Handheld field maintenance tools are known. Such tools are highly useful in the process control and measurement industry to allow operators to conveniently communicate with and/or interrogate field devices in a given process installation. Examples of such process installations include petroleum, pharmaceutical, chemical, pulp and other processing installations. In such installations, the process control and measurement network may include tens or even hundreds of various field devices which periodically require maintenance to ensure that such devices are functioning properly and/or calibrated. Moreover, when one or more errors in the process control and measurement installation is detected, the use of a handheld field maintenance tool allows technicians to quickly diagnose such errors in the field.
Handheld field maintenance tools can be manufactured to comply with Intrinsic Safety requirements. Such requirements are intended to guarantee that instrument operation or failure cannot cause ignition if the instrument is properly installed in an environment that contains explosive gasses. This is accomplished by limiting the maximum energy stored in the transmitter in a worst case failure situation. Excessive energy discharge may lead to sparking or excessive heat which could ignite an explosive environment in which the tool may be operating.
Examples of intrinsic safety standards include European CENELEC standards EN50014 and 50020, Factory Mutual Standard FM3610, the Canadian Standard Association, the British Approval Service for Electrical Equipment in Flammable Atmospheres, the Japanese Industrial Standard, and the Standards Association of Australia.
One intrinsically safe field maintenance tool sold under the trade designation Model 275 HART® Communicator available from Fisher-Rosemount Systems, Inc., of Eden Prairie, Minn. HART® is a registered trademark of the HART® Communication Foundation. The Model 275 provides a host of important functions and capabilities and generally allows highly effective field maintenance. However, the Model 275 does not currently support communication with non-HART® (Highway Addressable Remote Transducer) devices.
The HART® protocol has a hybrid physical layer consisting of digital communication signals superimposed on the standard 4-20 mA analog signal. The data transmission rate is approximately 1.2 Kbits/SEC. HART® communication is one of the primary communication protocols in process industries.
Another major process industry communication protocol is known as the FOUNDATION™ fieldbus communication protocol. This protocol is based on an ISA standard (ISA-S50.01-1992, promulgated by the Instrument Society of America in 1992). A practical implementation was specified by the Fieldbus Foundation (FF). FOUNDATION™ Fieldbus is an all-digital communication protocol with a transmission rate of approximately 31.25 Kbits/SEC.
A dual-protocol handheld field maintenance tool is provided with radio frequency communication. The radio frequency commination can be provided by virtue of an SDIO card inserted within an SDIO slot in the handheld field maintenance tool. A method of. interacting with a process using a dual-protocol handheld field maintenance tool is also provided.
An improved handheld field maintenance tool in accordance with embodiments of the present invention is operable with at least two industry standard device descriptions and is operably connectable to a radio-frequency communication module. In one specific embodiment, a handheld field maintenance tool implements both HART® and FOUNDATION™ Fieldbus wired communication and includes a radio-frequency communication module.
The improved handheld field maintenance tool facilitates convenient interaction with individual field devices and/or sensors as well as providing advanced diagnostic and/or configuration features. Further details and benefits of the improved handheld field maintenance tool in accordance with embodiments of the present invention will be appreciated after reading the description below.
In this illustration, process communication or process control loop 18 is a FOUNDATION™ fieldbus process communication loop and is coupled to field devices 20, which are shown coupled arranged in a multi-drop configuration. An alternative process communication loop (not shown) is an HART® process communication loop.
Handheld field maintenance tool 22 is coupled to loop 18 as illustrated in
Processor 36 is also coupled to keypad module 38 and display module 40. Keypad module 38 is coupled to the keypad on the housing of tool 22 in order to receive various keypad inputs from a user. Display module 40 is coupled to the display to provide data and/or a user interface.
Tool 22 may include infrared data access port 42 which is coupled to processor 36 to allow tool 22 to transfer information to and from a separate device using infrared wireless communication. One advantageous use of port 42 is for transferring and/or updating Device Descriptions stored in one or more memories of tool 22. A Device Description (DD) is a software technology used to describe parameters in a field device in a computer-readable format. This contains all of the information necessary for a software application being executed on processor 36 to retrieve and use the parametric data. The separate device such as computer 12, can obtain a new Device Description from floppy disk, CD ROM, or the internet and wirelessly transfer the new Device Description to tool 22.
Tool 22 may include expansion memory module 48 coupled to processor 36 via connector 50 which can be disposed on the main board of tool 22. Expansion memory module 48 may contain Device Descriptions of first and second industry standard protocols. Module 48 may also contain license code(s) that will determine the functionality of tool 22 with respect to the multiple protocols. For example, data residing within module 48 may indicate that tool 22 is only authorized to operate within a single process industry standard mode, such as the HART® protocol. Ultimately, a different setting of that data within module 48 may indicate that tool 22 is authorized to operate in accordance with two or more industry standard protocols. Module 48 is preferably inserted to a connector 50 on the main board and may in fact require partial disassembly of tool 22, such as removing the battery pack to access port 50.
Tool 22 may include removable memory module 44 which is removably coupled to processor 36 via port/interface 46. Removable memory module 44 is adapted to store software applications that can be executed instead of primary applications on processor 36. For example, module 44 may contain applications that use the HART® or FOUNDATION™ fieldbus communication port, to provide a comprehensive diagnostic for a given field device.
Module 44 may store software applications that aid in the calibration or configuration of specific devices. Module 44 may also store a software image for a new or updated primary device application that can subsequently be transferred into the non-volatile memory of device 22 to enable execution of the updated application. Further still, module 44 provides removable memory storage for the configuration of multiple devices allowing a field maintenance operator to acquire a relatively substantial amount of device data and conveniently store or transfer such data by simply removing module 44.
Preferably, the software installable via removable memory module 44 is separately licensable by allowing a field maintenance technician to purchase a license key with the software that is based upon the serial number of removable memory module 44. Preferably, tool 22 is configured, via hardware, software, or both, to detect when removable memory module 44 is coupled thereto and to automatically recognize the existence of additional software functionality within removable memory module 44. Once such additional functionality is recognized, the software or other data within module 44 is copied/installed to the random access memory (RAM) of tool 22. Thereafter, removable memory module 44 can be removed from tool 22 while the benefits of the added software functionality will persist. One form of removable memory module 44 includes commercially available flash memory, or a combination of storage and input/output capability. Essentially, removable memory module 44 includes any suitable storage media which can maintain data therein, and for which the physical package is amendable to the constraints listed below. By using removable memory module 44, multiple software applications and/or sets of data can be loaded into tool 22 without taking up additional space on the internal flash memory of tool 22.
Preferably, module 44 is adapted to be replaceable in hazardous areas in a process plant. Thus, it is preferred that module 44 comply with intrinsic safety requirements set forth in: APPROVAL STANDARD INTRINSICALLY SAFE APPARATUS AND ASSOCIATED APPARATUS FOR USE IN CLASS I, II AND III, DIVISION 1HAZARDOUS (CLASSIFIED) LOCATIONS, CLASS NUMBER 3610, promulgated by Factory Mutual Research October, 1988. Adaptations to comply with additional industrial standards such as Canadian Standards Association (CSA) and the European CENELEC standards are also contemplated. Examples of specific structural adaptations for memory module 44 and/or interface 46 to facilitate compliance include energy limiting circuits such that the operating voltage level of memory module 44 is sufficiently low that stored energy within module 44 cannot generate a source of ignition.
Module 44 may include current limiting circuitry to ensure that in the event that specific terminals on module 44 are shorted, that the discharge energy is sufficiently low that ignition is inhibited. Finally, interface 46 may include physical characteristics that are specifically designed to prevent exposure of electrical contacts on memory module 44 to an external environment while simultaneously allowing suitable interface contacts to make electrical contact with module 44. For example, module 44 may include an overmolding that can be pierced or otherwise displaced by coupling module 44 to interface 46. Interface 46 can be constructed to accept and operate with cards manufactured in accordance with the known Secure Digital Input/Output (SDIO) specification: Secure Digital Input/Output Card Specification Version 1.00, October 2001, maintained by the SD Association. Further information can be obtained by visiting www.sandisk.com. Preferably, interface 46 is an intrinsically safe SDIO card slot.
Handheld field maintenance tool 22 includes, is coupled to, or is coupleable to an RF communication module. In the embodiment illustrated in
Depending on the application, wireless communication module 100 may be adapted to communicate in accordance with any suitable wireless communication protocol including, but not limited to: wireless networking technologies (such as IEEE 802.11(b) wireless access points and wireless networking devices built by Linksys of Irvine, Calif.) cellular or digital networking technologies (such as Microburst® by Aeris Communications Inc. of San Jose, Calif.), ultra wideband, global system for mobile communications (GSM), general packet radio services (GPRS), code division multiple access (CDMA), spread spectrum technology, short messaging service/text messaging (SMS), or any other suitable radio frequency wireless technology. Further, known data collision technology can be employed such that multiple handheld field maintenance tools employing radio frequency communication module 100 can coexist and operate within wireless operating range of one another. Such collision prevention can include a number of different radio-frequency channels and/or spread spectrum techniques. Additionally, RF communication module 100 can be a commercially available bluetooth communication module. In the embodiment illustrated in
Method 300 allows a maintenance technician to, using wireless radio-frequency communication, effect one or more changes to or upon the field devices coupled to the process loop. These changes can then be observed by the maintenance technician or process engineer in order to facilitate process communication loop diagnostics, field device diagnostics, field device configuration, and/or field device calibration.
Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.
The present application claims the benefit of U.S. provisional patent application Ser. No. 60/626,405, filed Nov. 9, 2004, entitled “WIRELESS (RADIO) INTRINSICALLY SAFE FIELD MAINTENANCE TOOL”; and the present application is a Continuation-In-Part application of U.S. patent application Ser. No. 11/007,876, filed Dec. 9, 2004 now U.S. Pat. No. 7,117,122, entitled FIELD MAINTENANCE TOOL, which application is a Divisional application of U.S. patent application Ser. No. 10/310,703, filed Dec. 5, 2002, now U.S. Pat. No. 6,889,166 entitled “INTRINSICALLY SAFE FIELD MAINTENANCE TOOL,” which claims the benefit of U.S. provisional patent application Ser. No. 60/338,477, filed Dec. 6, 2001, entitled “INTRINSICALLY SAFE FIELD MAINTENANCE TOOL.”
Number | Name | Date | Kind |
---|---|---|---|
3774693 | Orthman | Nov 1973 | A |
1387619 | Kohl | Mar 1975 | A |
3955132 | Greenwood | May 1976 | A |
4290647 | Hensel et al. | Sep 1981 | A |
4337516 | Murphy et al. | Jun 1982 | A |
4535636 | Blackburn et al. | Aug 1985 | A |
4630265 | Sexton | Dec 1986 | A |
4630483 | Engdahl | Dec 1986 | A |
4635214 | Kasai et al. | Jan 1987 | A |
4707796 | Calabro et al. | Nov 1987 | A |
4749934 | Alexander et al. | Jun 1988 | A |
4825392 | Freeman | Apr 1989 | A |
4954923 | Hoeflich et al. | Sep 1990 | A |
4964125 | Kim | Oct 1990 | A |
4988990 | Warrior | Jan 1991 | A |
5005142 | Lipchak et al. | Apr 1991 | A |
5099539 | Forester | Mar 1992 | A |
5103409 | Shimizu et al. | Apr 1992 | A |
5113303 | Herres | May 1992 | A |
5148378 | Shibayama et al. | Sep 1992 | A |
5150289 | Badavas | Sep 1992 | A |
5197328 | Fitzgerald | Mar 1993 | A |
5412312 | Crass et al. | May 1995 | A |
5426774 | Banerjee et al. | Jun 1995 | A |
5434774 | Seberger | Jul 1995 | A |
5442639 | Crowder et al. | Aug 1995 | A |
5469156 | Kogure | Nov 1995 | A |
5471698 | Francis et al. | Dec 1995 | A |
5481200 | Voegele et al. | Jan 1996 | A |
5501107 | Snyder et al. | Mar 1996 | A |
5570300 | Henry et al. | Oct 1996 | A |
5573032 | Lenz et al. | Nov 1996 | A |
5581033 | Hess | Dec 1996 | A |
5598521 | Kilgore et al. | Jan 1997 | A |
5623605 | Keshav et al. | Apr 1997 | A |
5665899 | Willcox | Sep 1997 | A |
5697453 | Van Den Bosch | Dec 1997 | A |
5742845 | Wagner | Apr 1998 | A |
5752249 | Macon, Jr. et al. | May 1998 | A |
5764891 | Warrior | Jun 1998 | A |
5793963 | Tapperson et al. | Aug 1998 | A |
5828567 | Eryurek et al. | Oct 1998 | A |
5838187 | Embree | Nov 1998 | A |
5903455 | Sharpe, Jr. et al. | May 1999 | A |
5909368 | Nixon et al. | Jun 1999 | A |
5923557 | Eidson | Jul 1999 | A |
5940290 | Dixon | Aug 1999 | A |
5956663 | Eryurek | Sep 1999 | A |
5960214 | Sharpe, Jr. et al. | Sep 1999 | A |
5970430 | Burns et al. | Oct 1999 | A |
5980078 | Krivoshein et al. | Nov 1999 | A |
5995916 | Nixon et al. | Nov 1999 | A |
6017143 | Eryurek et al. | Jan 2000 | A |
6023399 | Kogure | Feb 2000 | A |
6026352 | Burns et al. | Feb 2000 | A |
6037778 | Makhija | Mar 2000 | A |
6047222 | Burns et al. | Apr 2000 | A |
6052655 | Kobayashi et al. | Apr 2000 | A |
6091968 | Koohgoli et al. | Jul 2000 | A |
6094600 | Sharpe, Jr. et al. | Jul 2000 | A |
6098095 | Nelson et al. | Aug 2000 | A |
6111738 | McGoogan | Aug 2000 | A |
6119047 | Eryurek et al. | Sep 2000 | A |
6179964 | Begemann et al. | Jan 2001 | B1 |
6192281 | Brown et al. | Feb 2001 | B1 |
6195591 | Nixon et al. | Feb 2001 | B1 |
6199018 | Quist et al. | Mar 2001 | B1 |
6211623 | Wilhelm et al. | Apr 2001 | B1 |
6236334 | Tapperson et al. | May 2001 | B1 |
6263487 | Stripf et al. | Jul 2001 | B1 |
6270920 | Nakanishi et al. | Aug 2001 | B1 |
6294287 | Lee et al. | Sep 2001 | B1 |
6298377 | Hartkainen et al. | Oct 2001 | B1 |
6304934 | Pimenta et al. | Oct 2001 | B1 |
6307483 | Westfield et al. | Oct 2001 | B1 |
6309986 | Flashinski et al. | Oct 2001 | B1 |
6312364 | Selsam | Nov 2001 | B1 |
6317701 | Pyotsia et al. | Nov 2001 | B1 |
6324607 | Korowitz et al. | Nov 2001 | B1 |
6356191 | Kirkpatrick et al. | Mar 2002 | B1 |
6370448 | Eryurek | Apr 2002 | B1 |
6377859 | Brown et al. | Apr 2002 | B1 |
6397114 | Eryurek et al. | May 2002 | B1 |
6434504 | Eryurek et al. | Aug 2002 | B1 |
6444350 | Toya et al. | Sep 2002 | B1 |
6449574 | Eryurek et al. | Sep 2002 | B1 |
6473710 | Eryurek | Oct 2002 | B1 |
6487462 | Reeves | Nov 2002 | B1 |
6505517 | Eryurek et al. | Jan 2003 | B1 |
6519546 | Eryurek et al. | Feb 2003 | B1 |
6532392 | Eryurek et al. | Mar 2003 | B1 |
6539267 | Eryurek et al. | Mar 2003 | B1 |
6539384 | Zellner et al. | Mar 2003 | B1 |
6594603 | Eryurek et al. | Jul 2003 | B1 |
6594621 | Meeker | Jul 2003 | B1 |
6598828 | Fiebick et al. | Jul 2003 | B2 |
6601005 | Kavaklioglu et al. | Jul 2003 | B1 |
6611775 | Coursolle et al. | Aug 2003 | B1 |
6615149 | Wehrs | Sep 2003 | B1 |
6629059 | Borgeson et al. | Sep 2003 | B2 |
6654697 | Eryurek et al. | Nov 2003 | B1 |
6656145 | Morton | Dec 2003 | B1 |
6697681 | Stoddard et al. | Feb 2004 | B1 |
6714969 | Klein et al. | Mar 2004 | B1 |
6733376 | Williams | May 2004 | B2 |
6748631 | Iguchi et al. | Jun 2004 | B2 |
6775271 | Johnson et al. | Aug 2004 | B1 |
6795798 | Eryurek et al. | Sep 2004 | B2 |
6851612 | Iasso et al. | Feb 2005 | B2 |
6889166 | Zielinski et al. | May 2005 | B2 |
20010053065 | Cudini et al. | Dec 2001 | A1 |
20020004370 | Stengele et al. | Jan 2002 | A1 |
20020065631 | Loechner | May 2002 | A1 |
20020077711 | Nixon et al. | Jun 2002 | A1 |
20020123864 | Eryurek et al. | Sep 2002 | A1 |
20020167904 | Borgeson et al. | Nov 2002 | A1 |
20020183863 | Eryurek | Dec 2002 | A1 |
20030023408 | Wight et al. | Jan 2003 | A1 |
20030023795 | Packwood et al. | Jan 2003 | A1 |
20030033040 | Billings | Feb 2003 | A1 |
20030058277 | Bowman-Amuah | Mar 2003 | A1 |
20030109937 | Zielinski et al. | Jun 2003 | A1 |
20030119568 | Menard | Jun 2003 | A1 |
20030158795 | Markham et al. | Aug 2003 | A1 |
20030204373 | Zielinski et al. | Oct 2003 | A1 |
20040039458 | Mathiowetz et al. | Feb 2004 | A1 |
20040225796 | Hanson et al. | Nov 2004 | A1 |
20040230327 | Opheim et al. | Nov 2004 | A1 |
20040230899 | Pagnano et al. | Nov 2004 | A1 |
20040248619 | Graiger et al. | Dec 2004 | A1 |
20050114086 | Zielinski et al. | May 2005 | A1 |
20050289276 | Karschnia et al. | Dec 2005 | A1 |
20060094466 | Tran | May 2006 | A1 |
Number | Date | Country |
---|---|---|
29917651 | Dec 2000 | DE |
1993 0660 | Jan 2001 | DE |
0 633 420 | Jan 1995 | EP |
0 666 631 | Jan 1995 | EP |
0 676 818 | Oct 1995 | EP |
1 045 302 | Apr 2000 | EP |
1022626 | Jul 2000 | EP |
1 387 619 | Mar 1975 | GB |
2347232 | Aug 2000 | GB |
2753592 | Jan 1990 | JP |
2007-070224 | Mar 2007 | JP |
WO9612993 | May 1996 | WO |
WO9721157 | Jun 1997 | WO |
WO9814855 | Apr 1998 | WO |
WO9839718 | Sep 1998 | WO |
WO0041050 | Jul 2000 | WO |
WO00557000 | Apr 2002 | WO |
WO02027418 | Apr 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20060161393 A1 | Jul 2006 | US |
Number | Date | Country | |
---|---|---|---|
60626405 | Nov 2004 | US | |
60338477 | Dec 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10310703 | Dec 2002 | US |
Child | 11007876 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11007876 | Dec 2004 | US |
Child | 11269866 | US |