The present invention pertains to an apparatus for external viewing from within a secure location and more particularly to a dual optical path trapezoidal wide angle periscope for military applications that includes laser protection, ballistics protection, and an expanded field of regard to handle threats from above.
The subject of this invention is the design of a new type of direct vision periscope. This periscope is designed to meet requirements for a dramatic increase in the vertical field of regard over existing periscope designs. Here, field of regard refers to the number of degrees of visual data available to the sensor when sensor movement is allowed. Existing periscope designs for military applications do not allow a soldier to see an enemy on elevated areas or rooftops in an urban combat setting. This lack of vision capability places greater risks on the soldiers and their equipment. A periscope with a greater vertical field of regard would offer improved capability for area surveillance and hence soldier survivability and safety.
There are no simple direct vision periscopes currently designed that can achieve a vertical field with a range of view of an estimated −24° to +59°. For example, the wide angled rapezoidal periscope described in U.S. Pat. No. 4,934,246 provides for a low glint reflection, laser eye safe filters and ballistic features. However, vertical field of regard is limited by mirror placement within the periscope body. One way to increase the field of regard is with moveable optical systems. However, there is always an issue of reliability with complex moveable mirror systems. No current direct vision periscope has the capability of seeing such a large vertical field of regard in a passive device without adjustable mechanism such as moveable or rotating mirrors or moveable mounting devices.
Thus there is a need for periscopes with an increased field of regard obtained passively. The system should not require the operator to make manual adjustments to the viewing system components or to the mounting angle. The periscope should be trapezoidal in shape to take advantage of close semicircular mounting when used in combination with other periscopes to achieve a panoramic exterior view without blind spots. The periscope should also provide ballistics, low glint and laser eye safe filters.
The present invention is a dual optical path periscope. The increased vertical field of regard is achieved by creating a second periscope within the body of a more standard periscope design. This is accomplished by adding a second set of mirrors that are strategically placed within the envelope of the standard periscope to create a second optical path that favors looking upward. This second optical path is designed to operate in combination with a primary optical path periscope that favors looking straight ahead and down. Both optical paths have a set of mirrors that are strategically placed within the same housing to economize space and ease of human interaction. The paths overlap within a common housing so that the operator, with some intuitive head movement, can achieve the entire vertical range requirement.
An advantage of this periscope design is to increase the upward vision capability to at least +45° while not sacrificing the normal forward and down look capability. A second advantage is to achieve upward vision with a passive system that does not require the operator to make adjustments to the viewing system components or to the mounting angle. This passive approach capitalizes on the intuitive human behavioral method of moving the eye position down to look up higher. This intuitive action brings the secondary path into view. The secondary viewing path takes over the upward vision approximately where the primary path left off, so as not to confuse the viewer with an interrupted or non-continuous view. This is especially advantageous in a military environment where the operator is a soldier encumbered by personal headgear. A third advantage is the ability to mount the periscope into a semi-circular configuration closely nested with other similar periscopes to achieve an optimum near panoramic view with direct optics and no distortion.
The present invention involves the creation of a second periscope within a periscope. This second optical viewing path overlaps the normal forward viewing path obtained from the primary set of mirrors. The secondary viewing path utilizes the same, although larger than normal, interior and exterior windows as the primary viewing path. The overall package maintains similar features to the wide angled trapezoidal periscope in general shape, mounting features, low glint window angles, laser eye safe filters and ballistic features. The wide angled trapezoidal periscope design was chosen because it has desirable features that are enhanced by the new dual path viewing capability. However this dual path design can be applied to older rectangular bodied periscopes as well. In the preferred embodiment, each pair of mirrors and windows are parallel to avoid optical distortions.
In the preferred embodiment, the main optical path has a vertical field of regard of 24° below to 24° above the horizon. The second optical path has a vertical field of regard of 12° above to 59° above the horizon. In this embodiment the overlap of the two optical paths is 12° but the overlap and the field of regard may be changed accordingly to satisfy specific requirements. Since the design is dependant on the precise vertical cross section and the shape, size and placement of the mirrors, the periscope can have a variety of widths based upon the application and mounting design for a specific installation.
The front window of the periscope is angled so as to minimize glare, reflections and improve the signature management of the periscope and vehicle system. This new periscope is planned for use on military combat vehicles where direct optic vision is required for vehicle control under ballistic protection. Several periscopes mounted closely in a semi-circular arrangement provide a near panoramic view of the surrounding environment. When mounted in a hatch they can provide the soldier with unity of vision for close in maneuverability and increasingly important upward view for rooftop and aerial threats. In conjunction with the properly designed hatch or vehicle, mounting the periscope with its offset optical path, provides ballistic protection for the human operator's head. Distortion free direct optics allows the human operator the passive reliability of natural vision, depth perception and situational awareness.
Other indirect vision devices and sensors may also be used to enhance and augment the direct vision of the periscopes.
The wide angle trapezoidal dual path periscope 10 of the present invention is illustrated as being on a military vehicle 12 and depicted in
The dual path periscope 10 is illustrated in
The upper housing 13, as illustrated in
The lower housing 14 is illustrated in
The lower window 46 is comprised in a preferred embodiment of a clear polycarbonate. The outer surface of lower window 46 includes an abrasive resistant coating. The lower window 46 fits within lower window aperture 36.
The optical system 15 is disposed about a block 51 of an optical quality material such as plastic methacrylate or similar material. Block 51 as depicted in
The vertical field of regard of the dual optical path periscope 10 of the present invention is illustrated in
From the foregoing description it is apparent that the trapezoidal periscope of the present invention includes an upper housing 13 which is larger in width and length than the lower housing 14. Since the lower housing 14 is generally smaller than the upper housing 13 the lower housing 14 extends into the crew/operator area.
In operation the dual optical path periscope 10 is disposed about the operator position 70. The operator chooses one of a plurality of periscopes 10 to utilize. When the operator's eyes are in a normal eye position as indicated by “Path 1” in
Although the preferred embodiment is disclosed, it will be apparent that modification and variation may be made without departing from what is regarded to be the subject matter of the invention.
The invention was made by an agency of the U.S. Government or under a contract with an agency of the U.S. Government. The name of the U.S. Government agency is the United States Army and the Government contract number is W56HZV-05-0724.
Number | Name | Date | Kind |
---|---|---|---|
2173106 | Gerhardt | Sep 1939 | A |
3013471 | Clave et al. | Dec 1961 | A |
3482897 | Hopp | Dec 1969 | A |
3619040 | Rickets | Nov 1971 | A |
4173394 | Clave et al. | Nov 1979 | A |
4561733 | Kreischer | Dec 1985 | A |
4572625 | Arndt et al. | Feb 1986 | A |
4732438 | Orbach et al. | Mar 1988 | A |
4934246 | Benson et al. | Jun 1990 | A |
5128803 | Sprafke | Jul 1992 | A |
5315915 | Sprafke | May 1994 | A |
5526177 | Fantone | Jun 1996 | A |
6122100 | Miller | Sep 2000 | A |
6643969 | Avizonis, Jr. | Nov 2003 | B1 |
6991340 | Townsend, Jr. et al. | Jan 2006 | B2 |
Number | Date | Country |
---|---|---|
08-304714 | Nov 1996 | JP |
Number | Date | Country | |
---|---|---|---|
20090015915 A1 | Jan 2009 | US |