The present disclosure generally relates to integrated circuit (IC) design. In particular, the present disclosure addresses a dual path level shifter circuit design.
A level shifter is a circuit used to translate signals from one logic level or voltage domain to another. Level shifters are typically used to bridge domains between processors, logic, sensors and other circuits. It is common for level shifter designs to use multiple voltage supplies. For example, a conventional level shifter design can include a set of inverters or invertors connected in series, where one or more inverters or buffers are connected to a core voltage while at least one other inverter or invertor is connected to a regulator voltage. However, when an input signal crosses supplies, duty cycle distortion is introduced in the stepped-up or stepped-down output signal. Duty cycle distortion (DCD) refers to an amount by which a mean positive width of cycles in a waveform of a signal differ from the mean negative width.
Various ones of the appended drawings merely illustrate example embodiments of the present inventive subject matter and cannot be considered as limiting its scope.
Reference will now be made in detail to specific example embodiments for carrying out the inventive subject matter. Examples of these specific embodiments are illustrated in the accompanying drawings, and specific details are set forth in the following description in order to provide a thorough understanding of the subject matter. It will be understood that these examples are not intended to limit the scope of the claims to the illustrated embodiments. On the contrary, they are intended to cover such alternatives, modifications, and equivalents as may be included within the scope of the disclosure.
Aspects of the present disclosure include a dual path level shifter to reduce duty cycle distortion along with systems, method, devices, and other circuits related thereto. A first path of the level shifter comprises a first set of inverters connected in series and a second path of the level shifter comprises a second set of inverters connected in series. In general terms, N inverters in the first path are connected to a first voltage supply (e.g., a voltage regulator) and M+1 inverters in the first path are connected to a second voltage supply (e.g., a core voltage supply). In this second path, N+1 inverters are connected to the first voltage supply and M inverters are connected to the second voltage supply. As an example, the first set of inverters can include a first inverter, a second inverter, and a third inverter connected in series, and the second set of inverters can include a fourth inverter, a fifth inverter, and a sixth inverter connected in series. In this example, the first, fourth, and fifth inverters are connected to a first voltage supply, and the second, third, and sixth inverters are connected to a second voltage supply.
An input clock signal is received at a level shifter input. The first path generates a first intermediate clock signal based on the input clock signal, and the second path generates a second intermediate clock signal based on the input clock signal. The first intermediate clock signal has a first duty cycle distortion and the second intermediate clock signal has a second duty cycle distortion. For example, the first intermediate clock signal may have a positive duty cycle distortion and the second intermediate clock signal may have a negative duty cycle distortion.
The first and second paths are connected in parallel to a level shifter output that provides an output clock signal based on a combination of the first and second intermediate clock signals. The combination of the first and second intermediate clock signals results in an averaging of the first and second duty cycle distortion in the output clock signal. In some instances, the averaging of the first and second duty cycle distortion results in duty cycle distortion being eliminated in the output clock signal.
With reference to
The dual path level shifter 100 receives an input clock signal 130 at input 140 from a clock source. The input clock signal 130 is at an input signal level.
As shown in
With reference to
It shall be appreciated that although
It shall be further appreciated that although
At operation 205, the dual path level shifter 100 receives an input clock signal at input 140. The input clock signal is at a first signal level (an input signal level).
The first path 110 generates a first intermediate clock signal (e.g., first intermediate clock signal 118) based on the input clock signal, at operation 210, and the second path 120 generates a second intermediate clock signal (e.g., second intermediate clock signal 128), at operation 215. In generating the first and second intermediate clock signals, the first and second paths 110, 120 translate the first signal level of the input clock signal to a second signal level. Hence, the resulting output clock signal is at the second signal level. The second signal level may be higher or lower than the first signal level, though the method 200 may find particularly useful in instances in which the second signal level is lower than the first signal level. That is, the method 200 can provide the greatest reduction to duty cycle distortion in instances in which the output signal is a stepped-down signal relative to the input signal.
The first intermediate clock signal has a first duty cycle distortion and the second intermediate clock signal has a second duty cycle distortion. More specifically, the first intermediate clock signal has a positive duty cycle distortion and the second intermediate clock signal has a negative duty cycle distortion.
At operation 220, the dual path level shifter 100 generates an output clock signal (e.g., output clock signal 150) by combining the first and second intermediate clock signals. The output clock signal is provided at the output 160. The combining of the first and second intermediate clock signals results in an averaging of the first and second duty cycle distortions. Assuming that the rise and fall times of the first and second intermediate clock signals match, the averaging of the first and second duty cycle distortions effectively eliminates the duty cycle distortion in the output clock signal given that the first duty cycle distortion is positive and the second duty cycle distortion is negative. In this way, the duty cycle distortion is corrected in the output clock signal.
Although the embodiments of the present disclosure have been described with reference to specific example embodiments, it will be evident that various modifications and changes may be made to these embodiments without departing from the broader scope of the inventive subject matter. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense. The accompanying drawings that form a part hereof show, by way of illustration, and not of limitation, specific embodiments in which the subject matter may be practiced. The embodiments illustrated are described in sufficient detail to enable those skilled in the art to practice the teachings disclosed herein. Other embodiments may be used and derived therefrom, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. This Detailed Description, therefore, is not to be taken in a limiting sense, and the scope of various embodiments is defined only by the appended claims, along with the full range of equivalents to which such claims are entitled.
Such embodiments of the inventive subject matter may be referred to herein, individually and/or collectively, by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept if more than one is in fact disclosed. Thus, although specific embodiments have been illustrated and described herein, it should be appreciated that any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent, to those of skill in the art, upon reviewing the above description.
In this document, the terms “a” or “an” are used, as is common in patent documents, to include one or more than one, independent of any other instances or usages of “at least one” or “one or more.” In this document, the term “or” is used to refer to a nonexclusive or, such that “A or B” includes “A but not B,” “B but not A,” and “A and B,” unless otherwise indicated. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Also, in the following claims, the terms “including” and “comprising” are open-ended; that is, a system, device, article, or process that includes elements in addition to those listed after such a term in a claim is still deemed to fall within the scope of that claim.
Number | Name | Date | Kind |
---|---|---|---|
8010819 | Pastorello | Aug 2011 | B2 |
9263949 | Tsukuda | Feb 2016 | B2 |
20060261851 | Kim | Nov 2006 | A1 |