This invention relates to current pulse generator for a triggering system. More particularly, this invention relates to a dual power source pulse generator for a triggering system.
Generally, high current pulse sources have several applications in high voltage, power switching devices such as an ablative plasma gun for triggering an arc flash mitigation device, a rail gun, spark gap switches, a lighting ballast and series capacitor protection, for example. Conventionally, these devices include two or more main electrodes separated by a main gap of air or gas, and a bias voltage is applied to the main electrodes across the main gap.
The high current pulse source provides the high current pulse to trigger the ablative plasma gun to generate conductive ablative plasma vapors between the main electrodes. The high current pulse is typically greater than approximately 5,000 Amps (5 kA) to generate adequate plasma vapors, for example. Also, high voltage greater than approximately 5,000 Volts (5kV) is utilized to overcome a breakdown voltage of air and initiate the high current pulse across pulse electrodes. Typically, high current pulses, e.g. lightning current pulses are defined as having an 8 μs rise time/20 μs fall time. High current pulses are commonly generated through high energy high voltage capacitor discharge that can have capacitive values in the millifarad range. High voltage high energy capacitors are very expensive and it makes the single capacitor pulse source economically unfeasible for most of the applications except for some laboratory equipment. Thus, there is a need for a cost effective pulse generator system for a triggering system.
An embodiment of the present invention provides a dual power source pulse generator for a triggering system. The dual power source pulse generator in power connection with a pair of electrodes having a first electrode, a second electrode and an air gap therebetween. The dual power source pulse generator includes a first pulse source producing a high voltage low current pulse across the pair of electrodes to allow dielectric breakdown, and a second pulse source electrically connected in parallel with an output of the first pulse source and the pair of electrodes, and producing a low voltage high current pulse to thereby produce a current flow of high-density plasma between the same electrodes of the pair of electrodes in response to the high voltage low current pulse.
Another embodiment of the present invention provides an ablative plasma gun. The ablative plasma gun includes a barrel having an opening, a dual power source pulse generator which generates a high voltage low current pulse and a low voltage high current pulse, and a pair of electrodes having an air gap formed therebetween in power connection with the dual power source pulse generator via a single pair of conductors, and receiving the high voltage low current pulse and the low voltage high current pulse. An arc is generated across the air gap to create conductive plasma vapors emitted out of the opening of the barrel in response to the high voltage low current pulse and the low voltage high current pulse generated.
A further embodiment of the present invention includes an ablative plasma gun having a dual power source pulse generator configured to generate a high voltage low current pulse and a low voltage high current pulse, and a pair of electrodes disposed and configured to receive the high voltage low current pulse, and to receive the low voltage high current pulse in response to the high voltage low current pulse.
Another embodiment of the present invention includes an ablative plasma gun having a dual power source pulse generator, and a pair of electrodes. The dual power source pulse generator includes a high voltage low current pulse source configured to generate a high voltage low current pulse, and a low voltage high current pulse source configured to generate a low voltage high current pulse. The low voltage high current pulse source is electrically connected with an output of the high voltage low current pulse source, wherein in response to the high voltage low current pulse the dual power source pulse generator is configured to generate a low voltage high current pulse to produce a current flow between the electrodes.
Additional features and advantages are realized through the techniques of exemplary embodiments of the invention. Other embodiments and aspects of the invention are described in detail herein and are considered a part of the claimed invention. For a better understanding of the invention with advantages and features thereof, refer to the description and to the drawings.
Turning now to the drawings in greater detail, it will be seen that in
According to an exemplary embodiment, the dual power source pulse generator 10 includes a first pulse source 100 i.e., a high voltage (low current) pulse source 100 and a second pulse source 200 i.e., a low voltage (high current) pulse source 200. A controller (not shown) supplies a trigger or enable signal 60 (depicted in
According to an exemplary embodiment, the high voltage pulse source 100 and the low voltage pulse source 200 are in power connection with a pair of electrodes 255 (first and second electrodes 255a and 255b (depicted in
As shown in
According to an exemplary embodiment, the low voltage pulse source 200 comprises a rectifier 210 in power connection with a power source and a resistive-capacitive charging circuit 230 including a resistor 215 and a capacitor 220. The capacitor 220 is in parallel with the pair of electrodes 255 and the resistor 215 is in series connection with the capacitor 220. The low voltage pulse source 200 further includes a resistor 225, an inductor 235, a diode 240 and a discharge switch 245. An operation of the high voltage pulse source 100 and the low voltage pulse source 200 will now be described in detailed.
According to an exemplary embodiment, the high voltage pulse source receives a first voltage of approximately 120 to 480 volts alternating current. The capacitor 130 charges to a predetermined voltage of approximately 240V, for example. When the dual power source pulse generator 10 is triggered via a trigger signal 60 (depicted in
Further, as shown in
According to an exemplary embodiment, the diode 240 blocks high voltage current from flowing into the low voltage pulse source 200.
According to an exemplary embodiment, the high voltage pulse source 100 and the low voltage pulse source 200 are connected together via a rectification bridge.
According to an exemplary embodiment, the use of the pair of electrodes 255 reduces gun barrel ionization requirements.
According to an exemplary embodiment of the present invention the use of a dual power source pulse generator 10 provides the advantage of the energy of the arc being higher since it allows high current to flow. Further, the use of low voltage components on a high current pulse circuit allows the dual power pulse source pulse generator 10 to be cost effective and compact in size.
While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims. Moreover, the use of the terms first, second, etc. do not denote any order or importance, but rather the terms first, second, etc. are used to distinguish one element from another.
This application is a continuation application of U.S. application Ser. No. 12/203,507 filed Sep. 3, 2008, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5471362 | Gowan | Nov 1995 | A |
5793585 | Cowan | Aug 1998 | A |
6647974 | Cowan | Nov 2003 | B1 |
7986505 | Roscoe et al. | Jul 2011 | B2 |
20060168872 | Locklear | Aug 2006 | A1 |
20080239598 | Asokan et al. | Oct 2008 | A1 |
20080253040 | Asokan et al. | Oct 2008 | A1 |
20080288189 | Rao et al. | Nov 2008 | A1 |
Number | Date | Country |
---|---|---|
6419969 | May 1971 | AU |
1015161 | Jun 2006 | EP |
Number | Date | Country | |
---|---|---|---|
20110254455 A1 | Oct 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12203507 | Sep 2008 | US |
Child | 13169757 | US |