangement comprises two or more inertial measurement units (IMUs).
  • 18. The method of claim 11, wherein the redundant sensor arrangement comprises two or more current sensors.
  • 19. The method of claim 11, wherein the electric aircraft comprises an electric vertical take-off and landing (eVTOL) aircraft.
  • 20. The method of claim 11, further comprising: controlling, using a first inverter electrically connected to the first motor, the first motor, wherein the first motor is communicatively connected to the flight controller by way of the first inverter; andcontrolling, using a second inverter electrically connected to the second motor, the second motor, wherein the second motor is communicatively connected to the flight controller by way of the second inverter.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of Non-provisional application Ser. No. 17/702,069 filed on Mar. 23, 2022, and entitled “A DUAL-MOTOR PROPULSION ASSEMBLY,” the entirety of which is incorporated herein by reference.

Continuation in Parts (1)
Number Date Country
Parent 17702069 Mar 2022 US
Child 18143862 US