The present invention relates to a non-contact measurement system and, in particular, to a structured-light, three-dimensional (3D) scanning system that may be used for measuring the dimensions of objects.
3D scanning systems (i.e., 3D scanners) are systems that can sense a physical object (e.g., detect the range/distance of surfaces) in order to obtain information about the object's shape. 3D scanners may be used for a variety of purposes. 3D scanners may serve as the interface between a human and a computing system (e.g., game console). 3D scanners may also be used to create 3D computer models (e.g., scene restoration). In addition, 3D scanners are important for the non-contact, automatic measurement of dimensions that is often required in industry. For example, 3D scanners are used in the shipping/freight industry to help compute dimensional weight and calculate shipping costs.
3D scanners may use a variety of technologies to sense a physical object. Optical sensing is desirable in many circumstances because no physical contact with the object is required. A structured-light 3D scanner projects a pattern of light (i.e., light pattern) into a field of view. Distortions to the light pattern caused by an object in the field of view are imaged and analyzed to create a range image, in which each pixel has a value that correlates with range (i.e., the distance from the 3D scanner to a surface). The range image may be analyzed to obtain the dimensions of the object.
It is common to use a fixed-position, structured-light 3D scanner to measure objects that vary in range and in size. Projecting a single light pattern imposes limitations on the objects that may be dimensioned. These limitations may prevent the dimensioning of some objects and/or may slow the dimensioning process (e.g., by requiring some adjustment). What is more, users of such systems may require training to handle these limitations, thereby undermining the 3D scanner's advantages of simplicity and automation.
A need exists for a 3D scanner that can dimension a wide variety objects by automatically sensing and adapting to the different scanning requirements for each object (e.g., range, size, etc.).
Accordingly, in one aspect, the present invention embraces a dual-projector 3D scanner. The 3D scanner includes a structured-light projection subsystem having two projectors: a first projector and a second projector. The projectors are each configured to project a particular light pattern onto an object. The first projector projects a first light pattern, and the second projector projects a second light pattern. The 3D scanner further includes a camera for capturing images of either light pattern reflected from an object. A computing-and-control subsystem that is communicatively coupled to the structured-light projection subsystem and the camera enables the 3D scanner to obtain information regarding the object's size/shape through a number of process steps. First, the object's scanning requirements are obtained. Next, based on the scanning requirements, either the first or the second projector is activated, and a pattern image is captured using the camera. The resulting pattern image is then processed to produce a range image.
In an exemplary embodiment of the dual-projector 3D scanner, the computing-and-control subsystem is configured to analyze the range image to obtain the object's dimensions.
In an exemplary embodiment of the dual-projector 3D scanner, the first light-pattern's pattern-feature density is lower than the second light-pattern's pattern-feature density.
In another exemplary embodiment of the dual-projector 3D scanner, the first light-pattern's optical intensity is lower than the second light-pattern's optical intensity.
In another exemplary embodiment of the dual-projector 3D scanner, the first projector's field of view is smaller than the second projector's field of view.
In another exemplary embodiment of the dual-projector 3D scanner, the object's scanning requirements include the object's size.
In another exemplary embodiment of the dual-projector 3D scanner, the object's scanning requirements include the object's size, and the first projector is activated when the object's size is less than about 1 cubic centimeter, while the second projector is activated when the object's size is greater than about 1 cubic meter.
In another exemplary embodiment of the dual-projector 3D scanner, the object's scanning requirements include the object's range.
In another exemplary embodiment of the dual-projector 3D scanner, the object's scanning requirements include the object's range, and the first projector is activated when the object's is within a range of about 0.5 meter to about 2 meters, while the second projector is activated when the object's is within a range of about 2 meters to about 4 meters.
In another aspect, the present invention embraces a method for dimensioning an object using a dual-projector three-dimensional (3D) scanner. The method includes activating one of the 3D scanner's two projectors to project a light pattern onto the object. Next, the camera is used to capture a preliminary pattern image. At least a portion of the preliminary pattern image is then analyzed, and based on the analysis, one of the 3D scanner's two projectors is selected. The object is then dimensioned using the selected projector.
In an exemplary embodiment of the method for dimensioning an object using a dual-projector three-dimensional (3D) scanner, the object is dimensioned by: (i) activating the selected camera, (ii) capturing a pattern image using the camera, (iii) generating a range image from the pattern image, and (iv) deriving the object's dimensions from the range image.
In another exemplary embodiment of the method for dimensioning an object using a dual-projector three-dimensional (3D) scanner, the analysis of the preliminary pattern image includes determining the object's range.
In another exemplary embodiment of the method for dimensioning an object using a dual-projector three-dimensional (3D) scanner, the analysis of the preliminary pattern image includes determining the object's size.
In another aspect, the present invention embraces a method for dimensioning an object using a dual-projector three-dimensional (3D) scanner. The method starts with activating a first projector to project a first light pattern onto the object. Next, a camera is used to capture a first pattern image of the first light pattern reflected from the object. Next, a second projector is activated to project a second light pattern onto the object, and a second pattern image of the second light pattern reflected from the object is captured. The first pattern image and the second pattern image are evaluated and, based on the evaluation, either the first pattern image or the second pattern image is selected. Finally, the object is dimensioned using the selected pattern image.
In an exemplary embodiment of the method for dimensioning an object using a dual-projector three-dimensional (3D) scanner, the object is dimension by generating a range image using the selected pattern image and then using the range image to derive the object's dimensions.
In another exemplary embodiment of the method for dimensioning an object using a dual-projector three-dimensional (3D) scanner, the first pattern image and the second pattern image are evaluated by detecting that, at least a portion of, the first pattern image or the second pattern image is saturated.
In another exemplary embodiment of the method for dimensioning an object using a dual-projector three-dimensional (3D) scanner, the first pattern image and the second pattern image are evaluated by detecting that the intensity of pattern features, in either the first pattern image or the second pattern image, is too low for dimensioning.
In another exemplary embodiment of the method for dimensioning an object using a dual-projector three-dimensional (3D) scanner, the first pattern image and the second pattern image are evaluated by detecting that the density of pattern features, in either the first pattern image or the second pattern image, is too high or too low for dimensioning at or above a particular accuracy.
In another exemplary embodiment of the method for dimensioning an object using a dual-projector three-dimensional (3D) scanner, the first light pattern's pattern-feature density is lower than the second light pattern's pattern-feature density.
In another exemplary embodiment of the method for dimensioning an object using a dual-projector three-dimensional (3D) scanner, the first light pattern's optical intensity is lower than the second light pattern's optical intensity.
In another exemplary embodiment of the method for dimensioning an object using a dual-projector three-dimensional (3D) scanner, the first projector's field of view is smaller than the second projector's field of view.
The foregoing illustrative summary, as well as other exemplary objectives and/or advantages of the invention, and the manner in which the same are accomplished, are further explained within the following detailed description and its accompanying drawings.
The present invention embraces a 3D scanner, which may be used for a variety of purposes including dimensioning. Many different technologies may be used for 3D scanning. The present invention embraces a non-contact, active 3D-scanner that projects an optical pattern (i.e., structured light) onto an object and records the reflected pattern as a pattern image captured by a digital camera.
The 3D scanner obtains depth information (i.e., range) through the use of a stereoscopically arranged projector and camera. During a range measurement, the projector projects a known light pattern onto a surface. The camera captures an image (i.e., pattern image) of the light pattern reflected from the object. The reflected pattern will be spatially offset from the known pattern by an amount correlating with the range of the reflecting object. Analyzing the pattern image for range can be performed pixel-by-pixel in order to create a range image of the camera's field of view. Each pixel in the range image has a grey scale value that correlates with range. This range image may be analyzed to derive the dimensions of an object placed in the field of view of the 3D scanner.
The 3D scanner's projector projects a light pattern (i.e., pattern) that has a plurality of pattern elements (i.e., pattern features). Pattern features may be regularly spaced (e.g., grid) or randomly spaced. Pattern features may be discreet (e.g., dots) or continuous (e.g., lines). Pattern features may form repeated patterns or may be located randomly. Pattern features may be distributed over the projected field of view uniformly or non-uniformly. Pattern features may be identically sized, sized according to a group of sizes, or each sized differently. Unless otherwise stated, the present disclosure describes an exemplary embodiment in which the pattern features are light spots (i.e., dots) that have a similar shape/size and that are randomly distributed over the projected field of view.
When an object is placed in front of the 3D scanner, it reflects all or some of the projected light pattern. The portion of the light pattern reflected is determined by the 3D scanner's projector, the object's size, and the object's range. Dimensioning precision/accuracy corresponds to the number of dots reflected from the object (i.e., pattern-feature density). Typically, it is important to insure that an object reflects a sufficient number of dots and that these dots can be imaged accurately by a camera.
Problems with dimensioning can occur when the projected light pattern is not optimal for an object having a particular size positioned and positioned at a particular distance from the 3D scanner. A 3D scanner that projects one pattern may not be able to dimension accurately in all cases.
A pattern image of the object located at position “A” 4 will have more reflected dots (i.e., higher pattern-feature density) than a pattern image of the object located at position “B” 5 because the object intersects more of the projected pattern's field of view 6. Since the field of view spreads with range, an object placed too close to the 3D scanner may have areas that do not intersect with the projected pattern. In this case, a light pattern with a larger field of view could help dimensioning. Alternatively, objects placed too far from the 3D scanner may intersect with the projected pattern insufficiently to allow for accurate dimensioning. In this case, a light pattern having a smaller field of view could help dimensioning.
The dots in the pattern image of an object in position “A” will appear larger than the dots in the pattern image of an object located at position “B” because the object at position “A” is closer to the 3D scanner's camera. Objects placed too far from the 3D scanner may have reflected light patterns that are too small to be resolved by the camera (i.e., pixel sampling errors). In this case, a light pattern with larger dots and/or with greater dot spacing could help dimensioning.
The image intensity (i.e., pixel values) of the dots at position “A” will be higher than the image intensity of the dots at position “B” because the object is closer to the 3D scanner. An object placed too close to the 3D scanner, may have dot image intensities that saturate the camera and cause artifacts (e.g., pixel blooming). In this case, a light pattern with a lower intensity could help dimensioning. Objects placed too far from the 3D scanner, may have dot image intensities that are low and do not rise above the noise in the camera's sensor/electronics (i.e., poor signal-to-noise-ratio (SNR)). In this case, a light pattern having a higher intensity could help dimensioning.
The discussion so far has focused on an object having a particular size that is positioned both near and far. Similar dimensioning problems may also exist for large and small objects located a particular range. For example, a large object will intersect more of the projected light pattern at a particular range than a small object at the same position and, therefore, may require a larger projected light pattern field of view. Many possibilities exist because both range and object size variations must be accommodated by a 3D scanner.
In some cases, a user may remedy dimensioning problems (e.g., low accuracy, no results, etc.) by repositioning the object and/or 3D scanner. For example, a small object initially placed far from the 3D scanner may be moved closer to improve dimensioning (e.g., accuracy). Requiring the user to make adjustments or understand the limitations of the scanner is not always desirable, and sometimes it is impossible to make the necessary adjustments due to size and space limitations. Instead, the present invention embraces a system and method for accommodating the size/range limitations of a 3D scanner automatically by adjusting the projected pattern to suit the size/range of an object.
A block diagram of a dual-projector 3D scanner for dimensioning (i.e., scanner or dimensioner) according to an embodiment of the present invention is shown in
The first projector 11 projects a first light pattern and the second projector projects 12 a second light pattern. The first and second light pattern may be different in a variety of ways. For example, at a particular range, the first light pattern's field of view 13 (i.e., spatial extent of the light pattern) may be smaller than the second light pattern's field of view 14. In another exemplary embodiment, the first light pattern's pattern-feature density (e.g., the number of dots in the field of view) may be lower than the second light pattern's pattern-feature density (e.g., dot density). In another exemplary embodiment, the first light pattern's optical intensity (e.g., optical power per dot) may be lower than the second light-pattern's optical intensity. Other differences between the first and second light patterns may include (but are not limited to) pattern-feature size, pattern-feature shape, pattern-feature type (e.g., dot, line, etc.), pattern-feature arrangement (e.g., spacing, regularity, etc.), pattern-feature distribution, angular divergence, wavelength, and/or polarization.
A camera 15 captures a pattern image using a focusing element (e.g., lens, pinhole, etc.), which forms a real image of the reflected light pattern onto an image sensor. In some embodiments, the camera may include a filter (e.g., infrared filter), which passes the light pattern while blocking other (e.g., ambient) light from reaching the sensor. The camera's image sensor may convert the real image into an electronic signal using a plurality of light sensitive elements arranged in a contiguous array, wherein each light sensitive element samples a portion of the camera's field of view 16. The image sensor may use a variety of technologies to convert light into electronic signals (e.g., charge coupled device (i.e., CCD) technology, complementary metal oxide semiconductor (i.e., CMOS) technology, etc.). Conditioning electronics (e.g., analog-to-digital converters, clocks, amplifiers, digital signal processor, etc.) may be included as part of the camera and used to facilitate the formation of a digital image.
A computing-and-control subsystem 17 is communicatively coupled to the first projector 11, the second projector 12, and the camera 15. The computer-and-control subsystem 17 synchronizes operation/timing of the projectors and the camera (e.g., so that only one projector is on when camera captures a pattern image). The computer-and-control subsystem 17 may also control the camera's settings (e.g. focus, exposure). These settings may be adjusted to correspond with the activated projector, the object, and/or the environment (e.g., range, ambient lighting, etc.)
The computing-and-control subsystem 17 may include one or more processors 41 (e.g., one or more controller, digital signal processor (DSP), application specific integrated circuit (ASIC), programmable gate array (PGA), programmable logic controller (PLC), etc.). The processor 18 may be configured by processor-executable instructions (e.g., software) stored in at least one non-transitory storage medium (i.e., memory) 19 (e.g., read-only memory (ROM), flash memory, a hard-drive, etc.). The processor-executable instructions, when executed by the processor 18, configure the 3D scanner to obtain the object's scanning requirements (e.g., object size/range) and choose either the first or the second projector based on these requirements. The 3D scanner is then triggered to capture a pattern image, which is then processed by the processor to produce a range image. The range image is then analyzed by the processor to obtain the object's dimensions. The results of the processing and/or analysis may be stored in the computing-and-control's memory 19.
An exemplary embodiment of a method for dimensioning an object using the dual-projector 3D scanner is shown in
The preliminary pattern image is analyzed 22 (e.g., by the processor configured by software stored in the memory to perform image analysis algorithms). The results of the analysis include information to facilitate the selection of one of the two projectors for dimensioning. This information may be related to the object's range/size, the pattern quality (e.g., saturation, low signal, object coverage, etc.), or dimensioning accuracy (e.g., pattern-feature density). Based on the analysis, one of the 3D scanner's two projectors is selected 23 for dimensioning 24.
Dimensioning begins with activating the selected projector 25 to project a light pattern onto the object. A pattern image of the reflected light pattern is captured by the camera 26. The pattern image is processed by the processor to generate a range image 27. Algorithms running on the processor analyze the range image to derive the dimension of the object 28. These algorithms may also provide the precision and/or accuracy of these measurements. In some cases, the algorithms may return a measurement error when the accuracy of the dimensioning is not within a certain accuracy/precision or when no result can be computed.
Another exemplary embodiment of a method for dimensioning an object using the dual-projector 3D scanner is shown in
Another exemplary embodiment of a method for dimensioning an object using the dual-projector 3D scanner is shown in
Another exemplary embodiment of a method for dimensioning an object using the dual-projector 3D scanner is shown in
In summary, the purpose of utilizing two projectors in the 3D scanner is to expand the working limit of the 3D scanner and thus enhance its performance. To this end, aspects of the following may be changed: the projected pattern (e.g., type, angular resolution, feature size, field of view, intensity, wavelength, projection direction, etc.); the camera's settings for a particular projector (e.g., frame rate, resolution, etc.); and the physical arrangement of the camera and each projector (e.g., projector/camera spacing, projector/camera orientation, etc.). The present invention envisions any combination of these aspect variations to enhance 3D scanning performance.
To supplement the present disclosure, this application incorporates entirely by reference the following commonly assigned patents, patent application publications, and patent applications:
In the specification and/or figures, typical embodiments of the invention have been disclosed. The present invention is not limited to such exemplary embodiments. The use of the term “and/or” includes any and all combinations of one or more of the associated listed items. The figures are schematic representations and so are not necessarily drawn to scale. Unless otherwise noted, specific terms have been used in a generic and descriptive sense and not for purposes of limitation.
Number | Name | Date | Kind |
---|---|---|---|
3971065 | Bayer | Jul 1976 | A |
4398811 | Nishioka et al. | Aug 1983 | A |
4495559 | Gelatt, Jr. | Jan 1985 | A |
4730190 | Win et al. | Mar 1988 | A |
4803639 | Steele et al. | Feb 1989 | A |
5220536 | Stringer et al. | Jun 1993 | A |
5331118 | Jensen | Jul 1994 | A |
5359185 | Hanson | Oct 1994 | A |
5384901 | Glassner et al. | Jan 1995 | A |
5548707 | LoNegro et al. | Aug 1996 | A |
5555090 | Schmutz | Sep 1996 | A |
5590060 | Granville et al. | Dec 1996 | A |
5606534 | Stringer et al. | Feb 1997 | A |
5619245 | Kessler et al. | Apr 1997 | A |
5655095 | LoNegro et al. | Aug 1997 | A |
5661561 | Wurz et al. | Aug 1997 | A |
5699161 | Woodworth | Dec 1997 | A |
5729750 | Ishida | Mar 1998 | A |
5730252 | Herbinet | Mar 1998 | A |
5732147 | Tao | Mar 1998 | A |
5734476 | Dlugos | Mar 1998 | A |
5737074 | Haga et al. | Apr 1998 | A |
5831737 | Stringer et al. | Nov 1998 | A |
5850370 | Stringer et al. | Dec 1998 | A |
5850490 | Johnson | Dec 1998 | A |
5869827 | Rando | Feb 1999 | A |
5870220 | Migdal et al. | Feb 1999 | A |
5900611 | Hecht | May 1999 | A |
5923428 | Woodworth | Jul 1999 | A |
5929856 | LoNegro et al. | Jul 1999 | A |
5960098 | Tao | Sep 1999 | A |
5969823 | Wurz et al. | Oct 1999 | A |
5978512 | Kim et al. | Nov 1999 | A |
5979760 | Freyman et al. | Nov 1999 | A |
5988862 | Kacyra et al. | Nov 1999 | A |
5991041 | Woodworth | Nov 1999 | A |
6009189 | Schaack | Dec 1999 | A |
6025847 | Marks | Feb 2000 | A |
6049386 | Stringer et al. | Apr 2000 | A |
6053409 | Brobst et al. | Apr 2000 | A |
6064759 | Buckley et al. | May 2000 | A |
6067110 | Nonaka et al. | May 2000 | A |
6069696 | McQueen et al. | May 2000 | A |
6137577 | Woodworth | Oct 2000 | A |
6177999 | Wurz et al. | Jan 2001 | B1 |
6232597 | Kley | May 2001 | B1 |
6236403 | Chaki | May 2001 | B1 |
6246468 | Dimsdale | Jun 2001 | B1 |
6333749 | Reinhardt et al. | Dec 2001 | B1 |
6336587 | He et al. | Jan 2002 | B1 |
6369401 | Lee | Apr 2002 | B1 |
6373579 | Ober et al. | Apr 2002 | B1 |
6429803 | Kumar | Aug 2002 | B1 |
6457642 | Good et al. | Oct 2002 | B1 |
6507406 | Yagi et al. | Jan 2003 | B1 |
6517004 | Good et al. | Feb 2003 | B2 |
6674904 | McQueen | Jan 2004 | B1 |
6705526 | Zhu et al. | Mar 2004 | B1 |
6781621 | Gobush et al. | Aug 2004 | B1 |
6824058 | Patel et al. | Nov 2004 | B2 |
6832725 | Gardiner et al. | Dec 2004 | B2 |
6858857 | Pease et al. | Feb 2005 | B2 |
6971580 | Zhu et al. | Dec 2005 | B2 |
6995762 | Pavlidis et al. | Feb 2006 | B1 |
7085409 | Sawhney et al. | Aug 2006 | B2 |
7086162 | Tyroler | Aug 2006 | B2 |
7104453 | Zhu et al. | Sep 2006 | B1 |
7128266 | Marlton et al. | Oct 2006 | B2 |
7137556 | Bonner et al. | Nov 2006 | B1 |
7159783 | Walczyk et al. | Jan 2007 | B2 |
7161688 | Bonner et al. | Jan 2007 | B1 |
7214954 | Schopp | May 2007 | B2 |
7277187 | Smith et al. | Oct 2007 | B2 |
7307653 | Dutta | Dec 2007 | B2 |
7310431 | Gokturk et al. | Dec 2007 | B2 |
7413127 | Ehrhart et al. | Aug 2008 | B2 |
7527205 | Zhu | May 2009 | B2 |
7586049 | Wurz | Sep 2009 | B2 |
7602404 | Reinhardt et al. | Oct 2009 | B1 |
7639722 | Paxton et al. | Dec 2009 | B1 |
7726575 | Wang et al. | Jun 2010 | B2 |
7780084 | Zhang et al. | Aug 2010 | B2 |
7788883 | Buckley et al. | Sep 2010 | B2 |
7974025 | Topliss | Jul 2011 | B2 |
8027096 | Feng et al. | Sep 2011 | B2 |
8028501 | Buckley et al. | Oct 2011 | B2 |
8050461 | Shpunt et al. | Nov 2011 | B2 |
8055061 | Katano | Nov 2011 | B2 |
8102395 | Kondo et al. | Jan 2012 | B2 |
8132728 | Dwinell et al. | Mar 2012 | B2 |
8134717 | Pangrazio et al. | Mar 2012 | B2 |
8149224 | Kuo et al. | Apr 2012 | B1 |
8194097 | Xiao et al. | Jun 2012 | B2 |
8212889 | Chanas et al. | Jul 2012 | B2 |
8228510 | Pangrazio et al. | Jul 2012 | B2 |
8230367 | Bell et al. | Jul 2012 | B2 |
8294969 | Plesko | Oct 2012 | B2 |
8305458 | Hara | Nov 2012 | B2 |
8310656 | Zalewski | Nov 2012 | B2 |
8313380 | Zalewski et al. | Nov 2012 | B2 |
8317105 | Kotlarsky et al. | Nov 2012 | B2 |
8322622 | Suzhou et al. | Dec 2012 | B2 |
8339462 | Stec et al. | Dec 2012 | B2 |
8350959 | Topliss et al. | Jan 2013 | B2 |
8366005 | Kotlarsky et al. | Feb 2013 | B2 |
8371507 | Haggerty et al. | Feb 2013 | B2 |
8376233 | Van Horn et al. | Feb 2013 | B2 |
8381976 | Mohideen et al. | Feb 2013 | B2 |
8381979 | Franz | Feb 2013 | B2 |
8390909 | Plesko | Mar 2013 | B2 |
8408464 | Zhu et al. | Apr 2013 | B2 |
8408468 | Horn et al. | Apr 2013 | B2 |
8408469 | Good | Apr 2013 | B2 |
8424768 | Rueblinger et al. | Apr 2013 | B2 |
8437539 | Komatsu et al. | May 2013 | B2 |
8441749 | Brown et al. | May 2013 | B2 |
8448863 | Xian et al. | May 2013 | B2 |
8457013 | Essinger et al. | Jun 2013 | B2 |
8459557 | Havens et al. | Jun 2013 | B2 |
8463079 | Ackley et al. | Jun 2013 | B2 |
8469272 | Kearney | Jun 2013 | B2 |
8474712 | Kearney et al. | Jul 2013 | B2 |
8479992 | Kotlarsky et al. | Jul 2013 | B2 |
8490877 | Kearney | Jul 2013 | B2 |
8517271 | Kotlarsky et al. | Aug 2013 | B2 |
8523076 | Good | Sep 2013 | B2 |
8528818 | Ehrhart et al. | Sep 2013 | B2 |
8544737 | Gomez et al. | Oct 2013 | B2 |
8548420 | Grunow et al. | Oct 2013 | B2 |
8550335 | Samek et al. | Oct 2013 | B2 |
8550354 | Gannon et al. | Oct 2013 | B2 |
8550357 | Kearney | Oct 2013 | B2 |
8556174 | Kosecki et al. | Oct 2013 | B2 |
8556176 | Van Horn et al. | Oct 2013 | B2 |
8556177 | Hussey et al. | Oct 2013 | B2 |
8559767 | Barber et al. | Oct 2013 | B2 |
8561895 | Gomez et al. | Oct 2013 | B2 |
8561903 | Sauerwein | Oct 2013 | B2 |
8561905 | Edmonds et al. | Oct 2013 | B2 |
8565107 | Pease et al. | Oct 2013 | B2 |
8570343 | Halstead | Oct 2013 | B2 |
8571307 | Li et al. | Oct 2013 | B2 |
8576390 | Nunnink | Nov 2013 | B1 |
8579200 | Samek et al. | Nov 2013 | B2 |
8583924 | Caballero et al. | Nov 2013 | B2 |
8584945 | Wang et al. | Nov 2013 | B2 |
8587595 | Wang | Nov 2013 | B2 |
8587697 | Hussey et al. | Nov 2013 | B2 |
8588869 | Sauerwein et al. | Nov 2013 | B2 |
8590789 | Nahill et al. | Nov 2013 | B2 |
8596539 | Havens et al. | Dec 2013 | B2 |
8596542 | Havens et al. | Dec 2013 | B2 |
8596543 | Havens et al. | Dec 2013 | B2 |
8599271 | Havens et al. | Dec 2013 | B2 |
8599957 | Peake et al. | Dec 2013 | B2 |
8600158 | Li et al. | Dec 2013 | B2 |
8600167 | Showering | Dec 2013 | B2 |
8602309 | Longacre et al. | Dec 2013 | B2 |
8608053 | Meier et al. | Dec 2013 | B2 |
8608071 | Liu et al. | Dec 2013 | B2 |
8611309 | Wang et al. | Dec 2013 | B2 |
8615487 | Gomez et al. | Dec 2013 | B2 |
8621123 | Caballero | Dec 2013 | B2 |
8622303 | Meier et al. | Jan 2014 | B2 |
8628013 | Ding | Jan 2014 | B2 |
8628015 | Wang et al. | Jan 2014 | B2 |
8628016 | Winegar | Jan 2014 | B2 |
8629926 | Wang | Jan 2014 | B2 |
8630491 | Longacre et al. | Jan 2014 | B2 |
8635309 | Berthiaume et al. | Jan 2014 | B2 |
8636200 | Kearney | Jan 2014 | B2 |
8636212 | Nahill et al. | Jan 2014 | B2 |
8636215 | Ding et al. | Jan 2014 | B2 |
8636224 | Wang | Jan 2014 | B2 |
8638806 | Wang et al. | Jan 2014 | B2 |
8640958 | Lu et al. | Feb 2014 | B2 |
8640960 | Wang et al. | Feb 2014 | B2 |
8643717 | Li et al. | Feb 2014 | B2 |
8646692 | Meier et al. | Feb 2014 | B2 |
8646694 | Wang et al. | Feb 2014 | B2 |
8657200 | Ren et al. | Feb 2014 | B2 |
8659397 | Vargo et al. | Feb 2014 | B2 |
8668149 | Good | Mar 2014 | B2 |
8678285 | Kearney | Mar 2014 | B2 |
8678286 | Smith et al. | Mar 2014 | B2 |
8682077 | Longacre | Mar 2014 | B1 |
D702237 | Oberpriller et al. | Apr 2014 | S |
8687282 | Feng et al. | Apr 2014 | B2 |
8692927 | Pease et al. | Apr 2014 | B2 |
8695880 | Bremer et al. | Apr 2014 | B2 |
8698949 | Grunow et al. | Apr 2014 | B2 |
8702000 | Barber et al. | Apr 2014 | B2 |
8717494 | Gannon | May 2014 | B2 |
8720783 | Biss et al. | May 2014 | B2 |
8723804 | Fletcher et al. | May 2014 | B2 |
8723904 | Marty et al. | May 2014 | B2 |
8727223 | Wang | May 2014 | B2 |
8740082 | Wilz | Jun 2014 | B2 |
8740085 | Furlong et al. | Jun 2014 | B2 |
8746563 | Hennick et al. | Jun 2014 | B2 |
8750445 | Peake et al. | Jun 2014 | B2 |
8752766 | Xian et al. | Jun 2014 | B2 |
8756059 | Braho et al. | Jun 2014 | B2 |
8757495 | Qu et al. | Jun 2014 | B2 |
8760563 | Koziol et al. | Jun 2014 | B2 |
8763909 | Reed et al. | Jul 2014 | B2 |
8777108 | Coyle | Jul 2014 | B2 |
8777109 | Oberpriller et al. | Jul 2014 | B2 |
8779898 | Havens et al. | Jul 2014 | B2 |
8781520 | Payne et al. | Jul 2014 | B2 |
8783573 | Havens et al. | Jul 2014 | B2 |
8789757 | Barten | Jul 2014 | B2 |
8789758 | Hawley et al. | Jul 2014 | B2 |
8789759 | Xian et al. | Jul 2014 | B2 |
8792688 | Unsworth | Jul 2014 | B2 |
8794520 | Wang et al. | Aug 2014 | B2 |
8794522 | Ehrhart | Aug 2014 | B2 |
8794525 | Amundsen et al. | Aug 2014 | B2 |
8794526 | Wang et al. | Aug 2014 | B2 |
8798367 | Ellis | Aug 2014 | B2 |
8807431 | Wang et al. | Aug 2014 | B2 |
8807432 | Van Horn et al. | Aug 2014 | B2 |
8810779 | Hilde | Aug 2014 | B1 |
8820630 | Qu et al. | Sep 2014 | B2 |
8822848 | Meagher | Sep 2014 | B2 |
8824692 | Sheerin et al. | Sep 2014 | B2 |
8824696 | Braho | Sep 2014 | B2 |
8842849 | Wahl et al. | Sep 2014 | B2 |
8844822 | Kotlarsky et al. | Sep 2014 | B2 |
8844823 | Fritz et al. | Sep 2014 | B2 |
8849019 | Li et al. | Sep 2014 | B2 |
D716285 | Chaney et al. | Oct 2014 | S |
8851383 | Yeakley et al. | Oct 2014 | B2 |
8854633 | Laffargue | Oct 2014 | B2 |
8866963 | Grunow et al. | Oct 2014 | B2 |
8868421 | Braho et al. | Oct 2014 | B2 |
8868519 | Maloy et al. | Oct 2014 | B2 |
8868802 | Barten | Oct 2014 | B2 |
8868803 | Bremer et al. | Oct 2014 | B2 |
8870074 | Gannon | Oct 2014 | B1 |
8879639 | Sauerwein | Nov 2014 | B2 |
8880426 | Smith | Nov 2014 | B2 |
8881983 | Havens et al. | Nov 2014 | B2 |
8881987 | Wang | Nov 2014 | B2 |
8897596 | Passmore et al. | Nov 2014 | B1 |
8903172 | Smith | Dec 2014 | B2 |
8908995 | Benos et al. | Dec 2014 | B2 |
8910870 | Li et al. | Dec 2014 | B2 |
8910875 | Ren et al. | Dec 2014 | B2 |
8914290 | Hendrickson et al. | Dec 2014 | B2 |
8914788 | Pettinelli et al. | Dec 2014 | B2 |
8915439 | Feng et al. | Dec 2014 | B2 |
8915444 | Havens et al. | Dec 2014 | B2 |
8916789 | Woodburn | Dec 2014 | B2 |
8918250 | Hollifield | Dec 2014 | B2 |
8918564 | Caballero | Dec 2014 | B2 |
8925818 | Kosecki et al. | Jan 2015 | B2 |
8939374 | Jovanovski et al. | Jan 2015 | B2 |
8942480 | Ellis | Jan 2015 | B2 |
8944313 | Williams et al. | Feb 2015 | B2 |
8944327 | Meier et al. | Feb 2015 | B2 |
8944332 | Harding et al. | Feb 2015 | B2 |
8950678 | Germaine et al. | Feb 2015 | B2 |
D723560 | Zhou et al. | Mar 2015 | S |
8967468 | Gomez et al. | Mar 2015 | B2 |
8971346 | Sevier | Mar 2015 | B2 |
8976030 | Cunningham et al. | Mar 2015 | B2 |
8976368 | Akel et al. | Mar 2015 | B2 |
8978981 | Guan | Mar 2015 | B2 |
8978983 | Bremer et al. | Mar 2015 | B2 |
8978984 | Hennick et al. | Mar 2015 | B2 |
8985456 | Zhu et al. | Mar 2015 | B2 |
8985457 | Soule et al. | Mar 2015 | B2 |
8985459 | Kearney et al. | Mar 2015 | B2 |
8985461 | Gelay et al. | Mar 2015 | B2 |
8988578 | Showering | Mar 2015 | B2 |
8988590 | Gillet et al. | Mar 2015 | B2 |
8991704 | Hopper et al. | Mar 2015 | B2 |
8996194 | Davis et al. | Mar 2015 | B2 |
8996384 | Funyak et al. | Mar 2015 | B2 |
8998091 | Edmonds et al. | Apr 2015 | B2 |
9002641 | Showering | Apr 2015 | B2 |
9007368 | Laffargue et al. | Apr 2015 | B2 |
9010641 | Qu et al. | Apr 2015 | B2 |
9014441 | Truyen et al. | Apr 2015 | B2 |
9015513 | Murawski et al. | Apr 2015 | B2 |
9016576 | Brady et al. | Apr 2015 | B2 |
D730357 | Fitch et al. | May 2015 | S |
9022288 | Nahill et al. | May 2015 | B2 |
9030964 | Essinger et al. | May 2015 | B2 |
9033240 | Smith et al. | May 2015 | B2 |
9033242 | Gillet et al. | May 2015 | B2 |
9036054 | Koziol et al. | May 2015 | B2 |
9037344 | Chamberlin | May 2015 | B2 |
9038911 | Xian et al. | May 2015 | B2 |
9038915 | Smith | May 2015 | B2 |
D730901 | Oberpriller et al. | Jun 2015 | S |
D730902 | Fitch et al. | Jun 2015 | S |
D733112 | Chaney et al. | Jun 2015 | S |
9047098 | Barten | Jun 2015 | B2 |
9047359 | Caballero et al. | Jun 2015 | B2 |
9047420 | Caballero | Jun 2015 | B2 |
9047525 | Barber | Jun 2015 | B2 |
9047531 | Showering et al. | Jun 2015 | B2 |
9049640 | Wang et al. | Jun 2015 | B2 |
9053055 | Caballero | Jun 2015 | B2 |
9053378 | Hou et al. | Jun 2015 | B1 |
9053380 | Xian et al. | Jun 2015 | B2 |
9057641 | Amundsen et al. | Jun 2015 | B2 |
9058526 | Powilleit | Jun 2015 | B2 |
9064165 | Havens et al. | Jun 2015 | B2 |
9064167 | Xian et al. | Jun 2015 | B2 |
9064168 | Todeschini et al. | Jun 2015 | B2 |
9064254 | Todeschini et al. | Jun 2015 | B2 |
9066032 | Wang | Jun 2015 | B2 |
9070032 | Corcoran | Jun 2015 | B2 |
D734339 | Zhou et al. | Jul 2015 | S |
D734751 | Oberpriller et al. | Jul 2015 | S |
9082023 | Feng et al. | Jul 2015 | B2 |
9142035 | Rotman et al. | Sep 2015 | B1 |
9233470 | Bradski et al. | Jan 2016 | B1 |
9299013 | Curlander et al. | Mar 2016 | B1 |
20010027995 | Patel et al. | Oct 2001 | A1 |
20010032879 | He et al. | Oct 2001 | A1 |
20020054289 | Thibault et al. | May 2002 | A1 |
20020067855 | Chiu et al. | Jun 2002 | A1 |
20020109835 | Goetz | Aug 2002 | A1 |
20020118874 | Chung et al. | Aug 2002 | A1 |
20020158873 | Williamson | Oct 2002 | A1 |
20020167677 | Okada et al. | Nov 2002 | A1 |
20020179708 | Zhu et al. | Dec 2002 | A1 |
20030038179 | Tsikos et al. | Feb 2003 | A1 |
20030053513 | Vatan et al. | Mar 2003 | A1 |
20030063086 | Baumberg | Apr 2003 | A1 |
20030091227 | Chang et al. | May 2003 | A1 |
20030156756 | Gokturk et al. | Aug 2003 | A1 |
20030197138 | Pease et al. | Oct 2003 | A1 |
20030235331 | Kawaike et al. | Dec 2003 | A1 |
20040008259 | Gokturk et al. | Jan 2004 | A1 |
20040019274 | Galloway et al. | Jan 2004 | A1 |
20040024754 | Mane et al. | Feb 2004 | A1 |
20040066329 | Zeitfuss et al. | Apr 2004 | A1 |
20040105580 | Hager et al. | Jun 2004 | A1 |
20040118928 | Patel et al. | Jun 2004 | A1 |
20040122779 | Stickler et al. | Jun 2004 | A1 |
20040155975 | Hart et al. | Aug 2004 | A1 |
20040165090 | Ning | Aug 2004 | A1 |
20040184041 | Schopp | Sep 2004 | A1 |
20040211836 | Patel et al. | Oct 2004 | A1 |
20040214623 | Takahashi et al. | Oct 2004 | A1 |
20040233461 | Armstrong et al. | Nov 2004 | A1 |
20040258353 | Gluckstad et al. | Dec 2004 | A1 |
20050006477 | Patel | Jan 2005 | A1 |
20050117215 | Lange | Jun 2005 | A1 |
20050128193 | Popescu et al. | Jun 2005 | A1 |
20050128196 | Popescu et al. | Jun 2005 | A1 |
20050168488 | Montague | Aug 2005 | A1 |
20050211782 | Martin | Sep 2005 | A1 |
20050264867 | Cho et al. | Dec 2005 | A1 |
20060047704 | Gopalakrishnan | Mar 2006 | A1 |
20060078226 | Zhou | Apr 2006 | A1 |
20060112023 | Horhann | May 2006 | A1 |
20060151604 | Zhu et al. | Jul 2006 | A1 |
20060159307 | Anderson et al. | Jul 2006 | A1 |
20060159344 | Shao et al. | Jul 2006 | A1 |
20060232681 | Okada | Oct 2006 | A1 |
20060255150 | Longacre | Nov 2006 | A1 |
20060269165 | Viswanathan | Nov 2006 | A1 |
20060291719 | Ikeda et al. | Dec 2006 | A1 |
20070003154 | Sun et al. | Jan 2007 | A1 |
20070025612 | Iwasaki et al. | Feb 2007 | A1 |
20070031064 | Zhao et al. | Feb 2007 | A1 |
20070063048 | Havens et al. | Mar 2007 | A1 |
20070116357 | Dewaele | May 2007 | A1 |
20070127022 | Cohen et al. | Jun 2007 | A1 |
20070143082 | Degnan | Jun 2007 | A1 |
20070153293 | Gruhlke et al. | Jul 2007 | A1 |
20070171220 | Kriveshko | Jul 2007 | A1 |
20070181685 | Zhu et al. | Aug 2007 | A1 |
20070237356 | Dwinell et al. | Oct 2007 | A1 |
20070291031 | Konev et al. | Dec 2007 | A1 |
20070299338 | Stevick et al. | Dec 2007 | A1 |
20080013793 | Hillis et al. | Jan 2008 | A1 |
20080035390 | Wurz | Feb 2008 | A1 |
20080056536 | Hildreth et al. | Mar 2008 | A1 |
20080077265 | Boyden | Mar 2008 | A1 |
20080164074 | Wurz | Jun 2008 | A1 |
20080204476 | Montague | Aug 2008 | A1 |
20080212168 | Olmstead et al. | Sep 2008 | A1 |
20080247635 | Davis et al. | Oct 2008 | A1 |
20080273191 | Kim et al. | Nov 2008 | A1 |
20080278790 | Boesser et al. | Nov 2008 | A1 |
20090059004 | Bochicchio | Mar 2009 | A1 |
20090095047 | Patel et al. | Apr 2009 | A1 |
20090134221 | Zhu et al. | May 2009 | A1 |
20090195790 | Zhu et al. | Aug 2009 | A1 |
20090225333 | Bendall et al. | Sep 2009 | A1 |
20090237411 | Gossweiler et al. | Sep 2009 | A1 |
20090268023 | Hsieh | Oct 2009 | A1 |
20090272724 | Gubler | Nov 2009 | A1 |
20090273770 | Bauhahn et al. | Nov 2009 | A1 |
20090313948 | Buckley et al. | Dec 2009 | A1 |
20090323084 | Dunn et al. | Dec 2009 | A1 |
20090323121 | Valkenburg | Dec 2009 | A1 |
20100035637 | Varanasi et al. | Feb 2010 | A1 |
20100060604 | Zwart et al. | Mar 2010 | A1 |
20100091104 | Sprigle | Apr 2010 | A1 |
20100118200 | Gelman et al. | May 2010 | A1 |
20100128109 | Banks | May 2010 | A1 |
20100161170 | Siris | Jun 2010 | A1 |
20100171740 | Andersen et al. | Jul 2010 | A1 |
20100172567 | Prokoski | Jul 2010 | A1 |
20100177076 | Essinger et al. | Jul 2010 | A1 |
20100177080 | Essinger et al. | Jul 2010 | A1 |
20100177707 | Essinger et al. | Jul 2010 | A1 |
20100177749 | Essinger et al. | Jul 2010 | A1 |
20100202702 | Benos et al. | Aug 2010 | A1 |
20100208039 | Stettner | Aug 2010 | A1 |
20100211355 | Horst et al. | Aug 2010 | A1 |
20100217678 | Goncalves | Aug 2010 | A1 |
20100220849 | Colbert et al. | Sep 2010 | A1 |
20100220894 | Ackley et al. | Sep 2010 | A1 |
20100223276 | Al-Shameri et al. | Sep 2010 | A1 |
20100245850 | Lee et al. | Sep 2010 | A1 |
20100254611 | Arnz | Oct 2010 | A1 |
20100303336 | Abraham | Dec 2010 | A1 |
20100315413 | Izadi et al. | Dec 2010 | A1 |
20110019155 | Daniel et al. | Jan 2011 | A1 |
20110040192 | Brenner et al. | Feb 2011 | A1 |
20110043609 | Choi et al. | Feb 2011 | A1 |
20110099474 | Grossman et al. | Apr 2011 | A1 |
20110169999 | Grunow et al. | Jul 2011 | A1 |
20110188054 | Petronius et al. | Aug 2011 | A1 |
20110188741 | Sones et al. | Aug 2011 | A1 |
20110202554 | Powilleit et al. | Aug 2011 | A1 |
20110235854 | Berger et al. | Sep 2011 | A1 |
20110249864 | Venkatesan et al. | Oct 2011 | A1 |
20110254840 | Halstead | Oct 2011 | A1 |
20110279916 | Brown et al. | Nov 2011 | A1 |
20110286007 | Pangrazio et al. | Nov 2011 | A1 |
20110286628 | Goncalves et al. | Nov 2011 | A1 |
20110288818 | Thierman | Nov 2011 | A1 |
20110301994 | Tieman | Dec 2011 | A1 |
20110310227 | Konertz et al. | Dec 2011 | A1 |
20120024952 | Chen | Feb 2012 | A1 |
20120056982 | Katz et al. | Mar 2012 | A1 |
20120057345 | Kuchibhotla | Mar 2012 | A1 |
20120067955 | Rowe | Mar 2012 | A1 |
20120074227 | Ferren et al. | Mar 2012 | A1 |
20120081714 | Pangrazio et al. | Apr 2012 | A1 |
20120111946 | Golant | May 2012 | A1 |
20120113223 | Hilliges et al. | May 2012 | A1 |
20120113250 | Farlotti et al. | May 2012 | A1 |
20120140300 | Freeman | Jun 2012 | A1 |
20120168512 | Kotlarsky et al. | Jul 2012 | A1 |
20120179665 | Baarman et al. | Jul 2012 | A1 |
20120185094 | Rosenstein et al. | Jul 2012 | A1 |
20120190386 | Anderson | Jul 2012 | A1 |
20120193423 | Samek | Aug 2012 | A1 |
20120197464 | Wang et al. | Aug 2012 | A1 |
20120203647 | Smith | Aug 2012 | A1 |
20120218436 | Rodriguez et al. | Sep 2012 | A1 |
20120223141 | Good et al. | Sep 2012 | A1 |
20120224026 | Bayer et al. | Sep 2012 | A1 |
20120236288 | Stanley | Sep 2012 | A1 |
20120242852 | Hayward et al. | Sep 2012 | A1 |
20120262558 | Boger et al. | Oct 2012 | A1 |
20120280908 | Rhoads et al. | Nov 2012 | A1 |
20120282905 | Owen | Nov 2012 | A1 |
20120282911 | Davis et al. | Nov 2012 | A1 |
20120284012 | Rodriguez et al. | Nov 2012 | A1 |
20120284122 | Brandis | Nov 2012 | A1 |
20120284339 | Rodriguez | Nov 2012 | A1 |
20120284593 | Rodriguez | Nov 2012 | A1 |
20120293610 | Doepke et al. | Nov 2012 | A1 |
20120294549 | Doepke | Nov 2012 | A1 |
20120299961 | Ramkumar et al. | Nov 2012 | A1 |
20120300991 | Mikio | Nov 2012 | A1 |
20120313848 | Galor et al. | Dec 2012 | A1 |
20120314030 | Datta | Dec 2012 | A1 |
20120314058 | Bendall et al. | Dec 2012 | A1 |
20120316820 | Nakazato et al. | Dec 2012 | A1 |
20130038881 | Pesach et al. | Feb 2013 | A1 |
20130038941 | Pesach et al. | Feb 2013 | A1 |
20130043312 | Van Horn | Feb 2013 | A1 |
20130050426 | Sarmast et al. | Feb 2013 | A1 |
20130075168 | Amundsen et al. | Mar 2013 | A1 |
20130094069 | Lee et al. | Apr 2013 | A1 |
20130101158 | Lloyd et al. | Apr 2013 | A1 |
20130175341 | Kearney et al. | Jul 2013 | A1 |
20130175343 | Good | Jul 2013 | A1 |
20130200150 | Reynolds et al. | Aug 2013 | A1 |
20130201288 | Billerbeck et al. | Aug 2013 | A1 |
20130208164 | Cazier et al. | Aug 2013 | A1 |
20130223673 | Davis et al. | Aug 2013 | A1 |
20130257744 | Daghigh et al. | Oct 2013 | A1 |
20130257759 | Daghigh | Oct 2013 | A1 |
20130270346 | Xian et al. | Oct 2013 | A1 |
20130287258 | Kearney | Oct 2013 | A1 |
20130291998 | Konnerth | Nov 2013 | A1 |
20130292475 | Kotlarsky et al. | Nov 2013 | A1 |
20130292477 | Hennick et al. | Nov 2013 | A1 |
20130293539 | Hunt et al. | Nov 2013 | A1 |
20130293540 | Laffargue et al. | Nov 2013 | A1 |
20130306728 | Thuries et al. | Nov 2013 | A1 |
20130306731 | Pedraro | Nov 2013 | A1 |
20130307964 | Bremer et al. | Nov 2013 | A1 |
20130308013 | Li et al. | Nov 2013 | A1 |
20130308625 | Park et al. | Nov 2013 | A1 |
20130313324 | Koziol et al. | Nov 2013 | A1 |
20130313325 | Wilz et al. | Nov 2013 | A1 |
20130329012 | Bartos | Dec 2013 | A1 |
20130329013 | Metois et al. | Dec 2013 | A1 |
20130342343 | Harring et al. | Dec 2013 | A1 |
20130342717 | Havens et al. | Dec 2013 | A1 |
20140001267 | Giordano et al. | Jan 2014 | A1 |
20140002828 | Laffargue et al. | Jan 2014 | A1 |
20140008439 | Wang | Jan 2014 | A1 |
20140021259 | Moed et al. | Jan 2014 | A1 |
20140025584 | Liu et al. | Jan 2014 | A1 |
20140031665 | Pinto et al. | Jan 2014 | A1 |
20140034731 | Gao et al. | Feb 2014 | A1 |
20140034734 | Sauerwein | Feb 2014 | A1 |
20140036848 | Pease et al. | Feb 2014 | A1 |
20140039693 | Havens et al. | Feb 2014 | A1 |
20140042814 | Kather et al. | Feb 2014 | A1 |
20140049120 | Kohtz et al. | Feb 2014 | A1 |
20140049635 | Laffargue et al. | Feb 2014 | A1 |
20140061306 | Wu et al. | Mar 2014 | A1 |
20140063289 | Hussey et al. | Mar 2014 | A1 |
20140066136 | Sauerwein et al. | Mar 2014 | A1 |
20140067104 | Osterhout | Mar 2014 | A1 |
20140067692 | Ye et al. | Mar 2014 | A1 |
20140070005 | Nahill et al. | Mar 2014 | A1 |
20140071840 | Venancio | Mar 2014 | A1 |
20140074746 | Wang | Mar 2014 | A1 |
20140076974 | Havens et al. | Mar 2014 | A1 |
20140078341 | Havens et al. | Mar 2014 | A1 |
20140078342 | Li et al. | Mar 2014 | A1 |
20140078345 | Showering | Mar 2014 | A1 |
20140091147 | Evans et al. | Apr 2014 | A1 |
20140097238 | Ghazizadeh | Apr 2014 | A1 |
20140098091 | Hori | Apr 2014 | A1 |
20140098792 | Wang et al. | Apr 2014 | A1 |
20140100774 | Showering | Apr 2014 | A1 |
20140100813 | Showering | Apr 2014 | A1 |
20140103115 | Meier et al. | Apr 2014 | A1 |
20140104413 | McCloskey et al. | Apr 2014 | A1 |
20140104414 | McCloskey et al. | Apr 2014 | A1 |
20140104416 | Giordano et al. | Apr 2014 | A1 |
20140104451 | Todeschini et al. | Apr 2014 | A1 |
20140104664 | Lee | Apr 2014 | A1 |
20140106594 | Skvoretz | Apr 2014 | A1 |
20140106725 | Sauerwein | Apr 2014 | A1 |
20140108010 | Maltseff et al. | Apr 2014 | A1 |
20140108402 | Gomez et al. | Apr 2014 | A1 |
20140108682 | Caballero | Apr 2014 | A1 |
20140110485 | Toa et al. | Apr 2014 | A1 |
20140114530 | Fitch et al. | Apr 2014 | A1 |
20140124577 | Wang et al. | May 2014 | A1 |
20140124579 | Ding | May 2014 | A1 |
20140125842 | Winegar | May 2014 | A1 |
20140125853 | Wang | May 2014 | A1 |
20140125999 | Longacre et al. | May 2014 | A1 |
20140129378 | Richardson | May 2014 | A1 |
20140131438 | Kearney | May 2014 | A1 |
20140131441 | Nahill et al. | May 2014 | A1 |
20140131443 | Smith | May 2014 | A1 |
20140131444 | Wang | May 2014 | A1 |
20140131445 | Ding et al. | May 2014 | A1 |
20140131448 | Xian et al. | May 2014 | A1 |
20140133379 | Wang et al. | May 2014 | A1 |
20140135984 | Hirata | May 2014 | A1 |
20140136208 | Maltseff et al. | May 2014 | A1 |
20140140585 | Wang | May 2014 | A1 |
20140151453 | Meier et al. | Jun 2014 | A1 |
20140152882 | Samek et al. | Jun 2014 | A1 |
20140152975 | Ko | Jun 2014 | A1 |
20140158770 | Sevier et al. | Jun 2014 | A1 |
20140159869 | Zumsteg et al. | Jun 2014 | A1 |
20140166755 | Liu et al. | Jun 2014 | A1 |
20140166757 | Smith | Jun 2014 | A1 |
20140166759 | Liu et al. | Jun 2014 | A1 |
20140168380 | Heidemann | Jun 2014 | A1 |
20140168787 | Wang et al. | Jun 2014 | A1 |
20140175165 | Havens et al. | Jun 2014 | A1 |
20140175172 | Jovanovski et al. | Jun 2014 | A1 |
20140191644 | Chaney | Jul 2014 | A1 |
20140191913 | Ge et al. | Jul 2014 | A1 |
20140192187 | Atwell et al. | Jul 2014 | A1 |
20140192551 | Masaki | Jul 2014 | A1 |
20140197238 | Lui et al. | Jul 2014 | A1 |
20140197239 | Havens et al. | Jul 2014 | A1 |
20140197304 | Feng et al. | Jul 2014 | A1 |
20140203087 | Smith et al. | Jul 2014 | A1 |
20140204268 | Grunow et al. | Jul 2014 | A1 |
20140205150 | Ogawa | Jul 2014 | A1 |
20140214631 | Hansen | Jul 2014 | A1 |
20140217166 | Berthiaume et al. | Aug 2014 | A1 |
20140217180 | Liu | Aug 2014 | A1 |
20140225918 | Mittal et al. | Aug 2014 | A1 |
20140225985 | Klusza et al. | Aug 2014 | A1 |
20140231500 | Ehrhart et al. | Aug 2014 | A1 |
20140232930 | Anderson | Aug 2014 | A1 |
20140240464 | Lee | Aug 2014 | A1 |
20140247279 | Nicholas et al. | Sep 2014 | A1 |
20140247280 | Nicholas et al. | Sep 2014 | A1 |
20140247315 | Marty et al. | Sep 2014 | A1 |
20140263493 | Amurgis et al. | Sep 2014 | A1 |
20140263645 | Smith et al. | Sep 2014 | A1 |
20140267609 | Laffargue | Sep 2014 | A1 |
20140268093 | Tohme et al. | Sep 2014 | A1 |
20140270196 | Braho et al. | Sep 2014 | A1 |
20140270229 | Braho | Sep 2014 | A1 |
20140270361 | Amma et al. | Sep 2014 | A1 |
20140278387 | DiGregorio | Sep 2014 | A1 |
20140282210 | Bianconi | Sep 2014 | A1 |
20140284384 | Lu et al. | Sep 2014 | A1 |
20140288933 | Braho et al. | Sep 2014 | A1 |
20140297058 | Barker et al. | Oct 2014 | A1 |
20140299665 | Barber et al. | Oct 2014 | A1 |
20140306833 | Ricci | Oct 2014 | A1 |
20140307855 | Withagen et al. | Oct 2014 | A1 |
20140312121 | Lu et al. | Oct 2014 | A1 |
20140313527 | Askan | Oct 2014 | A1 |
20140319219 | Liu et al. | Oct 2014 | A1 |
20140319220 | Coyle | Oct 2014 | A1 |
20140319221 | Oberpriller et al. | Oct 2014 | A1 |
20140320408 | Zagorsek et al. | Oct 2014 | A1 |
20140326787 | Barten | Nov 2014 | A1 |
20140332590 | Wang et al. | Nov 2014 | A1 |
20140344943 | Todeschini et al. | Nov 2014 | A1 |
20140346233 | Liu et al. | Nov 2014 | A1 |
20140347553 | Ovsiannikov et al. | Nov 2014 | A1 |
20140350710 | Gopalakrishnan et al. | Nov 2014 | A1 |
20140351317 | Smith et al. | Nov 2014 | A1 |
20140353373 | Van Horn et al. | Dec 2014 | A1 |
20140361073 | Qu et al. | Dec 2014 | A1 |
20140361082 | Xian et al. | Dec 2014 | A1 |
20140362184 | Jovanovski et al. | Dec 2014 | A1 |
20140363015 | Braho | Dec 2014 | A1 |
20140369511 | Sheerin et al. | Dec 2014 | A1 |
20140374483 | Lu | Dec 2014 | A1 |
20140374485 | Xian et al. | Dec 2014 | A1 |
20150001301 | Ouyang | Jan 2015 | A1 |
20150001304 | Todeschini | Jan 2015 | A1 |
20150003673 | Fletcher | Jan 2015 | A1 |
20150009301 | Ribnick et al. | Jan 2015 | A1 |
20150009338 | Laffargue et al. | Jan 2015 | A1 |
20150009610 | London et al. | Jan 2015 | A1 |
20150014416 | Kotlarsky et al. | Jan 2015 | A1 |
20150021397 | Rueblinger et al. | Jan 2015 | A1 |
20150028102 | Ren et al. | Jan 2015 | A1 |
20150028103 | Jiang | Jan 2015 | A1 |
20150028104 | Ma et al. | Jan 2015 | A1 |
20150029002 | Yeakley et al. | Jan 2015 | A1 |
20150032709 | Maloy et al. | Jan 2015 | A1 |
20150036876 | Marrion et al. | Feb 2015 | A1 |
20150039309 | Braho et al. | Feb 2015 | A1 |
20150040378 | Saber et al. | Feb 2015 | A1 |
20150048168 | Fritz et al. | Feb 2015 | A1 |
20150049347 | Laffargue et al. | Feb 2015 | A1 |
20150051992 | Smith | Feb 2015 | A1 |
20150053766 | Havens et al. | Feb 2015 | A1 |
20150053768 | Wang et al. | Feb 2015 | A1 |
20150053769 | Thuries et al. | Feb 2015 | A1 |
20150062366 | Liu et al. | Mar 2015 | A1 |
20150063215 | Wang | Mar 2015 | A1 |
20150063676 | Lloyd et al. | Mar 2015 | A1 |
20150069130 | Gannon | Mar 2015 | A1 |
20150071819 | Todeschini | Mar 2015 | A1 |
20150083800 | Li et al. | Mar 2015 | A1 |
20150086114 | Todeschini | Mar 2015 | A1 |
20150088522 | Hendrickson et al. | Mar 2015 | A1 |
20150096872 | Woodburn | Apr 2015 | A1 |
20150099557 | Pettinelli et al. | Apr 2015 | A1 |
20150100196 | Hollifield | Apr 2015 | A1 |
20150102109 | Huck | Apr 2015 | A1 |
20150115035 | Meier et al. | Apr 2015 | A1 |
20150127791 | Kosecki et al. | May 2015 | A1 |
20150128116 | Chen et al. | May 2015 | A1 |
20150129659 | Feng et al. | May 2015 | A1 |
20150133047 | Smith et al. | May 2015 | A1 |
20150134470 | Hejl et al. | May 2015 | A1 |
20150136851 | Harding et al. | May 2015 | A1 |
20150136854 | Lu et al. | May 2015 | A1 |
20150142492 | Kumar | May 2015 | A1 |
20150144692 | Hejl | May 2015 | A1 |
20150144698 | Teng et al. | May 2015 | A1 |
20150144701 | Xian et al. | May 2015 | A1 |
20150149946 | Benos et al. | May 2015 | A1 |
20150161429 | Xian | Jun 2015 | A1 |
20150163474 | You | Jun 2015 | A1 |
20150169925 | Chen et al. | Jun 2015 | A1 |
20150169929 | Williams et al. | Jun 2015 | A1 |
20150186703 | Chen et al. | Jul 2015 | A1 |
20150193644 | Kearney et al. | Jul 2015 | A1 |
20150193645 | Colavito et al. | Jul 2015 | A1 |
20150199957 | Funyak et al. | Jul 2015 | A1 |
20150204662 | Kobayashi | Jul 2015 | A1 |
20150204671 | Showering | Jul 2015 | A1 |
20150213647 | Laffargue et al. | Jul 2015 | A1 |
20150229838 | Hakim et al. | Aug 2015 | A1 |
20150269403 | Lei et al. | Sep 2015 | A1 |
20150276379 | Ni et al. | Oct 2015 | A1 |
20150301181 | Herschbach | Oct 2015 | A1 |
20150308816 | Laffargue et al. | Oct 2015 | A1 |
20150355470 | Herschbach | Dec 2015 | A1 |
20160063429 | Varley et al. | Mar 2016 | A1 |
20160169665 | Deschenes et al. | Jun 2016 | A1 |
20160191801 | Sivan | Jun 2016 | A1 |
20160202478 | Masson et al. | Jul 2016 | A1 |
Number | Date | Country |
---|---|---|
2004212587 | Apr 2005 | AU |
3335760 | Apr 1985 | DE |
10210813 | Oct 2003 | DE |
102007037282 | Mar 2008 | DE |
1111435 | Jun 2001 | EP |
1443312 | Aug 2004 | EP |
2286932 | Feb 2011 | EP |
2381421 | Oct 2011 | EP |
2533009 | Dec 2012 | EP |
2722656 | Apr 2014 | EP |
2779027 | Sep 2014 | EP |
283323 | Feb 2015 | EP |
2843590 | Mar 2015 | EP |
2845170 | Mar 2015 | EP |
2966595 | Jan 2016 | EP |
3006893 | Mar 2016 | EP |
3012601 | Mar 2016 | EP |
3007096 | Apr 2016 | EP |
2503978 | Jan 2014 | GB |
2531928 | May 2016 | GB |
H04129902 | Apr 1992 | JP |
2008210276 | Sep 2008 | JP |
2014210646 | Nov 2014 | JP |
20110013200 | Feb 2011 | KR |
20110117020 | Oct 2011 | KR |
20120028109 | Mar 2012 | KR |
9640452 | Dec 1996 | WO |
0077726 | Dec 2000 | WO |
0114836 | Mar 2001 | WO |
2006095110 | Sep 2006 | WO |
2007015059 | Feb 2007 | WO |
2011017241 | Feb 2011 | WO |
2012175731 | Dec 2012 | WO |
2013021157 | Feb 2013 | WO |
2013033442 | Mar 2013 | WO |
2013163789 | Nov 2013 | WO |
2013166368 | Nov 2013 | WO |
2013173985 | Nov 2013 | WO |
2013184340 | Dec 2013 | WO |
2014019130 | Feb 2014 | WO |
2014102341 | Jul 2014 | WO |
2014110495 | Jul 2014 | WO |
2014149702 | Sep 2014 | WO |
2014151746 | Sep 2014 | WO |
2015006865 | Jan 2015 | WO |
2016020038 | Feb 2016 | WO |
2016061699 | Apr 2016 | WO |
Entry |
---|
Search Report and Opinion in related GB Application No. 1517112.7, Dated Feb. 19, 2016, 6 Pages. |
Lloyd, Ryan and Scott McCloskey, “Recognition of 3D Package Shapes for Singe Camera Metrology” IEEE Winter conference on Applications of computer Visiona, IEEE, Mar. 24, 2014, pp. 99-106, {retrieved on Jun. 16, 2014}, Authors are employees of common Applicant. |
European Search Report for Related EP Application No. 15189214.8, dated Mar. 3, 2016, 9 pages. |
Office Action in counterpart European Application No. 13186043.9 dated Sep. 30, 2015, pp. 1-7. |
Lloyd et al., “System for Monitoring the Condition of Packages Throughout Transit”, U.S. Appl. No. 14/865,575, filed Sep. 25, 2015, 59 pages, not yet published. |
James Chamberlin, “System and Method for Picking Validation”, U.S. Appl. No. 14/865,797, filed Sep. 25, 2015, 44 pages, not yet published. |
Jovanovski et al., “Image-Stitching for Dimensioning”, U.S. Appl. No. 14/870,488, filed Sep. 30, 2015, 45 pages, not yet published. |
Todeschini et al.; “Depth Sensor Based Auto-Focus System for an Indicia Scanner,” U.S. Appl. No. 14/872,176, filed Oct. 1, 2015, 44 pages, not yet published. |
Wikipedia, “3D projection” Downloaded on Nov. 25, 2015 from www.wikipedia.com, 4 pages. |
McCloskey et al., “Methods for Improving the Accuracy of Dimensioning-System Measurements,” U.S. Appl. No. 14/873,613, filed Sep. 2, 2015, 47 pages, not yet published. |
Search Report in counterpart European Application No. 15182675.7, Dated Dec. 4, 2015, 10 pages. |
McCloskey et al., “Image Transformation for Indicia Reading,” U.S. Appl. No. 14/982,032, filed Oct. 30, 2015, 48 pages, not yet published. |
Peter Clarke, Actuator Developer Claims Anti-Shake Breakthrough for Smartphone Cams, Electronic Engineering Times, p. 24, May 16, 2011. |
Spiller, Jonathan; Object Localization Using Deformable Templates, Master's Dissertation, University of the Witwatersrand, Johannesburg, South Africa, 2007; 74 pages. |
Leotta, Matthew J.; Joseph L. Mundy; Predicting High Resolution Image Edges with a Generic, Adaptive, 3-D Vehicle Model; IEEE Conference on Computer Vision and Pattern Recognition, 2009; 8 pages. |
European Search Report for application No. EP13186043 dated Feb. 26, 2014 (now EP2722656 (Apr. 23, 2014)): Total pp. 7. |
International Search Report for PCT/US2013/039438 (WO2013166368), Oct. 1, 2013, 7 pages. |
U.S. Appl. No. 14/453,019, not yet published, filed Aug. 6, 2014, Hand Held Products Inc., Dimensioning System With Guided Alignment: 31 pages. |
European Office Action for application EP 13186043, dated Jun. 12, 2014(now EP2722656 (Apr. 23, 2014)), Total of 6 pages. |
Mang, Zhaoxiang; Tieniu Tan, Kaiqi Huang, Yunhong Wang; Three-Dimensional Deformable-Model-based Localization and Recognition of Road Vehicles; IEEE Transactions on Image Processing, vol. 21, No. 1, Jan. 2012, 13 pages. |
U.S. Appl. No. 14/801,023, Tyler Doomenbal et al., filed Jul. 16, 2015, not published yet, Adjusting Dimensioning Results Using Augmented Reality, 39 pages. |
Wikipedia, YUV description and definition, downloaded from http://www.wikipeida.org/wiki/YUV on Jun. 29, 2012, 10 pages. |
YUV Pixel Format, downloaded from http://www.fource.org/yuv.php on Jun. 29, 2012; 13 pages. |
YUV to RGB Conversion, downloaded from http://www.fource.org/fccyvrgb.php on Jun. 29, 2012; 5 pages. |
Benos et al., “Semi-Automatic Dimensioning with Imager of a Portable Device,” U.S. Appl. No. 61/149,912, filed Feb. 4, 2009 (now expired), 56 pages. |
Dimensional Weight—Wikipedia, the Free Encyclopedia, URL=http://en.wikipedia.org/wiki/Dimensional—weight, download date Aug. 1, 2008, 2 pages. |
Dimensioning—Wikipedia, the Free Encyclopedia, URL=http://en.wikipedia.org/wiki/Dimensioning, download date Aug. 1, 2008, 1 page. |
European Patent Office Action for Application No. 14157971.4-1906, Dated Jul. 16, 2014, 5 pages. |
European Patent Search Report for Application No. 14157971.4-1906, Dated Jun. 30, 2014, 6 pages. |
Caulier, Yannick et al., “A New Type of Color-Coded Light Structures for an Adapted and Rapid Determination of Point Correspondences for 3D Reconstruction.” Proc. of SPIE, vol. 8082 808232-3; 2011; 8 pages. |
Kazantsev, Aleksei et al. “Robust Pseudo-Random Coded Colored STructured Light Techniques for 3D Object Model Recovery”; ROSE 2008 IEEE International Workshop on Robotic and Sensors Environments (Oct. 17-18, 2008) , 6 pages. |
Mouaddib E. et al. “Recent Progress in Structured Light in order to Solve the Correspondence Problem in Stereo Vision” Proceedings of the 1997 IEEE International Conference on Robotics and Automation, Apr. 1997; 7 pages. |
Proesmans, Marc et al. “Active Acquisition of 3D Shape for Moving Objects” 0-7803-3258-X/96 1996 IEEE; 4 pages. |
Salvi, Joaquim et al. “Pattern Codification Strategies in Structured Light Systems” published in Pattern Recognition; The Journal of the Pattern Recognition Society, Received Mar. 6, 2003; Accepted Oct. 2, 2003; 23 pages. |
EP Search and Written Opinion Report in related matter EP Application No. 14181437.6, Dated Mar. 26, 2015, 7 pages. |
Hetzel, Gunter et al.; “3D Object Recognition from Range Images using Local Feature Histograms,”, Proceedings 2OO1 IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2001. Kauai, Hawaii, Dec. 8-14, 2001; pp. 394-399, XP010584149, ISBN: 978-0-7695-1272-3. |
U.S. Appl. No. 14/519,179, Serge Thuries et al., filed Oct. 21, 2014, not published yet. Dimensioning System With Multipath Interference Mitigation; 40 pages. |
U.S. Appl. No. 14/519,249, H. Sprague Ackley et al., filed Oct. 21, 2014, not published yet. Handheld Dimensioning System With Measurement-Conformance Feedback; 36 pages. |
U.S. Appl. No. 14/519,233, Franck Laffargue et al., filed Oct. 21, 2014, not published yet. Handheld Dimensioner With Data-Quality Indication; 34 pages. |
U.S. Appl. No. 14/519,211, H. Sprague Ackley et al., filed Oct. 21, 2014, System and Method for Dimensioning; not published yet. 33 pages. |
U.S. Appl. No. 14/519,195, Franck Laffargue et al., filed Oct. 21, 2014, not published yet. Handheld Dimensioning System With Feedback; 35 pages. |
U.S. Appl. No. 14/800,757 , Eric Todeschini, filed Jul. 16, 2015, not published yet, Dimensioning and Maging Items, 80 pages. |
U.S. Appl. No. 14/747,197, Serge Thuries et al., filed Jun. 23, 2015, not published yet, Optical Pattern Projector; 33 pages. |
U.S. Appl. No. 14/747,490, Brian L. Jovanovski et al., filed Jun. 23, 2015, not published yet, Dual-Projector Three-Dimensional Scanner; 40 pages. |
U.S. Appl. No. 14/715,916, H. Sprague Ackley, filed May 19, 2015, not published yet, Evaluating Image Values; 54 pages. |
U.S. Appl. No. 14/793,149, H. Sprague Ackley, filed Jul. 7, 2015, not published yet, Mobile Dimensioner Apparatus for Use in Commerce; 57 pages. |
U.S. Appl. No. 14/740,373, H. Sprague Ackley et al., filed Jun. 16, 2015, not published yet, Calibrating a Volume Dimensioner; 63 pages. |
Intention to Grant in counterpart European Application No. 14157971.4 dated Apr. 14, 2015, pp. 1-8. |
Decision to Grant in counterpart European Application No. 14157971.4 dated Aug. 6, 2015, pp. 1-2. |
Leotta, Matthew, Generic, Deformable Models for 3-D Vehicle Surveillance, May 2010, Doctoral Dissertation, Brown University, Providence RI, 248 pages. |
Ward, Benjamin, Interactive 3D Reconstruction from Video, Aug. 2012, Doctoral Thesis, Univesity of Adelaide, Adelaide, South Australia, 157 pages. |
Hood, Frederick W.; William A. Hoff, Robert King, Evaluation of an Interactive Technique for Creating Site Models from Range Data, Apr. 27-May 1, 1997 Proceedings of the ANS 7th Topical Meeting on Robotics & Remote Systems, Augusta GA, 9 pages. |
Gupta, Alok; Range Image Segmentation for 3-D Objects Recognition, May 1988, Technical Reports (CIS), Paper 736, University of Pennsylvania Department of Computer and Information Science, retrieved from Http://repository.upenn. edu/cis—reports/736, Accessed May 31, 2015, 157 pages. |
Reisner-Kollmann,Irene; Anton L Fuhrmann, Werner Purgathofer, Interactive Reconstruction of Industrial Sites Using Parametric Models, May 2010, Proceedings of the 26th Spring Conference of Computer Graphics SCCG 10, 8 pages. |
Drummond, Tom; Roberto Cipolla, Real-Time Visual Tracking of Complex Structures, Jul. 2002, IEEE Transactions on Pattem Analysis and Machine Intelligence, vol. 24, No. 7; 15 pages. |
U.S. Appl. No. 13/367,978, filed Feb. 7, 2012, (Feng et al.); now abandoned. |
U.S. Appl. No. 14/462,801 for Mobile Computing Device With Data Cognition Software, filed Aug. 19, 2014 (Todeschini et al.); 38 pages. |
U.S. Appl. No. 14/596,757 for System and Method for Detecting Barcode Printing Errors filed Jan. 14, 2015 (Ackley); 41 pages. |
U.S. Appl. No. 14/277,337 for Multipurpose Optical Reader, filed May 14, 2014 (Jovanovski et al.); 59 pages. |
U.S. Appl. No. 14/200,405 for Indicia Reader for Size-Limited Applications filed Mar. 7, 2014 (Feng et al.); 42 pages. |
U.S. Appl. No. 14/662,922 for Multifunction Point of Sale System filed Mar. 19, 2015 (Van Horn et al.); 41 pages. |
U.S. Appl. No. 14/446,391 for Multifunction Point of Sale Apparatus With Optical Signature Capture filed Jul. 30, 2014 (Good et al.); 37 pages. |
U.S. Appl. No. 29/528,165 for In-Counter Barcode Scanner filed May 27, 2015 (Oberpriller et al.); 13 pages. |
U.S. Appl. No. 29/528,890 for Mobile Computer Housing filed Jun. 2, 2015 (Fitch et al.); 61 pages. |
U.S. Appl. No. 14/614,796 for Cargo Apportionment Techniques filed Feb. 5, 2015 (Morton et al.); 56 pages. |
U.S. Appl. No. 29/516,892 for Table Computer filed Feb. 6, 2015 (Bidwell et al.); 13 pages. |
U.S. Appl. No. 29/523,098 for Handle for a Tablet Computer filed Apr. 7, 2015 (Bidwell et al.); 17 pages. |
U.S. Appl. No. 14/578,627 for Safety System and Method filed Dec. 22, 2014 (Ackley et al.); 32 pages. |
U.S. Appl. No. 14/573,022 for Dynamic Diagnostic Indicator Generation filed Dec. 17, 2014 (Goldsmith); 43 pages. |
U.S. Appl. No. 14/529,857 for Barcode Reader With Security Features filed Oct. 31, 2014 (Todeschini et al.); 32 pages. |
U.S. Appl. No. 14/519,195 for Handheld Dimensioning System With Feedback filed Oct. 21, 2014 (Laffargue et al.); 39 pages. |
U.S. Appl. No. 14/519,211 for System and Method for Dimensioning filed Oct. 21, 2014 (Ackley et al.); 33 pages. |
U.S. Appl. No. 14/519,233 for Handheld Dimensioner With Data-Quality Indication filed Oct. 21, 2014 (Laffargue et al.); 36 pages. |
U.S. Appl. No. 14/533,319 for Barcode Scanning System Using Wearable Device With Embedded Camera filed Nov. 5, 2014 (Todeschini); 29 pages. |
U.S. Appl. No. 14/748,446 for Cordless Indicia Reader With a Multifunction Coil for Wireless Charging and EAS Deactivation, filed Jun. 24, 2015 (Xie et al.); 34 pages. |
U.S. Appl. No. 29/528,590 for Electronic Device filed May 29, 2015 (Fitch et al.); 9 pages. |
U.S. Appl. No. 14/519,249 for Handheld Dimensioning System With Measurement-Conformance Feedback filed Oct. 21, 2014 (Ackley et al.); 36 pages. |
U.S. Appl. No. 29/519,017 for Scanner filed Mar. 2, 2015 (Zhou et al.); 11 pages. |
U.S. Appl. No. 14/398,542 for Portable Electronic Devices Having a Separate Location Trigger Unit for Use in Controlling an Application Unit filed Nov. 3, 2014 (Bian et al.); 22 pages. |
U.S. Appl. No. 14/405,278 for Design Pattern for Secure Store filed Mar. 9, 2015 (Zhu et al.); 23 pages. |
U.S. Appl. No. 14/590,024 for Shelving and Package Locating Systems for Delivery Vehicles filed Jan. 6, 2015 (Payne); 31 pages. |
U.S. Appl. No. 14/568,305 for Auto-Contrast Viewfinder for an Indicia Reader filed Dec. 12, 2014 (Todeschini); 29 pages. |
U.S. Appl. No. 29/526,918 for Charging Base filed May 14, 2015 (Fitch et al.); 10 pages. |
U.S. Appl. No. 14/580,262 for Media Gate for Thermal Transfer Printers filed Dec. 23, 2014 (Bowles); 36 pages. |
U.S. Appl. No. 14/519,179 for Dimensioning System With Multipath Interference Mitigation filed Oct. 21, 2014 (Thuries et al.); 30 pages. |
U.S. Appl. No. 14/264,173 for Autofocus Lens System for Indicia Readers filed Apr. 29, 2014, (Ackley et al.); 39 pages. |
U.S. Appl. No. 14/453,019 for Dimensioning System With Guided Alignment, filed Aug. 6, 2014 (Li et al.); 31 pages. |
U.S. Appl. No. 14/452,697 for Interactive Indicia Reader , filed Aug. 6, 2014, (Todeschini); 32 pages. |
U.S. Appl. No. 14/231,898 for Hand-Mounted Indicia-Reading Device with Finger Motion Triggering filed Apr. 1, 2014 (Van Horn et al.); 36 pages. |
U.S. Appl. No. 14/715,916 for Evaluating Image Values filed May 19, 2015 (Ackley); 60 pages. |
U.S. Appl. No. 14/513,808 for Identifying Inventory Items in a Storage Facility filed Oct. 14, 2014 (Singel et al.); 51 pages. |
U.S. Appl. No. 29/458,405 for an Electronic Device, filed Jun. 19, 2013 (Fitch et al.); 22 pages. |
U.S. Appl. No. 29/459,620 for an Electronic Device Enclosure, filed Jul. 2, 2013 (London et al.); 21 pages. |
U.S. Appl. No. 14/483,056 for Variable Depth of Field Barcode Scanner filed Sep. 10, 2014 (McCloskey et al.); 29 pages. |
U.S. Appl. No. 14/531,154 for Directing an Inspector Through an Inspection filed Nov. 3, 2014 (Miller et al.); 53 pages. |
U.S. Appl. No. 29/525,068 for Tablet Computer With Removable Scanning Device filed Apr. 27, 2015 (Schulte et al.); 19 pages. |
U.S. Appl. No. 29/468,118 for an Electronic Device Case, filed Sep. 26, 2013 (Oberpriller et al.); 44 pages. |
U.S. Appl. No. 14/340,627 for an Axially Reinforced Flexible Scan Element, filed Jul. 25, 2014 (Reublinger et al.); 41 pages. |
U.S. Appl. No. 14/676,327 for Device Management Proxy for Secure Devices filed Apr. 1, 2015 (Yeakley et al.); 50 pages. |
U.S. Appl. No. 14/257,364 for Docking System and Method Using Near Field Communication filed Apr. 21, 2014 (Showering); 31 pages. |
U.S. Appl. No. 14/327,827 for a Mobile-Phone Adapter for Electronic Transactions, filed Jul. 10, 2014 (Hejl); 25 pages. |
U.S. Appl. No. 14/334,934 for a System and Method for Indicia Verification, filed Jul. 18, 2014 (Hejl); 38 pages. |
U.S. Appl. No. 29/530,600 for Cyclone filed Jun. 18, 2015 (Vargo et al); 16 pages. |
U.S. Appl. No. 14/707,123 for Application Independent DEX/UCS Interface filed May 8, 2015 (Pape); 47 pages. |
U.S. Appl. No. 14/283,282 for Terminal Having Illumination and Focus Control filed May 21, 2014 (Liu et al.); 31 pages. |
U.S. Appl. No. 14/619,093 for Methods for Training a Speech Recognition System filed Feb. 11, 2015 (Pecorari); 35 pages. |
U.S. Appl. No. 29/524,186 for Scanner filed Apr. 17, 2015 (Zhou et al.); 17 pages. |
U.S. Appl. No. 14/705,407 for Method and System to Protect Software-Based Network-Connected Devices From Advanced Persistent Threat filed May 6, 2015 (Hussey et al.); 42 pages. |
U.S. Appl. No. 14/614,706 for Device for Supporting an Electronic Tool on a User'S Hand filed Feb. 5, 2015 (Oberpriller et al.); 33 pages. |
U.S. Appl. No. 14/628,708 for Device, System, and Method for Determining the Status of Checkout Lanes filed Feb. 23, 2015 (Todeschini); 37 pages. |
U.S. Appl. No. 14/704,050 for Intermediate Linear Positioning filed May 5, 2015 (Charpentier et al.); 60 pages. |
U.S. Appl. No. 14/529,563 for Adaptable Interface for a Mobile Computing Device filed Oct. 31, 2014 (Schoon et al.); 36 pages. |
U.S. Appl. No. 14/705,012 for Hands-Free Human Machine Interface Responsive to a Driver of a Vehicle filed May 6, 2015 (Fitch et al.); 44 pages. |
U.S. Appl. No. 14/715,672 for Augumented Reality Enabled Hazard Display filed May 19, 2015 (Venkatesha et al.); 35 pages. |
U.S. Appl. No. 14/695,364 for Medication Management System filed Apr. 24, 2015 (Sewell et al.); 44 pages. |
U.S. Appl. No. 14/664,063 for Method and Application for Scanning a Barcode With a Smart Device While Continuously Running and Displaying an Application on the Smart Device Display filed Mar. 20, 2015 (Todeschini); 37 pages. |
U.S. Appl. No. 14/735,717 for Indicia-Reading Systems Having an Interface With a User's Nervous System filed Jun. 10, 2015 (Todeschini); 39 pages. |
U.S. Appl. No. 14/527,191 for Method and System for Recognizing Speech Using Wildcards in an Expected Response filed Oct. 29, 2014 (Braho et al.); 45 pages. |
U.S. Appl. No. 14/702,110 for System and Method for Regulating Barcode Data Injection Into a Running Application on a Smart Device filed May 1, 2015 (Todeschini et al.); 38 pages. |
U.S. Appl. No. 14/535,764 for Concatenated Expected Responses for Speech Recognition filed Nov. 7, 2014 (Braho et al.); 51 pages. |
U.S. Appl. No. 14/687,289 for System for Communication Via a Peripheral Hub filed Apr. 15, 2015 (Kohtz et al.); 37 pages. |
U.S. Appl. No. 14/747,197 for Optical Pattern Projector filed Jun. 23, 2015 (Thuries et al.); 33 pages. |
U.S. Appl. No. 14/674,329 for Aimer for Barcode Scanning filed Mar. 31, 2015 (Bidwell); 36 pages. |
U.S. Appl. No. 14/702,979 for Tracking Battery Conditions filed May 4, 2015 (Young et al.); 70 pages. |
U.S. Appl. No. 29/529,441 for Indicia Reading Device filed Jun. 8, 2015 (Zhou et al.); 14 pages. |
U.S. Appl. No. 14/747,490 for Dual-Projector Three-Dimensional Scanner filed Jun. 23, 2015 (Jovanovski et al.); 40 pages. |
U.S. Appl. No. 14/740,320 for Tactile Switch for a Mobile Electronic Device filed Jun. 16, 2015 (Barndringa); 38 pages. |
U.S. Appl. No. 14/695,923 for Secure Unattended Network Authentication filed Apr. 24, 2015 (Kubler et al.); 52 pages. |
U.S. Appl. No. 14/740,373 for Calibrating a Volume Dimensioner filed Jun. 16, 2015 (Ackley et al.); 63 pages. |
European Extended Search Report in Related EP Application No. 16172995.9, Dated Aug. 22, 2016, 11 pages (Only new references have been cited; U.S. Pat. No. 8463079 (formerly U.S. Publication 2010/0220894) and U.S. Publication 2001/0027955 have been previously cited.). |
European Search Report from related EP Application No. 16168216.6, Dated Oct. 20, 2016, 8 pages [New reference cited above; U.S. Publication 2014/0104413 has been previously cited]. |
European Extended search report in related EP Application No. 15190306.9, Dated Sep. 9, 2016, 15 pages [only new references are cited; remaining references were cited with partial search report in same application dated May 6, 2016]. |
Collings et al., “The Applications and Technology of Phase-Only Liquid Crystal on Silicon Devices”, Journal of Display Technology, IEEE Service Center, New, York, NY, US, vol. 7, No. 3, Mar. 1, 2011 (Mar. 1, 2011), pp. 112-119. |
European extended Search report in related EP Application 13785171.3, dated Sep. 19, 2016, 8 pages. |
El-Hakim et al., “Multicamera vision-based approach to flexible feature measurement for inspection and reverse engineering”, published in Optical Engineering, Society of Photo-Optical Instrumentation Engineers, vol. 32, No. 9, Sep. 1, 1993, 15 pages. |
El-Hakim et al., “A Knowledge-based Edge/Object Measurement Technique”, Retrieved from the Internet: URL: https://www.researchgate.net/profile/Sabry—E1 -Hakim/ publication/44075058—A—Knowledge—Based—EdgeObject—Measurement—Technique/links/00b4953b5faa7d3304000000.pdf [retrieved on Jul. 15, 2016] dated Jan. 1, 1993, 9 pages. |
M.Zahid Gurbuz, Selim Akyokus, Ibrahim Emiroglu, Aysun Guran, An Efficient Algorithm for 3D Rectangular Box Packing, 2009, Applied Automatic Systems: Proceedings of Selected AAS 2009 Papers, pp. 131-134 [Examiner sited art in related US matter with Notice of Allowance dated Aug. 11, 2016]. |
Second Chinese Office Action in related CN Application No. 201520810685.6, Dated Mar. 22, 2016, 5 pages, no references. |
European Search Report in related EP Application No. 15190315.0, Dated Apr. 1, 2016, 7 pages [Commonly owned Reference 2014/0104416 has been previously cited]. |
Second Chinese Office Action in related CN Application No. 2015220810562.2, Dated Mar. 22, 2016, 5 pages. English Translation provided [No references]. |
European Search Report for related Application EP 15190249.1, Dated Mar. 22, 2016, 7 pages. |
Second Chinese Office Action in related CN Application No. 201520810313.3, Dated Mar. 22, 2016, 5 pages. English Translation provided [No references]. |
European Search Report for related EP Application No. 16152477.2, dated May 24, 2016, 8 pages [New Reference cited herein; Reference U.S. Publication 2004/0008259 and DE102007037282 A1 with its US Counterparts have been previously cited.]. |
European Partial Search Report for related EP Application No. 15190306.9, dated May 6, 2016, 8 pages. |
Mike Stensvold, “get the Most Out of Variable Aperture Lenses”, published on www.OutdoorPhotogrpaher.com; dated Dec. 7, 2010; 4 pages, [As noted on search report retrieved from URL: http;//www.outdoorphotographer. com/gear/lenses/get-the-most-out-ofvariable-aperture-lenses.html on Feb. 9, 2016]. |
Search Report and Opinion in Related EP Application 15176943.7, Dated Jan. 8, 2016, 8 pages, (US Application 2014/0049635 has been previously cited). |
European Search Report for related EP Application No. 15188440.0, Dated Mar. 8, 2016, 8 pages. |
United Kingdom Search Report in related application GB1517842.9, dated Apr. 8, 2016, 8 pages. |
Great Britain Search Report for related Application On. GB1517843.7, Dated Feb. 23, 2016; 8 pages. |
Extended European Search Report in related EP Application No. 16175410.0, dated Dec. 13, 2016, 5 pages. |
European Extended Search Report in related EP Application No. 16173429.8, dated Dec. 1, 2016, 8 pages [Only new references cited: US 2013/0038881 was previously cited]. |
United Kingdom combined Search and Examination Report in related GB Application No. 16073942, Dated Oct. 19, 2016, 7 pages. |
European Extended Search Report in related EP Application No. 16190017.0, dated Jan. 4, 2017, 6 pages. |
Padzensky, Ron; “Augmera; Gesture Control”, Dated Apr. 18, 2015, 15 pages [Examiner Cited Art in Office Action dated Jan. 20, 2017 in related Application.]. |
Grabowski, Ralph; “New Commands in AutoCADS 2010: Part 11 Smoothing 3D Mesh Objects” Dated 2011 (per examiner who cited reference), 6 pages, [Examiner Cited Art in Office Action dated Jan. 20, 2017 in related Application.]. |
Theodoropoulos, Gabriel; “Using Gesture Recognizers to Handle Pinch, Rotate, Pan, Swipe, and Tap Gestures” dated Aug. 25, 2014, 34 pages, [Examiner Cited Art in Office Action dated Jan. 20, 2017 in related Application.]. |
Nikipedia, “Microlens”, Downloaded from https://en.wikipedia.org/wiki/Microlens, pp. 3. {Cited by Examiner in Feb. 9, 2017 Final Office Action in related matter}. |
Fukaya et al., “Characteristics of Speckle Random Pattern and Its Applications”, pp. 317-327, Nouv. Rev. Optique, t.6, n.6. (1975) {Cited by Examiner in Feb. 9, 2017 Final Office Action in related matter: downloaded Mar. 2, 2017 from http://iopscience.iop.org}. |
European extended search report in related EP Application 16190833.0, dated Mar. 9, 2017, 8 pages [only new art has been cited; US Publication 2014/0034731 was previously cited]. |
United Kingdom Combined Search and Examination Report in related Application No. GB1620676.5, dated Mar. 8, 2017, 6 pages [References have been previously cited; WO2014/151746, WO2012/175731, US 2014/0313527, GB2503978]. |
European Exam Report in related, EP Application No. 16168216.6, dated Feb. 27, 2017, 5 pages, [References have been previously cited; WO2011/017241 and US 2014/0104413]. |
Thorslab, Examiner Cited NPL in Advisory Action dated Apr. 12, 2017 in related commonly owned application, downloaded from https://www.thorlabs.com/newgrouppage9.cfm?objectgroup—id=6430, 4 pages. |
Eksma Optics, Examineer Cited NPL in Advisory Action dated Apr. 12, 2017 in related commonly owned application, downloaded from http://eskmaoptics.com/optical-systems/f-theta-lenses/f-theta-lens-for-1064-nm/, 2 pages. |
Still Optics, Examineer Cited NPL in Advisory Action dated Apr. 12, 2017 in related commonly owned application, http://www.silloptics.de/1/products/still-encyclopedia/laser-optics/f-theta-lenses/, 4 pages. |
Chinese Notice of Reexamination in related Chinese Application 201520810313.3, dated Mar. 14, 2017, English Computer Translation provided, 7 pages [no new art cited]. |
Extended European search report in related EP Application 16199707.7, dated Apr. 10, 2017, 15 pages. |
Ulusoy et al., One-Shot Scanning using De Bruhn Spaced Grids, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, 7 pages [Cited in EP Extended search report dated Apr. 10, 2017]. |
European Examination report in related EP Application No. 14181437.6, dated Feb. 8, 2017, 5 pages [References have been previously cited]. |
Number | Date | Country | |
---|---|---|---|
20160377417 A1 | Dec 2016 | US |