The present invention relates generally to a network and communication system used by emergency personnel and more particularly to a dual mesh network and communication system for use therewith.
Firefighter or other first response personnel systems with combination location/tracking, electronics and sensor monitoring indoors/outdoors are very helpful in emergencies. It is very desirable for an incident commander to be in contact with his/her personnel and to monitor their location, the electronic sensors and electro-mechanical equipment they carry with tracking capabilities at the scene of an emergency. Conventional systems have relied on personnel arriving at the scene of an emergency and deploying temporary stationary transceivers, such as beacons, repeaters and antennas inside and outside a building or structure in order to relay information to a central base station. The deployment of these stationary transceivers is necessary to relay information to/from personnel in the building. Further, the stationary transceivers are sometimes used to triangulate the personnel's location.
However, stationary transceivers are large, heavy and require large amounts of power. Additionally, stationary transceivers, once deployed, are difficult to recover or find after the emergency is over, because stationary transceivers are typically lost or destroyed by the firefighters, emergency, or military personnel on the scene. Further, deployment of such stationary transceivers is time consuming and is often not practical under typical emergency circumstances.
A communications system is provided for emergency services personnel that includes a plurality of portable devices and a base station. The portable devices are configured to be carried by emergency services personnel while at an emergency site. The portable devices each have a first transceiver configured to communicate over a first network and a second transceiver configured to communicate over a second network, where the first and second networks operate independent of one another. For example, they may have at least one of different first and second carrier frequencies, protocols, channels and the like. The base station has at least one transceiver for communicating with the portable devices over at least one of the first and second networks. Optionally, the first and second networks may have different transmission characteristics, such as different transmit ranges, power levels and the like.
In accordance with an alternative embodiment, a method is provided for maintaining a communications link with multiple portable devices that are configured to be carried by emergency services personnel while on-site at an emergency location. The method comprises wirelessly broadcasting an alarm message over a first network to the portable devices that are configured to be carried by emergency services personnel. The alarm message identifies a target portable device. The method further includes, in response to the alarm message, wirelessly broadcasting a search message over a second network between the portable devices. The search message identifies the target portable device. In response to the search message, the method further includes transmitting a reply message from the target portable device over the second the network, where the reply message includes target device reply information.
Further features, embodiments, and advantages of the present invention will become apparent from the following detailed description with reference to the drawings.
Referring now to the drawings, in which like numerals represent like components throughout the several views, embodiments of the present invention are next described. The following description of the embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
The system 10 provides a dual-mesh network 11, in which each portable device 20 and the command gateway 12 communicate with one another over two separate networks 13 and 15. The first and second networks 13 and 15 are configured to operate independent of one another without interference therebetween. For example, each network 13, 15 may have a different carrier frequency (e.g., 900 MHz, 2.1 GHz, 2.4 GHz and the like) and/or different communications protocol. As another example, each network 13 and 15 may operate at very close carrier frequencies (e.g., 2.400 GHz and 2.480 GHz) that constitute separate channels within a common general frequency ranges. As another example, one or both of the first and second networks 13 and 15 may be assigned code division multiple access (CDMA) codes, or different sets of channels at a common carrier frequency or at overlapping, communications pass bands.
Each of the first and second networks 13 and 15 may be bidirectional to support transmission and reception within the first network 13 and transmission and reception within the second network 15. Alternatively, one of the first and second networks 13, and 15 may be bidirectional, while the other of the first and second networks 13 and 15 is only capable of one of transmission and reception at the portable devices 20. As a further option, the first and second networks 13 and 15 may be assigned frequencies and bandwidths that exhibit different range and propagation properties through structures (e.g., walls, doors, hallways, floors, stairwells, elevators, etc.). For example, the first network 13 may be assigned a frequency, bandwidth and effective radiated power (ERP) that affords longer range capabilities (e.g., up to 2 miles), but experiences substantial attenuation when encountering structures (e.g., walls, ceilings, etc.). As another example, the second network 15 may be assigned a frequency, bandwidth and ERP that affords shorter range capabilities (e.g., up to 500 yards), but experiences very little attenuation when encountering rigid structures. In
Optionally, each portable device 20 may be interconnected with, or incorporated into, other systems or equipment carried by firefighters, soldiers, emergency workers, or other users. For example, firefighters and many other emergency services personnel typically carry a breathing apparatus when entering a dangerous environment. There are different types of breathing apparatus, with which the portable device 20 may be utilized. Examples of such breathing apparatus include a portable air purifying respirator (PAPR), a self-contained breathing apparatus ((SCBA), a non-powered air purifying respirator (APR), a hose line, any combination thereof and the like. The examples described hereafter are in connection with a SCBA, but it is understood that any other breathing apparatus or combination may be substituted therefore.
Each portable device 20 may be integrated into a SCBA to form an interconnected, comprehensive safety and communications system that includes the SCBA, a portable device 20 and a number of additional components. The portable devices 20 receive SCBA and more generally on-board system data from equipment carried by the user. The on-board system data provides information related to the SCBA, status to the performance, to the environment and the like.
The system 16 includes a Personal Alert Safety System (“PASS”) system 420, a personal digital assistant (“PDA”) device 410, a video camera 460 and a “heads-up”display (“HUD”) 107. The PASS system 420 may include both a PASS unit 430 and a separate PASS control console 450. The PASS unit 430 may be carried in a recess in the user's backpack 100, while the PASS control console 450 hangs from the end of a pressure data line 106, connected via a pressure reducer to the air tank 104, and a reinforced electronics cable sheath 103. The sheath 103 includes an electronics cable that interconnects the PASS unit 430 to the PASS control console 450 and PDA device 410. In the example of
The HUD 107 is connected to the other electronic components via an electronics cable may be integral with the air supply/data line 102. However, the cable may also be separate from the air supply line 102. The HUD 107 displays various information, such as an indication of the amount of air remaining in the tank 104, instructions/information received from the command gateway 12 and/or from other portable devices 20, and the like. The air tank information may be gathered via a pressure transducer located in the outlet pathway of the tank 104. Optionally, the HUD 107 includes four LED's corresponding to the tank 104 being ¼ full, ½ full, ¾ full and completely full.
The PASS control console 450 includes a microprocessor 42, inputs 43, 44 and a plurality of user indicators 47, such as LED's. The inputs 43 and 44 receive signals from a motion sensor 45 and an air sensor 46 in the PASS unit 430 over the communications bus 109. Optionally, the motion sensor 45 and air sensor 46 may be provided within the PASS control console 450. When the air sensor 46 is located at the PASS control console 450, an air pressure line is provided between the tank 104 and the PASS control console 450. The microprocessor 42 of the PASS control console 450 is communicably connected with the microprocessor 32 of the control section 30 by a first communications bus 49. The portable device 20 is battery powered with replaceable or rechargeable batteries 61.
Each wireless communication section 50, 60, may include separate microprocessors 52, 62, RF micro devices 53, 63, and antennas 54, 64, respectively. In addition, the first wireless communication section 50 includes inputs from other devices, such as a digital compass 57 and a temperature sensor 58. The microprocessor 52 of the first wireless communication section 50 is communicably connected with the microprocessor 32 of the control section 30 by the communications bus 65, while the microprocessor 62 of the second wireless communication section 60 is communicably connected with the microprocessor 32 of the control section 30 by a communications bus 67.
Each portable device 20 normally operates as follows. Data from throughout the system 16, such as the remaining capacity of the air tank 104 and the status of the PASS unit 430, is continually or regularly gathered via the PASS system 420 and relayed by the PASS control console 450 to the core microprocessor 32 via the first communications bus 49. The core microprocessor 32 performs general functions such as analyzing received data, displaying received data or other information on the display 35, providing status or alarm indications to users via the LED's 34, and receiving user input or control instructions via the push buttons 33. In addition, the core microprocessor 32 formats/packetizes data, including data received from the PASS system 420, and provides the packetized data to the first and second wireless communication sections 50 and 60 via the communications buses 65 and 67.
The microprocessor 32 formats and packetizes the data based on separate protocols associated with the first and second networks 13 and 15. Thus, data to be transmitted over the first network 13 is formatted and packetized based on a first protocol, while data to be transmitted over the second network 15 is formatted and packetized based on a second protocol.
When the first wireless microprocessor 52 receives data from the microprocessor 32, the data is packaged into one or more data packets for transmission via the first wireless communications network 13. If the received data is simply status data, then the cumulative size of the packets may be relatively small. However, other types of data, such as audio or video transmissions may be packetized into a series of packets that form a large stream. The microprocessor 52 forwards the packetized data to the RF micro device 53 which drives the antenna 54 to broadcast the data packets over the wireless communications network 13. For example, the RF micro-device 53 may include a local oscillator that is up converted or down converted to a frequency corresponding to the carrier frequency associated with the first communications network 13. The carrier frequency is modulated or otherwise mixed with the packetized data to form an RF data stream (or single RF data packet) that is broadcast by the antenna 54. The RF micro-device 53 may transmit and receive over a common frequency. Alternatively, the RF micro-device 53 may transmit and receive over different frequencies.
In certain instances, the RF micro-device 53 may receive data packets from different portable devices 20 at overlapping times. The RF micro-device 53 discriminates between multiple received by processing the first data packet received and ignoring the overlapping data packet that arrived second in time.
Also, between transmissions, the first wireless communication section 50 intermittently monitors in-coming wireless transmissions via the antenna 54 and RF micro device 53. Wireless transmissions are received from other portable devices 20 or equipment in the first wireless communications network 13, such as the command gateway 12. Optionally, wireless transmissions may also be received from other types of communication devices that may also be incorporated into the network 13. The RF micro-device 53 performs signal processing filtering, down converting and other operations upon the received data. The RF micro-device 53 extracts, from the received RF signal, the modulated data packets. Data packets are passed from the RF micro-device 53 to the microprocessor 52, which frames the data packets and examines the data within the data packets to determine whether the portable device 20 is the intended recipient of the data or not.
Each device 20 is assigned a unique device ID that is stored at the microprocessor 52. Received data streams include at least one data packet that includes a destination device ID of the portable device 20 to which the data stream is addressed. The microprocessor 52 compares the destination device ID within a received data stream to the stored device ID of the device 20. When the received data stream is addressed to the device 20, the data is relayed by the microprocessor 52 to the core microprocessor 32. Alternatively, when the data stream is not addressed to the device 20, the data is returned to the RF micro device 53 and antenna 54 for rebroadcast. In this way, packetized data from the various portable devices 20 may be relayed between other devices 20 and the command gateway 12 over the first communications network 13. This reduces the transmission range required of the first wireless communication section 50, which in turn reduces the power requirements of the device 20 as a whole.
The second wireless communications section 60 operates in a manner similar to section 50, but over a separate second network 15. The section 60 includes a microprocessor 62 that communicates with the core microprocessor 32 over communications bus 67. The microprocessor 62 passed outgoing data to an RF micro-device 63 over link 69 for transmission by the antenna 64 over the second network 15. The antenna 64 and RF micro-device 63 monitor the second network 15 for incoming wireless transmissions. When data is received over the second network, the microprocessor 62 compares a device ID in the received data stream with a stored device ID. When the stored and received device IDs match, the received data is passed to the core microprocessor 32. When the stored and received device IDs do not match, the received data is rebroadcast by the RF micro-device 63 and antenna 64 over the second network 15. The RF micro-device 63 may transmit and receive at a common carrier frequency. However, the carrier frequency of the RF micro-device 63 may differ from the carrier frequency of the RF micro-device 53. When overlapping data packets are received, the RF micro-device 63 also processes the first data packet detected.
Optionally, the functionality of the RF microprocessors 52 and 62 may be combined into a single microprocessor or software module operating on the core microprocessor 32. Optionally, the functionality of the RF micro-devices 53 and 63 may be combined into a single RF device that drives a single antenna or both of antennas 54 and 64. Optionally, the functionality of the RF micro devices 53 and 63 may be integrated into the RF microprocessor 52 and 62, respectively. Similarly, the RF microprocessors 52 and 62, and RF micro-devices 53 and 63 may all be combined into a common integrated component.
The data format 500 includes a label field 502 that includes the device or radio ID associated with the device 20 that is transmitting the data packet. For example, the label field 502 may identify a device 20 or the base station computer 14. A name/seat position field 504 includes a personal identification of an individual system 16. The personal identification may constitute a SCBA radio ID and the like. A pressure data field 506 includes information indicating the amount of air remaining in air tank 104 (e.g. ¼, ½, ¾ and full levels). The pressure data field 506 may be populated by the microprocessor 32 based on an air sensor reading from an air sensor 46. The temperature data field 508 includes information indicating the ambient air temperature surrounding the user of the equipments 16. The temperature data field 508 may be filled by the microprocessor 32 based upon information from the temperature sensor 58 that is conveyed to the microprocessor 32 via the microprocessor 52 and communications bus 65.
Altitude data field 510 includes information indicating a detected altitude surrounding the user and equipment 16. The altitude data field 510 is filled by the microprocessor 32 based upon readings at the altitude sensor 55. A batter voltage field 512 is included to indicate a measured battery voltage of the battery source 61 that is used to provide power to the device 20. An alarm field 514 is included to provide an on/off alarm status associated with a particular device 20. The alarm field 514 may indicate that an individual device 20 has manually or automatically initiated an alarm. Alternatively, the base station computer 14 may use the alarm field 514 to instruct a device 20 to activate its alarm. An evacuate acknowledge field 516 is used by the device 20 to acknowledge receipt from the base station computer 14 of an instruction to evacuate. A withdrawal button status field 518 provides an on/off indication of whether an individual device 20 has been automatically or manually designated by the base station computer 14 to be withdrawn.
Next, an example will be described in which the system 10 operates to perform an emergency search to locate a device 20 that has lost communication with the base station computer 14 over the first network 13.
Regardless of the origination of the alarm message, once the core microprocessor 32 identifies a received alarm message it activates the second wireless communication section 60, at 604. At 606, one of microprocessors 32 and 62 determine whether the receiving device 20 is the target device 21. When the portable device 20 receiving the instruction is not the target device 21 itself, then upon activation, the microprocessor 62 of the second wireless communication section 60, at 608, instructs the RF micro device 63 to broadcast a search message including a destination device ID of the target device 21. The search message identifies the target device 21 and requests the target device 21 to respond upon receiving the message. The search messages are received by devices 20 and target device 21 at 610. Next, flow returns to 606.
When, at 606, it is determined that the receiving device 20 is the target device 21, the operation of the target device 21 itself is somewhat different. If the target device 21 receives either an alarm message, via the first wireless communications network 13, or a search message, via the second wireless communications network 15, then the target device 21 operates its second wireless communication section 60 to transmit a reply message at 612, over the second wireless communications network 15, indicating its presence.
Meanwhile, at 614, other portable devices 20 use respective emergency wireless communication sections 60 to monitor for wireless transmissions from the target device 21 transmitted over the second wireless communications network 15. When a reply message from the target device 21 is received by one of the other portable devices 20, at 616, the receiving device 20 generates a new direct contact message for transmission to the command gateway 12 over the first network 13. The direct contact message includes target device reply information and is used to inform the command gateway 12 that the device 20 has made direct contact with the target device 21. At the same time, the receiving device 20 continues to gather status information from its own integrated system 16 or the like, and to transmit the status information to the command gateway 12 using the first wireless communication section 50. Thus, the target device reply information may be incorporated into a normal status message, or may be sent independently. Regardless, the target device reply information is transmitted using the first wireless communication section 50 over the first wireless communications network 13, which has a longer range than the second wireless communication section 60. In accordance with the above process, the target device reply information is repacketized and broadcast over the first wireless communications network 13′.
Optionally, the portable devices 20 making direct contact with the target device 21 via the second wireless communications network 15 may use the reply message from the target device 21 to calculate an estimated distance between the receiving device 20 and the target device 21. The distance between a receiving device 20 and the target device 21 may be calculated based on signal strength, time of flight and/or time difference of arrival. For time difference of arrival, the location of the target device 21 is calculated relative to positions of other devices 20 that each receive the reply message. In the foregoing examples, each device 20 that receives the reply message also records with the reply message a time stamp of a time at which the reply message was received. The portable devices 20 and/or base station computer 14 compares multiple time stamps from different receiving devices 20 to determine time differences between the points in time at which each receiving device 20 received the reply message. The time differences are then used to estimate a location of the target device 21 relative to the receiving devices 20.
When the location of the target device 21 is based on time of flight, the target device 21 may include the reply message and time stamp indicating when the reply message was sent. The receiving devices 20 may also record a time stamp for when a reply message is received. A comparison of the time stamps from the target device 21 and receiving devices 20 provides an estimated distance or range from the target device 21 to each receiving device 20.
The first wireless communication section 50 of each of the various portable devices 20, including that of the target device 21, continuously operate. Thus, as described previously, messages are sent and repeatedly received over the first wireless communications network 13. When a message is received, each device's dedicated microprocessor 52 determines whether it is the intended recipient for any of the various messages and, if not, retransmits the message back over the first communications network 13. Eventually, each message, including messages pertaining to the location of the target device 21, is thus transmitted and retransmitted to its intended recipient, which is typically the command gateway 12.
Throughout the process of
The transceiver 1210 communicates over a serial data link 1226 with a processor 1228 that is configured to perform console and heads-up display management functions. The processor 1228 receives inputs from a pressure sensor 1230, a temperature sensor 1232, a compass and altimeter sensor 1234 and the like. An RFID circuit 1236 provides user information to the processor 1228. The RFID circuit 1236 allows the user to log in and map their names/identification to a specific system. The processor 1228 communicates with the RF IC 1212 to receive status information to be communicated to the base station 1202. A series of switched (e.g., reed switches, push buttons and the like) are provided on the system to be activated by the user to manually activate various functions, such as a withdrawal switch 1238, an emergency switch 1240 and reset switch 1242. The processor 1228 controls a series of LCDs 1244 and a LCD display 1246.
The PAK module 1206 also includes a transceiver 1260 that communicates over the second network 15 with the base station 1202 and other devices. The transceiver 1260 includes a RF IC 1262 that controls the power amplifier 1264 to transmit over an antenna 1266. A serial data link 1276 is provided between the RF IC 1262 and a PASS processor 1278. The PASS processor 1278 receives an input signal from a motion sensor 1280 and controls a piezo element 1282 to produce an audible sound during certain modes of operation.
The transceiver 1260 receives, among other things, distress messages 1284 from other devices, including the device ID of the transmitting PAK module 1206. The transceiver 1260 rebroadcasts the distress messages 1286 along with the device ID of the device from which the distress message originated.
During operation, when a user activates the emergency push button 1240, the processor 1228 informs the PAK module 1206 that the emergency status has been activated. In response thereto, the PASS processor 1278 within the PAK module 1206 activates a full alarm condition with the audible alarm being generated over the piezo 1282. In addition, a visible alarm is produced at the LCD display 1246 and an emergency message is transmitted over one or both of the first and second networks 13 and 15 by the transceivers 1210 and 1260, respectively.
When the user activates the withdrawal switch 1238, such activation indicates that the user wishes to exit from the building. The user may push the withdrawal switch 1238 to inform an operator at the base station 1202 of the user's desire to exit. When the withdrawal switch 1238 is activated, the processor 1228 instructs the transceiver 1210 to convey over the first network 13 a withdrawal message. The console module 1204 and PAK module 1206 may be programmed wirelessly over one or both of the first and second networks 13 and 15.
Next, some exemplary communications between the console and PAK modules 1204 and 1206 are described. An evacuation message may be initiated at the base station 1202 and transmitted over the first network 13 to the transceiver 1210. The processor 1228 identifies the evacuation message and conveys an evacuation notification signal to the PASS processor 1278 of the PAK module 1206. The PASS processor 1278 replies with an acknowledgment (evac. acknowledge signal) to the console module 1204 which then transmit the “evac. acknowledge signal” back to the base station 1202. The “evac. acknowledge signal” is initiated manually by the user, such as by pressing the reset switch 1242 to acknowledge receipt of the evacuation signal and that an evacuation is initiated.
When the PAK module 1206 enters an alarm condition, the PASS processor 1278 conveys an alarm signal to the processor 1228. The console module 1204 then transmits the alarm status to the base station 1202 over the first network 13.
When the user activates one of the emergency reset buttons 1240 and 1242, the processor 1228 provides an interrupt to the PASS processor 1278 of PAK module 1206. Pressure data from the pressure sensor 1230 is passed through the processor 1228 to the PASS processor 1278 of the PAK module 1206 and to the transceiver 1210. The transceiver 1210 conveys the pressure data, once properly formatted into packetized data to the base station 1202. Optionally, the LCD display 1246 may display upon demand from the user, an amount of time remaining for the air tank. The LCD display may not continuously display the air time remaining information to conserve power. The user may press the reset switch 1242 in order to initiate display of the time remaining information.
Each portable device 1315 is designed to be carried by an individual firefighter or other emergency services personnel as part of his equipment 1328. As shown in
The keypad 1421 and pushbuttons 1407 together enable a user to input data, select options, and otherwise control the operation of the device 1315. Generally, the keypad 1421 provides full operational control of the device 1315, while the pushbuttons 1407 serve as “shortcut” keys to enable certain functions to be carried out with a minimum of effort and time. The battery system 1422 preferably includes both a main general use battery 1423 and a second battery 1424, which may be a coin cell, for backing up the memory. The battery system 1422 may be recharged.
The GPS subsystem 1412 includes a GPS device 14121 and a dedicated antenna 14122. The GPS device 14121 may utilize any known GPS technology, including differential GPS (“DGPS”), whereby positional errors are corrected through the use of ground references having known coordinates; assisted GPS (“A-GPS”), whereby data is collected from multiple sources to improve precision; or the like. For indoor use, the GPS device 14121 may utilize the GL-16000 32-bit bus indoor chip set or the GL-HSRF serial interface chipset, both from Fujitsu. For outdoor use, the GPS device 14121 may utilize the onboard MLOC GPS receiver chipset.
Although many GPS units are capable of measuring position in the Z-direction (i.e., elevation), the GPS subsystem 1412 may also include a separate altimeter 14123 for making or supplementing this measurement. The altimeter 14123, which may be an atmospheric pressure device or any other suitable device, preferably IC-based, may be incorporated in the device 1315 as shown or may be disposed elsewhere in the user's equipment 1328.
It will be apparent to those of ordinary skill in the art that other types of positioning systems may be substituted for the GPS subsystem 1412 described herein. For example, positioning systems utilizing ultra-wide band (“UWB”) technologies are currently being developed, and other wireless technologies may likewise be used or developed for use in determining precise location data. As used herein, the term “GPS” should generally be understood to encompass or anticipate the use of such technologies, and the selection and implementation of a device or system making use of such a technology will likewise be apparent to one of ordinary skill in the art.
Once the device 1315 is operational, it begins gathering data from a variety of sources. For example, on a periodic basis, the GPS subsystem 1412 makes a positional determination using the GPS satellite constellation 1468, in accordance with conventional GPS operations. If the GPS subsystem 1412 includes a separate altimeter 14123, then the microprocessor 14111 may derive an additional vertical elevation measurement in conjunction with the X, Y and optional Z data developed by the GPS device 14121. When considered in the sequence in which they were determined, preferably in conjunction with an indication of the time at which they were determined, these readings form a “bread crumb” trail that reflects the path taken by the device 1315 as it was carried along by its owner.
As various types of data are received by the device 1315, the data is processed by the microprocessor 14111, and some or all of the data may be buffered in a memory that is preferably at least 128 MB in size. In addition, at least some of the data is transmitted via the wireless network interface 1411 to the user's wireless LAN 1370. Thus, not only may a firefighter's PASS system may be monitored remotely to determine the status of his air tank or whether the firefighter may be injured or otherwise debilitated, but position data (GPS, dead reckoning or both), audio data from the microphone, video data from the camera, stored or user-input data from the device 1315, and environmental or biometric data gathered by the PASS unit may all likewise be transmitted as well.
The data is preferably transmitted in such a way that data received from the various sources at the same time is transmitted together (or in close proximity) so that a maximum amount of data for each point in time is grouped together. This enables a fuller “snapshot” of an emergency worker's situation in a dangerous area to be made available, using appropriate software, to personnel located at a command center. Thus, for example, if a firefighter's motion sensor indicates that his PASS system has been motionless for more than the predetermined maximum period of time, then the positional data (GPS, dead reckoning or both) corresponding in time to the motion sensor data may be consulted to determine where the firefighter was when the PASS system stopped moving. If desired, the complete “bread crumb” trail left by the firefighter's GPS subsystem 1412 may be studied in order to determine how to reach the firefighter. Preferably, the bread crumb trail may then be downloaded directly from the wireless LAN 1370 into another firefighter's device 1315 for direct, on-the-scene use without having to exit the building or return to the truck. Similarly, video data may be coordinated with positional data to provide information to a command center as to the precise location of a particular situation captured by the video camera, or audio data may be combined with PASS data to provide information about what a firefighter was saying or doing when his PASS unit indicated that he became motionless. Of course, it will be apparent to those of ordinary skill in the art that a wide variety of useful combinations of data may be provided by the system of the present invention.
Because of the large amounts of bandwidth required to transmit video data, certain concessions may be necessary with regard to such transmissions. For example, in one embodiment, if video data is being transmitted, then audio data from the user's microphone is not transmitted. In another approach, video images from the camera may be compressed using MPEG or similar methods before being stored and/or transmitted.
The command center preferably further includes the truck-based GPS unit 1365. The truck-based GPS unit 1365 includes a GPS device, a dedicated antenna, a controller, and a GPS almanac. Because the truck-based GPS unit 1365 is located in relatively close proximity to each firefighter or other worker and his GPS-equipped device 1315, small errors in the GPS data derived by a particular PDA device 1315 may be accounted for using the readings from the truck-based GPS unit 1365.
In addition to transmitting data gathered from various on-board subsystems, each device 1315 is preferably capable of receiving data from devices 1315 and other points or nodes in the LAN 1370. Incoming data may be received at the antenna 14113 and relayed to the microprocessor 14111 via the NIC 14112. Such data may include any data transmitted from another device 1315 as well as similar data transmitted from a command center or similar node in the LAN 1370. Thus, for example, video data from the camera of the device 1315 of a first user may be transmitted via the device 1315 of that system 1315 to a second user's device 1315, where it may be processed and displayed on the display 1419 of the second system's device 1315. This would permit several team members to see video captured by another team member acting as a scout. Similarly, positional data, audio data and the like may likewise be shared. In addition, data such as text messages, map or floorplan data, and the like may be transmitted from a command center to the devices 1315 of one or more personnel and displayed to them via the displays 1419 of their respective devices 1315.
In another feature of the present invention, each device 1315 may operate as a repeater unit for relaying data from other devices 1315 located in relatively close proximity. However, unlike previous systems that use deployable, dedicated repeaters to increase effective transmission distances, the system of the present invention instead utilizes a peer-to-peer mesh network technology to achieve greater transmission distance. The PASS control console of each individually-issued PASS system is capable of full duplex transmissions with other PASS consoles, using the 802.11 standard protocol, to form a mesh network architecture that does not rely on a central base station, router or access point to relay the data transmissions to the other client devices. All PASS control consoles IO within the network act as repeaters, transmitting data (including voice, PASS data, dead reckoning and GPS coordinate data, video, and the like) from one device to the next device until the data packet has reached its final destination. Thus, for example, one firefighter may be in an area of a building from which direct communication with his wireless LAN 1370 is impossible or unreliable, but because each device 1315 may be used to relay data from other devices 1315, data from the firefighter's device 1315 may be relayed to the wireless LAN 1370 by another device 1315 in the area. Thus, a device 1315 may also be used or modified to serve as a GPS location beacon, a data packet repeater, a “camera on a stick,” an unmanned drop sensor for sensing and relaying data, a personal In unit, and the like.
It will be apparent that locating and tracking individual devices in a mesh network is also possible without requiring the use of GPS. However, the degree of accuracy may vary, and the use of a combination of dead reckoning with GPS, as described previously, can increase the accuracy to within +/−5 meters.
The peer-to-peer 802.11 mesh networking technology creates a mobile network without the need of any existing infrastructure. This mobile wireless LAN 1370 may further be wirelessly interfaced with the WAN 1380 (or a cell network) to facilitate communication and distribution of data over a larger area. Tie in may be provided through a base station, typically residing on a fire truck, since existing networks require interface hardware to address different network protocols. The WAN 1380 may connect together other LAN's 1370 on the scene; battalion equipment, including maintenance and support elements as well as equipment from the next higher echelon; land line communications, including to a GPS almanac service; the internet; hospitals, local government and other emergency agencies; and the like.
While the above examples are provided in terms of processors and micro-devices, it is understood that the processors and micro-devices merely constitute functional modules that may be implemented in discrete logic, hardware, firm ware, software, in a single CPU, in multiple CPUs, in FPGAs and the like.
Based on the foregoing information, it is readily understood by those persons skilled in the art that the present invention is susceptible of broad utility and application. Many embodiments and adaptations of the present invention other than those specifically described herein, as well as many variations, modifications, and equivalent arrangements, will be apparent from or reasonably suggested by the present invention and the foregoing descriptions thereof, without departing from the substance or scope of the present invention. Accordingly, while the present invention has been described herein in detail in relation to its preferred embodiment, it is to be understood that this disclosure is only illustrative and exemplary of the present invention and is made merely for the purpose of providing a full and enabling disclosure of the invention. The foregoing disclosure is not intended to be construed to limit the present invention or otherwise exclude any such other embodiments, adaptations, variations, modifications or equivalent arrangements; the present invention being limited only by the claims appended hereto and the equivalents thereof. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for the purpose of limitation.
This application is a continuation of U.S. patent application Ser. No. 11/343,776 filed Jan. 31, 2006 and entitled “DUAL-MESH NETWORK AND COMMUNICATION SYSTEM FOR EMERGENCY SERVICES PERSONNEL” which is a continuation-in-part of U.S. patent application Ser. No. 10/744,901 filed Dec. 23, 2003 and entitled “PERSONAL MULTIMEDIA COMMUNICATION SYSTEM AND NETWORK FOR EMERGENCY SERVICES PERSONNEL,” which is entitled to the benefit of, and claims priority to, provisional U.S. Patent Application Ser. No. 60/436,038, filed Dec. 23, 2002 and entitled “HANDHELD MULTIMEDIA COMMUNICATION SYSTEM FOR FIREFIGHTERS.” Each of the above applications is incorporated herein by reference in their entirety. In addition, this application is entitled to the benefit of, and claims priority to, provisional U.S. Patent Application Ser. No. 60/648,595 filed Jan. 31, 2005 and entitled “DUAL-NETWORK LOCATOR AND COMMUNICATION SYSTEM FOR EMERGENCY SERVICES PERSONNEL,” the entirety of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4468656 | Clifford et al. | Aug 1984 | A |
4675656 | Narcisse | Jun 1987 | A |
4906972 | Spencer | Mar 1990 | A |
5392771 | Mock et al. | Feb 1995 | A |
5552772 | Janky et al. | Sep 1996 | A |
5564429 | Bonn et al. | Oct 1996 | A |
5568121 | Lamensdorf | Oct 1996 | A |
5596652 | Piatek et al. | Jan 1997 | A |
5689234 | Stumberg et al. | Nov 1997 | A |
5738092 | Orr | Apr 1998 | A |
5793882 | Piatek et al. | Aug 1998 | A |
5815417 | Orr | Sep 1998 | A |
5864481 | Gross et al. | Jan 1999 | A |
5943922 | Rolfe et al. | Aug 1999 | A |
5946618 | Agre et al. | Aug 1999 | A |
5950133 | Bledsoe | Sep 1999 | A |
5977913 | Christ | Nov 1999 | A |
5990793 | Bieback | Nov 1999 | A |
6031454 | Lovejoy et al. | Feb 2000 | A |
6072396 | Gaukel | Jun 2000 | A |
6091331 | Toft et al. | Jul 2000 | A |
6100806 | Gaukel | Aug 2000 | A |
6169497 | Robert | Jan 2001 | B1 |
6198394 | Jacobsen et al. | Mar 2001 | B1 |
6201475 | Stumberg et al. | Mar 2001 | B1 |
6219346 | Maxemchuk | Apr 2001 | B1 |
6243039 | Elliot | Jun 2001 | B1 |
6268798 | Dymek et al. | Jul 2001 | B1 |
6285857 | Javitt | Sep 2001 | B1 |
6310552 | Stumberg | Oct 2001 | B1 |
6325283 | Chu et al. | Dec 2001 | B1 |
6333694 | Pierce et al. | Dec 2001 | B2 |
6472988 | Feld et al. | Oct 2002 | B1 |
6477387 | Jackson et al. | Nov 2002 | B1 |
6504794 | Haase et al. | Jan 2003 | B2 |
6522531 | Quintana et al. | Feb 2003 | B1 |
6538623 | Parnian et al. | Mar 2003 | B1 |
6549845 | Eakle et al. | Apr 2003 | B2 |
6606993 | Wiesmann et al. | Aug 2003 | B1 |
6628941 | Knoblach et al. | Sep 2003 | B2 |
6653937 | Nelson | Nov 2003 | B2 |
6675091 | Navab | Jan 2004 | B2 |
6703930 | Skinner | Mar 2004 | B2 |
6824065 | Boone et al. | Nov 2004 | B2 |
6826117 | Haase et al. | Nov 2004 | B2 |
6850844 | Walters et al. | Feb 2005 | B1 |
6853303 | Chen et al. | Feb 2005 | B2 |
6859725 | Challoner et al. | Feb 2005 | B2 |
6894610 | Schubert et al. | May 2005 | B2 |
6899101 | Haston et al. | May 2005 | B2 |
6930608 | Grajales et al. | Aug 2005 | B2 |
6965344 | Halsey et al. | Nov 2005 | B1 |
6999441 | Flammer | Feb 2006 | B2 |
7027773 | McMillin | Apr 2006 | B1 |
7034678 | Burkley et al. | Apr 2006 | B2 |
7079831 | Schwartzman et al. | Jul 2006 | B2 |
7089930 | Adams et al. | Aug 2006 | B2 |
7091852 | Mason et al. | Aug 2006 | B2 |
7113089 | Ho | Sep 2006 | B2 |
7126951 | Belcea et al. | Oct 2006 | B2 |
7148803 | Brandy | Dec 2006 | B2 |
7187941 | Siegel | Mar 2007 | B2 |
8254346 | Karaoguz et al. | Aug 2012 | B2 |
20010034793 | Madruga et al. | Oct 2001 | A1 |
20010036832 | McKay | Nov 2001 | A1 |
20010048364 | Kalthoff et al. | Dec 2001 | A1 |
20020006810 | Schiller | Jan 2002 | A1 |
20020008625 | Adams et al. | Jan 2002 | A1 |
20020052208 | Porcino | May 2002 | A1 |
20020058508 | Pallas et al. | May 2002 | A1 |
20020065594 | Squires et al. | May 2002 | A1 |
20020065868 | Lundsford et al. | May 2002 | A1 |
20020081970 | Wingren | Jun 2002 | A1 |
20020098843 | Struhsaker | Jul 2002 | A1 |
20020115478 | Fujisawa et al. | Aug 2002 | A1 |
20020135488 | Hibbs et al. | Sep 2002 | A1 |
20020155845 | Martorana | Oct 2002 | A1 |
20020159409 | Wolfe et al. | Oct 2002 | A1 |
20020188402 | Huang et al. | Dec 2002 | A1 |
20030078029 | Petite | Apr 2003 | A1 |
20030152061 | Halsey et al. | Aug 2003 | A1 |
20030162548 | Kujala | Aug 2003 | A1 |
20030165128 | Sisodia et al. | Sep 2003 | A1 |
20030214397 | Perkins et al. | Nov 2003 | A1 |
20040001442 | Rayment et al. | Jan 2004 | A1 |
20040004537 | Flick | Jan 2004 | A1 |
20040004547 | Appelt et al. | Jan 2004 | A1 |
20040008663 | Srikrishna et al. | Jan 2004 | A1 |
20040070515 | Burkley et al. | Apr 2004 | A1 |
20040087316 | Caci | May 2004 | A1 |
20040088584 | Shacher et al. | May 2004 | A1 |
20040105399 | Robertazzi et al. | Jun 2004 | A1 |
20040185822 | Tealdi et al. | Sep 2004 | A1 |
20040223469 | Bahl et al. | Nov 2004 | A1 |
20050001720 | Mason et al. | Jan 2005 | A1 |
20050065678 | Smith et al. | Mar 2005 | A1 |
20050124377 | Shih et al. | Jun 2005 | A1 |
20050152396 | Pichna et al. | Jul 2005 | A1 |
20050165616 | Ellis et al. | Jul 2005 | A1 |
20050185606 | Rayment et al. | Aug 2005 | A1 |
20050239451 | Periyalwar et al. | Oct 2005 | A1 |
20050245272 | Spaur et al. | Nov 2005 | A1 |
20050253707 | Clarke et al. | Nov 2005 | A1 |
20060023681 | A'Rafat | Feb 2006 | A1 |
20060079180 | Sinivaara | Apr 2006 | A1 |
20060087993 | Sengupta et al. | Apr 2006 | A1 |
20060120370 | Ginchereau et al. | Jun 2006 | A1 |
20060125630 | Parkulo | Jun 2006 | A1 |
20060158329 | Burkley et al. | Jul 2006 | A1 |
20060216011 | Godehn | Sep 2006 | A1 |
20060265664 | Simons et al. | Nov 2006 | A1 |
20060273894 | Goehler | Dec 2006 | A1 |
20070129045 | Aerrabotu | Jun 2007 | A1 |
Number | Date | Country |
---|---|---|
1379026 | Jan 2004 | EP |
2372892 | Sep 2002 | GB |
WO 03050689 | Jun 2003 | WO |
Entry |
---|
A Fire Service User Requirement for Telemetry at Incidents: JCDD/40—Issue 02; Jun. 9, 1997, 23 pages. |
Personnel Accountability System Technology Assessment; United States Fire Administration; Federal Emergency Management Agency; 86 pages. |
Survivair Pant® her® , Panther, 6 pgs. |
Requirement No. MG-41, Issue 1; A Cardinal Points Requirement for a Radio Telemetry System for Use by the Fire Service, 50 pages. |
Personnel Accountability System Technology Assessment; United States Fire Administration; Federal Emergency management Agency; Dec. 1999, 86 pgs. |
Radio Frequency & Communication Planning Unit, Requirement No. MG-41 (Issue 1): A Cardinal Points Requirement for a Radio Telemetry System for Use by the Fire Service; Jan. 12, 1994; 51 pages. |
Survivair Pant® her® , Panther, Mar. 2003, 6 pgs. |
Number | Date | Country | |
---|---|---|---|
20080284589 A1 | Nov 2008 | US |
Number | Date | Country | |
---|---|---|---|
60436038 | Dec 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11343776 | Jan 2006 | US |
Child | 12140845 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10744901 | Dec 2003 | US |
Child | 11343776 | US |