The invention relates to a dual polarized antenna according to the precharacterizing clause of claim 1.
Particularly the antennas provided for a base station of a mobile radio antenna usually comprise a reflector, for which a multiplicity of radiator devices are provided, lying offset in relation to one another in the vertical direction, for example dual polarized radiators and/or patch radiators. These can, for example, radiate and receive in one or two polarizations perpendicular to one another. The radiator elements may in this case be designed to receive only in one frequency band. The antenna arrangement may, however, also be formed as a multiband antenna, for example to transmit and/or receive in two frequency bands offset in relation to one another. Also known are so-called triband antennas and multirange antennas covering further frequency bands.
It is usually required of mobile radio antennas that are in use that the elevation of the boresight is either horizontal or slightly lowered (for example up to 10° or 15°). Furthermore, it is usually intended that the half-power beamwidth in a section in the elevation direction is less than the half-power beamwidths in a section in the azimuth direction. Therefore, a mobile radio antenna is usually installed and designed in such a way that the longest extent runs vertically. Customary half-power beamwidths may be, for example, around 45°, 65°, 90°, 120° etc.
In addition, mobile radio antennas of the current generation are constructed in such a way that their so-called downtilt angle can preferably be set in such a way that it can be changed under remote control. In other words, the angle of emission can generally be set downward in different orders of magnitude, the relevant mobile radio cell in which a transmission is taking place changing as a result.
Setting and adjusting phase shifting devices by means of a control unit that can be remotely controlled and retrofitted has become known for example from DE 101 04 564 C1.
In many cases, however, it is desirable to perform beam shaping. This applies on the one hand with respect to the changing of the half-power beamwidth (in particular in the horizontal or azimuth direction and more rarely in the vertical or elevation direction) and on the other hand also with respect to the changing of the boresight (usually by varied setting of the downtilt angle, but possibly also by changing the boresight in the azimuth direction).
An antenna arrangement with variable beam shaping, in particular also in the horizontal direction, is known for example from WO 2005/015600 A1. According to these already known antennas, radiators with variable power division are fed via phase shifters and a hybrid arrangement, which are arranged in at least two columns. The power division allows corresponding beam shaping with varied alignment in the horizontal direction. However, the beam shaping mentioned is only possible here when an antenna array with at least two columns is used.
An alternative possibility for beam shaping is also disclosed for example by DE 103 36 072 A1. This takes place by using at least two radiator devices, the principal axes of which are aligned at an angle in relation to one another. A network allows the at least two radiators to be fed with different intensities, whereby, in dependence on this, a different alignment of the boresight can be achieved by the angular arrangement of the two main lobes of the two radiator devices and by the power-dependent feeding.
Finally, a possible way of producing beam shaping is also disclosed in principle by WO 02/05383 A1. By use of an antenna array with at least three columns, in which at least one radiator device is respectively arranged, a certain beam shaping can be brought about by different feeding of the radiator device that is located in the middle in comparison with the radiator devices that are on the outside.
The object of the present invention is to provide a comparatively improved dual polarized antenna, in particular a mobile radio antenna, which, by means of simple technical measures, allows beam shaping in certain ranges, for example with respect to the boresight that can be variably set and/or a variable half-power beamwidth.
The object is achieved according to the invention in a way corresponding to the features specified in claim 1. Advantageous refinements of the invention are specified in the subclaims.
According to the present invention, it is possible to carry out beam shaping by simple means, to be precise already with respect to an individual beam or an individual group of radiators, i.e. in particular also with respect to an antenna with radiator elements which are for example arranged just in one column or row.
In this case, the beam shaping with respect to the boresight of the antenna (that is to say the alignment of the main lobe) can be carried out in the vertical and/or horizontal direction. The corresponding changing of the setting of the half-power beamwidth can likewise be brought about in the vertical and/or horizontal direction.
In this case, the invention can be realized in its basic form with respect to a single dual polarized radiator device, for example in the form of a dual polarized dipole radiator (for example in the form of a dipole cruciform, a dipole square or in the form of a so-called vector dipole, as is known in principle from DE 198 60 121 A1) or in the form of a dual polarized patch radiator and/or using both aforementioned types of radiator.
A particularly surprising aspect of the invention is that the desired advantages to achieve the object that is addressed can also be realized in the case of a dual polarized radiator or dual polarized antenna of which the radiators, radiator elements or groups of radiators can radiate and/or receive in two polarizations perpendicular to one another, which are aligned at an angle of +45° or −45° with respect to the vertical (and therefore similarly with respect to the horizontal).
However, the corresponding beam shapings are similarly possible if, for example, the antenna is extended at least to a single-column antenna, in which for example a number of radiator devices arranged one above the other in the vertical direction are provided. Similarly, however, the antenna may also be extended in such a way that, for example, a number of radiator devices arranged next to one another only in the horizontal direction are provided. Finally, however, an antenna array may also be constructed according to the invention, to be precise with a number of, generally vertically running, columns arranged next to one another (that is to say lying offset in relation to one another in the horizontal direction), in which a number of radiator devices, that is to say at least two, are respectively provided, for example in the form of dual-polarized dipole radiators and/or in the form of dual-polarized patch radiators.
In the case of the antenna according to the invention, its basic unit is assumed to comprise a configuration in which at least one radiator or one group of radiators is provided, to be precise in front of a reflector. The reflector has in this case a longitudinal direction and a transverse direction (generally perpendicular to the longitudinal direction). Usually, antennas of this type are set up in such a way that the longitudinal direction runs parallel to the vertical direction or is substantially vertically aligned, so that the transverse direction points more or less in a horizontal direction.
As known per se, in this case longitudinal webs rise up from the reflector (longitudinal webs lying offset respectively to the left and right of the radiator device located in between), which with corresponding vertical alignment then run vertically or substantially vertically. Alternatively and in addition, transverse webs projecting from the reflector may also be provided (between which again the at least one radiator is then likewise arranged), which with customary alignment of the antenna can then run in the horizontal direction or substantially in the horizontal direction. These longitudinal and transverse webs may be provided on the outer edges of the reflector, but they may also be positioned elsewhere on the reflector, that is to say offset away from the outer edges, closer to the associated radiator.
The radiator itself is—as already mentioned—preferably aligned in such a way that the two polarization planes that are perpendicular to one another are arranged running at an angle of ±45° with respect to the longitudinal or transverse webs. Generally, it is intended that the radiators are arranged in such a way that they are preferably arranged running an angle of ±45° or substantially of ±45° with respect to the longitudinal and/or transverse struts.
According to the invention, it is then provided that at least one longitudinal or transverse web, preferably at least the two respectively interacting longitudinal webs and/or transverse webs, can be changed in their alignment position in such a way that a relevant longitudinal and/or transverse web runs away from the reflector in such a way that in one position it runs rather toward the associated radiator or, in another alignment position, it runs rather away from the radiator, or, in an intermediate position preferred as desired, it can be aligned between these extreme positions.
In a preferred embodiment, the two longitudinal and/or transverse webs respectively can be activated individually and/or independently or in pairs (possibly also synchronously), in particular also adjusted under remote control or manually, in such a way that the two run for example aligned more to the left with respect to a longitudinally running axis of symmetry or relatively more to the right. In particular when remote control is used, it may also be formed in a way allowing it to be retrofitted.
Finally, in a preferred embodiment it is also possible for example to align the longitudinal and/or transverse webs so differently that the clear distance between them is increased or reduced, that is to say the longitudinal or transverse webs are aligned with respect to the radiator situated between them in such a way that they are rather divergent or rather convergent in the direction of radiation.
The rather parallel pivoting to the left and right allows the direction of the main lobe to be adjusted, whereas opposed pivoting of the longitudinal or transverse webs with rather divergent alignment allows the half-power beamwidth to be reduced and with rather convergent alignment allows the half-power beamwidth to be increased. This is possible not only in the case of a single radiator but also for example in the case of an antenna with beams which are arranged just in one column or just in one row.
The corresponding positional change may take place for example by pivoting the longitudinal and/or transverse webs, for example by means of pivoting axes which are preferably formed at the transition from the reflector plane to the longitudinal webs. These pivoting axes may also be formed as bending axes. These pivoting or bending axes may, however, also be formed part-way up the side limitation or in a portion of the reflector, so that a partial area of the reflector can be pivoted with the lateral or transverse limitations.
Finally, it is also quite possible, for example, for deformation forces, preferably elastic deformation forces, to act on the reflector and/or the longitudinal side limitation or transverse side limitation, by means of an adjusting device, and for these forces to bend such limitations, preferably elastically, according to requirements in each case in such a way that with one component they optionally run toward the associated radiator or away from it to varied degrees.
In principle, it is also known from U.S. Pat. No. 5,710,569 A to use an antenna arrangement with displaceable side webs. However, this prior publication merely discloses a vertically polarized antenna using simple dipole radiators. In other words, it does not constitute a dual polarized antenna arrangement that operates with two polarizations perpendicular to one another.
Moreover, the polarization plane of the single polarized radiators according to U.S. Pat. No. 5,710,569 A is aligned parallel to the side webs, whereas in the case of the dual polarized antenna according to the present invention the polarization planes have at least substantially an angle of 45° in relation to the side limitations, i.e. in relation to the longitudinal webs.
As a difference from U.S. Pat. No. 5,710,569 A, it is envisaged within the scope of the solution according to the invention to carry out an optimization of the network with respect to the polarization decoupling (co-/cross-polarization ratio) during operation by the varied alignment of the longitudinal and/or transverse limitations with respect to an associated dual polarized radiator. Within the varied alignment of the longitudinal and/or transverse limitation, however, a change of the front-to-back ratio may also be brought about and the interference influenced. Finally, the solution according to the invention also has an effect on the gain of the antenna and the half-power beamwidth. In particular, the half-power beamwidth can be changed with correspondingly vertical alignment of the antenna in the horizontal and/or vertical direction and also the radiation of the main lobe can be changed or adjusted in the elevation direction (that is to say the downtilt angle) and in the azimuth direction. The dual polarized antenna according to the invention is also distinguished in particular by the retention of the polarization decoupling. It makes operation possible with a high bandwidth, for example of from 1710 to 2170 MHz or 806 to 960 MHz. The antenna is also broad-band in other frequency bands. In particular, a high isolation between the connections of the different polarizations, of for example 25 dB, 30 dB etc., can also be realized. A further, major advantage is the high intermodulation resistance for systems with a number of carriers or broadband systems.
In a particularly preferred embodiment, the corresponding antenna arrangement is constructed in such a way that at least one column is provided with a number of radiators arranged next to one another or one above the other in the longitudinal direction. If the reflector has, for example, only longitudinal limitations, these may also be arranged with varied side spacing in the case of the individual radiators or types of radiator. In a corresponding way, the reflector may also be designed such that it runs in the transverse direction with varied widths. The same applies when only transverse limitations are correspondingly used, if the number of radiators are arranged next to one another in the transverse direction.
If a number of radiators are arranged next to one another in the longitudinal and/or transverse direction, pairs of longitudinal and/or transverse limitations lying respectively next to one another are preferably used, in order that is to bring about the desired beam shaping for each associated radiator or each radiator array, irrespective of the neighboring radiator or radiator array.
The longitudinal and/or transverse webs are preferably electrically/galvanically connected directly to the actual reflector. If an electrically nonconductive pivoting or articulating arrangement is used, a connection between the longitudinal or side webs and the actual reflector area can be established by a separate, electrical/galvanic connection. However, a capacitive connection to the actual reflector is also possible with respect to the longitudinal and/or transverse webs. Moreover, the side wall parts mentioned (that is to say the longitudinal and/or transverse webs) may be electrically connected to one another, electrically/galvanically isolated or partly electrically connected. Similarly, the corresponding longitudinal or transverse webs may be formed separately for a radiator or a radiator arrangement and only partly mechanically connected according to requirements. The dimensions of the longitudinal or transverse webs may differ with respect to length and height, also with respect to their distance from the center point of an associated radiator. The longitudinal and transverse webs do not necessarily have to be formed as running straight in cross section, but may also be profiled as desired within wide ranges, for example be designed in a S-, L- or Z-shaped manner. Furthermore, the webs, in particular the side webs or the movable parts, may also be provided with so-called passive slots, as are known in principle from EP 0 916 169 B1. However, corresponding slots may also be formed by certain clearances being provided in the webs, for example clearances in the region of the axis or the bending region, in particular whenever the axis or the bending region is at a certain distance from the reflector. The electrical connection between stationary and moving parts then also has the corresponding slots or gaps.
The pivotable parts, in particular the longitudinal or transverse webs, may be at least partly capacitively coupled to the reflector (for example over a small distance) or electrically/galvanically connected to it. A capacitive coupling may also be possible by, for example, the reflector being provided with an electrically/galvanically connected, rotatable inner conductor part, forming its axis of rotation, which engages in a corresponding outer conductor part on the reflector, separated by a dielectric. The length of the inner conductor part is in this case preferably about λ/4, that is to say one quarter of the wavelength of a frequency band to be transmitted (usually preferably corresponding to the mid-frequency of a frequency band). However, other capacitive applications are also conceivable.
As already mentioned, the pivotable parts may be mechanically connected to the reflector, for example by means of a movable or conducting structure, for example in the form of spring elements, thin conductive layers on a film substrate or by using flexible regions, for example a partly flexible printed circuit board. A capacitive or line coupling with the reflector may take place for example by means of two areas or line elements, the coupling device then likewise again preferably having a length which corresponds approximately to λ/4 of the relevant operating wavelength (preferably the mid operating wavelength).
Finally, the longitudinal and/or transverse webs may also be formed entirely or partly from suitable dielectric material; here, too, corresponding beam shaping is possible within wide ranges.
The invention is explained in more detail below on the basis of exemplary embodiments, in which specifically:
a to 3e show cross-sectional representations along the line III-III in
a to 4e show cross-sectional representations along the line III-III in
a shows a slightly modified embodiment with respect to the representation according to
a shows an enlarged schematic representation with respect to a modification of
a shows a representation corresponding to
a shows a schematic spatial representation of the exemplary embodiment shown in
A first exemplary embodiment of the invention is explained below with reference to
In the exemplary embodiment shown, the dual polarized radiator device 1 comprises a dipole-like radiator 1′, which radiates in two planes P1 and P2 perpendicular to one another (which are therefore aligned at an angle of 90° in relation to one another—
The dual polarized radiator device 1 is arranged in front of a reflector 3. In the exemplary embodiment shown, the reflector 3 is a planar reflector. However, the reflector itself may also have a three-dimensional shape, for example be cylindrically bent about at least one axis or, for example, have a portion of a spherical curvature etc., or else be formed with some other kind of curvature.
In the exemplary embodiment shown, the reflector 3 extends substantially in two dimensions, whereby a longitudinal extent 5 and a transverse extent 7 are defined. When an antenna of this type is set up in a customary way, the longitudinal extent 5 would for example run in a vertical direction or substantially in a vertical direction, so that the transverse extent 7 points in a horizontal direction or substantially in a horizontal direction. As can also be seen from the graphic representation according to
Provided substantially parallel to the longitudinal extent 5 are two longitudinal webs 9, which may be arranged on the outer limiting edge 3′ on the reflector 3. However, the longitudinal webs 9 may also be arranged offset away from this edge 3′ of the reflector 3, toward the radiator device 1, in front of the reflector. The longitudinal webs 9 are therefore arranged offset in relation to one another in the transverse direction and thereby receive the radiator device 1 between them.
The longitudinal webs 9 rise up above the plane of the reflector, that is to say are aligned with at least one component transversely or preferably perpendicularly in relation to the reflector 3, at least in relation to a reflector portion 3a in a region of the radiator device 1 or in the region of a possibly prescribed radiator foot (in the case of a dual polarized radiator device 1 for example at the foot of an associated balancing arrangement 1a).
In the exemplary embodiment shown, furthermore, two transverse webs 11 are also provided, running in the transverse direction 7, arranged offset in relation to one another in the longitudinal direction 5 and receiving the dual polarized radiator device 1 between them. The transverse webs 11 may be formed and arranged in a way comparable to the longitudinal webs 9, but this does not have to be the case. The transverse webs 11 may be arranged on the adjacent edge 3′ of the reflector 3 or be offset away from it and arranged closer to the radiator device 1. These transverse webs 11 also rise up at least with one component, in the exemplary embodiment shown perpendicularly in relation to the plane of the reflector 3 or in relation to a corresponding reflector portion 3a in the region of the radiator device 1.
The described construction therefore defines an antenna environment, that is to say a radiator environment 101, which comprises for example longitudinal lines 105, running parallel to one another, and a pair of transverse lines 107, lying offset by 90° and running transversely in relation to said longitudinal lines, on which transverse lines the mentioned longitudinal and transverse struts or longitudinal and transverse webs 7, 9 are arranged, it also being possible but not obligatory for these longitudinal and transverse lines 105, 107 to coincide with the edge 3′ of the reflector 3, but they may for example lie between the reflector edge 3′ and the associated radiator 1, the longitudinal and transverse lines 105, 107 preferably running parallel to the edges 3′ of the reflector 3. The distance between the longitudinal and transverse webs 9, 11, which are sometimes also referred to below as longitudinal and transverse profiles or longitudinal and transverse limitations or longitudinal and transverse side limitations, and the associated radiator device 1 in the antenna environment 101 is preferably more than 0.3λ and less than 1.2λ, where λ is a wavelength of the frequency band to be transmitted, preferably the mid-wavelength of a frequency band to be transmitted.
As mentioned, the dual polarized radiator device 1 radiates in two polarization planes P1 and P2 that are perpendicular to one another, which in the exemplary embodiment shown are arranged in an X-shaped manner, i.e. at an angle of +45° and an angle of −45°, respectively, with respect to the longitudinal or transverse webs 9, 11, that is to say they are not aligned parallel to the longitudinal and/or transverse webs.
In the representation according to
According to the invention, however, it is now provided that the longitudinal side limitations 9 are pivotable, preferably individually or else, in a further embodiment of the invention, in a different way, are pivotable together.
In
In the case of the exemplary embodiment according to
In the case of the exemplary embodiment according to
In the case of the exemplary embodiment according to
The transverse webs 11 may, for example, similarly or alternatively be adjusted individually or together, it being shown in
It is noted in principle that the antenna may also be provided either just with longitudinal webs 9 or just with transverse webs 11, depending on whether corresponding influencing and beam shaping is to be performed only in the transverse direction or only in the longitudinal direction. In extreme situations it is also possible, for example, for only a single longitudinal web and/or only a single transverse web to be provided, that is to say an asymmetric arrangement to the extent that a longitudinal or transverse web is only provided on one side and no web is provided on the opposite side. If appropriate, however, it is also possible for a positionally variable longitudinal web or transverse web to be provided only on a longitudinal side or on a transverse side, whereas the opposite longitudinal or transverse web, provided on the other side of the radiator device, is not adjustable.
It can be seen from the representations according to
In the case of the exemplary embodiment according to
In the case of the exemplary embodiment according to
Until now it has only been shown that the longitudinal and/or transverse webs can be brought into different alignment positions, for example by pivoting along the lines 105, 107. These longitudinal and transverse lines may therefore be formed as pivoting axes or pins 17. However, the mentioned longitudinal and transverse lines 105, 107 may also be designed as bending lines, in order to carry out the corresponding positional change or not only carry out a desired adjustment but also permanently retain it. This can be ensured by suitable mechanical or electrically activatable (remotely controllable) devices.
It is shown on the basis of the exemplary embodiment shown in
Shown in
If an axial body 17 of electrical conductive material is used, the sleeves 17a, 17b serving as a pivoting device may also consist of electrically nonconductive material, if electrical isolation is to be provided.
A departure and modification is shown on the basis of
It is shown on the basis of
It is also possible, however, for an electrically conductive pivoting connection to be provided.
In particular, the pivoting axis 17 may also be configured as a bending line, about which the longitudinal and/or transverse webs can be adjusted in their alignment or pivoted by a mechanism of their own.
Some further exemplary embodiments are shown below, to be precise on the basis of an antenna array with one column, within which a number of radiators 1 are arranged for example in the longitudinal direction (or for example in the transverse direction), to be specific in the exemplary embodiment shown four dual polarized radiators 1 in the form of a so-called vector dipole.
In the case of a cross-sectional representation according to
In the case of the exemplary embodiment according to
In the case of the exemplary embodiment according to
As a departure from the exemplary embodiment shown, the longitudinal or transverse webs may, however, not only consist of electrically conductive material, usually a metal or metal sheet, but for example also of electrically conductive, coated material or electrically conductive plastic material. The use of dielectric material is also possible, in particular material with a particularly high dielectric constant, whereby beam shaping in the sense described is also possible.
A further exemplary embodiment of an antenna according to the invention is then shown in a perspective view by
In the exemplary embodiment shown, the longitudinal webs 9 which can be pivoted about their pivoting axis or can be bent about their pivoting axis, or else can only be made to curve as a whole by introducing adjusting forces into them (comparable to the exemplary embodiment shown in
If, for example, the transverse webs 11 are not adjustable, but the continuous longitudinal webs 9 are, to be precise not only outwardly but also inwardly toward the radiator device 1, it may be recommendable to provide apertures in the longitudinal webs, for example so-called slot-shaped apertures or clearances 12, as can be seen from the enlarged representation of a detail according to
In the case of the exemplary embodiment according to
In the case of the exemplary embodiment according to
Furthermore,
In the case of all the exemplary embodiments described, the beam shaping always takes place in the near field, that is to say in a range less than λ or at least 2λ, 1.5λ or less than 1.2λ, where λ is once again the wavelength from a frequency band to be transmitted, preferably the mid-wavelength.
The pivotable parts explained (longitudinal and/or transverse webs) are preferably—as explained—galvanically connected to the reflector 3, to be precise by means of a bendable, conducting structure, for example spring elements, a thin conductive layer on a film substrate or by bendable regions for example of at least partly flexible printed circuit board. The pivotable parts may, however, equally be capacitively coupled to the reflector 3, for example over a small distance. The capacitive coupling may in this case likewise again be differently constructed, for example by means of a coaxial, capacitive coupling.
It is evident from the exemplary embodiment described that one or more dual polarized radiators may be provided, formed by an identical type of construction or different type of construction, it being possible for at least always one and preferably at least always two pairs of interacting longitudinal webs or longitudinal profiles or transverse webs or transverse profiles to be pivoted toward one another or against one another or parallel to one another, one after the other, individually or synchronously, to be arranged in an electrically connected or non-electrically conducting manner with respect to the reflector, partly electrically connected and partly not electrically connected. The side and longitudinal webs or profiles may be arranged separately from one another or at least partly connected to one another, at least mechanically or else electrically/galvanically connected to one another. The individual parts can be dimensioned differently in the longitudinal direction, the transverse direction and in height and also the shaping of the longitudinal and/or transverse webs or profiles can be chosen differently, in order to achieve the desired advantageous effects.
As an additional comment on the preceding exemplary embodiments, it is noted that, for example, the pivotable side walls 9 may be higher or lower than the dividing or transverse walls 11 running transversely to them, as can also be seen from the representation according to
Finally, it is pointed out that the radiators described in the various examples, in particular when a number of radiators are provided in the case of an antenna, they can be individually activated and operated. Equally, however, it is also possible for a number of radiators to be electrically combined in a group. To this extent, there are no restrictions or limitations.
Reference is made below to a modified exemplary embodiment according to
For example, the longitudinal-web portions 9.1 lying further away from the reflector 3 may, if appropriate, be pivotable about their bending or tilting axis 17′ even to such an extent (altogether by almost 360°) that this longitudinal-web portion 9.1 bears either on the inside or on the outside against the further longitudinal-web portion 9.2 lying closer to the reflector 3, in order that the upper portion of the longitudinal web 9 is fully flipped in, and consequently ineffective.
As explained several times, the lower and also the upper longitudinal-side portion 9.1 and 9.2 may in this case also be aligned parallel to one another, pivoted to the left or right, set running toward one another or diverging or else differently. Finally, the portion 9.2 lying closer to the reflector may also be pivoted outward in such a way that it lies in a line extending the plane of the reflector 3. As a result, the width (or length) of the reflector would in effect be changed, the longitudinal-side portion 9.2 on the outside then remaining as the only web, aligned for example perpendicularly or generally at an angle with respect to the reflector. However, this further portion can also be pivoted outward or inward into the plane of the reflector, in order as a result to change the reflector width (or length).
If the portion 9.2 were flipped over inwardly onto the reflector plane, this would produce as a result a longitudinal-side portion 9.1 which could be pivoted as far as desired perpendicularly in relation to the reflector plane or to the left or right.
The conditions described may equally also be applied to the transverse webs. Finally, the longitudinal and/or transverse webs may also be divided not only in two but also multiply, whereby if appropriate a number of bending, pivoting or tilting axes are obtained, preferably running parallel to one another.
It is noted entirely as a point of principle that, on laterally next to an antenna environment 101, not only a continuous transverse or longitudinal wall, that is to say a continuous transverse or longitudinal web, has to be provided in each case, but that here there may also be provided at least two or in each case a number of longitudinal-web portions and/or transverse-web portions, which could be adjusted individually in their alignment position.
A further slight modification is reproduced in
The heights of the outer webs 309 and of the inner longitudinal webs 9 may be chosen to be equal or different. Corresponding conditions may also be provided additionally or alternatively for the transverse webs.
In the case of the exemplary embodiment according to
In addition, however, the inner longitudinal web 9 could also be fully flipped over, so that virtually both longitudinal webs (or transverse webs) would no longer be effective.
On the basis of
Finally, it is also additionally shown on the basis of
It is mentioned only for the sake of completeness that, in particular, the use of double webs corresponding to the representations shown in
Finally, it is merely mentioned that the radiator devices 1, 1′ may be operated as in the case of known types of antenna. The corresponding reflector configurations may be realized both in the case of a single band antenna, a dual band antenna but also in the case of a multiband antenna. In particular if a number of radiators are used, they may be electrically combined in a group.
Number | Name | Date | Kind |
---|---|---|---|
3541559 | Evans et al. | Nov 1970 | A |
5469181 | Yarsunas | Nov 1995 | A |
5710569 | Oh et al. | Jan 1998 | A |
6195063 | Gabrield et al. | Feb 2001 | B1 |
20020101388 | Ippolito | Aug 2002 | A1 |
20030011529 | Gottl | Jan 2003 | A1 |
20030184491 | Jocher | Oct 2003 | A1 |
Number | Date | Country |
---|---|---|
2 261 625 | Dec 1998 | CA |
2 322 029 | Jul 2000 | CA |
198 60 121 | Jul 2000 | DE |
101 04 564 | Sep 2002 | DE |
102 36 071 | Mar 2005 | DE |
103 36 072 | Mar 2005 | DE |
10336071 | Mar 2005 | DE |
0 916 169 | May 1999 | EP |
0916169 | May 1999 | EP |
0973231 | Jan 2000 | EP |
WO9836472 | Aug 1998 | WO |
WO 0205383 | Jan 2002 | WO |
WO 2005015600 | Feb 2005 | WO |
WO2005105690 | Feb 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20070146225 A1 | Jun 2007 | US |