The present invention is drawn to a dual-pump assembly for a vehicle transmission.
Conventional transmission pumps are driven by output from the engine. When a hybrid vehicle is being electrically operated, the engine is off and therefore the conventional transmission pump is not operational. An auxiliary electric pump may therefore be implemented for purposes such as meeting the cooling and lubrication needs of a hybrid vehicle transmission when the engine is off. There is, however, limited space available within the hybrid vehicle such that a compact design for the transmission pumps would be desirable.
An apparatus for a compact dual-pump assembly is provided. More precisely, a housing is adapted to accommodate a primary or on-axis pump and an auxiliary or off-axis pump in a compact manner. The housing preferably includes a plurality of integral fluid transfer channels that replace more conventional connections formed with external tubes or hoses. The integral channels reduce cost associated with the manufacture and assembly of the hoses, and improve the reliability of the apparatus by eliminating failure modes attributable to hose leaks. The dual-pump assembly of the present invention additionally facilitates testing and installation of the primary and auxiliary pumps as the dual-pump subsystem can be pre-assembled and pre-tested as a sub-assembly prior to installation into a transmission.
The dual-pump assembly of the present invention preferably includes a housing having a valve assembly mounted thereto. The valve assembly preferably includes a shuttle valve disposed in fluid communication with a pressure regulating valve. An on-axis pump is mounted to the housing in fluid communication with the shuttle valve and the pressure regulating valve. An off-axis pump in fluid communication with the shuttle valve is mounted to the housing in close proximity to the on-axis pump such that the dual-pump assembly is more compact.
According to one aspect of the invention, the dual-pump assembly includes a plurality of fluid transfer channels defined by the housing and the valve body to facilitate the transfer of fluid between the on-axis pump, the off-axis pump, the shuttle valve and the pressure regulating valve.
According to another aspect of the invention, one or more of the fluid transfer channels is integrally cast into the housing.
According to yet another aspect of the invention, one or more of the fluid transfer channels is integrally cast into the valve body.
According to still another aspect of the invention, the housing is composed of die cast aluminum.
According to a further aspect of the invention, the housing is composed of cast iron.
The above features and other features and advantages of the present invention are readily apparent from the following detailed description of the best modes for carrying out the invention when taken in connection with the accompanying drawings.
Referring to the drawings wherein like characters represent the same or corresponding parts through the several views, there is shown in
According to a preferred embodiment, the dual-pump assembly 13 includes a housing 25 (shown in
The primary pump 14 draws hydraulic fluid from the reservoir 12 through the filter 16A. The auxiliary pump 18 draws hydraulic fluid from the reservoir 12 through the filter 16B. A control module (not shown) selects which of the pumps 14, 18 is active based on, for example, vehicle speed, pressure requirements, cooling requirements, operational status of vehicle components, etc. The pumps 14, 18 deliver pressurized hydraulic fluid to a transmission 20. The shuttle valve 23 combines the outputs 2A, 5A of pumps 14, 18, respectively, and delivers the hydraulic fluid to the transmission 20 and/or the pressure regulator valve 22. The maximum pressure output to the transmission 20 is limited by the pressure regulator valve 22 which delivers excess pump flow back to the inlet of the primary pump 14 through bypass channels 6A-6B. According to a preferred embodiment of the present invention, the hydraulic fluid first satisfies the transmission pressure requirements, including any oil requirements for clutches, a torque converter or starting device, lubrication, and cooling, and thereafter the excess fluid is returned to the inlet of the primary pump 14.
Fluid communication between the primary pump 14 and the shuttle valve 23 is established by channels 2A-C. Fluid communication between the auxiliary pump 18 and the shuttle valve 23 is established by channels 5A-B. Fluid communication between the pressure regulating valve 22, the shuttle valve 23, and the transmission 20 is established by channels 4A-4C. According to a preferred embodiment, one or more of the channels 2A-2B, 4A-4C, 5A-B, and 6A-6B are integrally cast as will be described in detail hereinafter. Advantageously, the integrally cast channels replace conventional fluid connections established by external tubes or hoses such that the dual-pump assembly 13 is composed of fewer, more compact components, and is easier to assemble. Additionally, the dual-pump assembly 13 is preferably pre-assembled and pre-tested before it is installed into a transmission as a sub-assembly thereby simplifying installation and improving reliability.
Referring to
The primary pump 14 is an on-axis pump driven by output from the engine 8 (shown in
As will be appreciated by one skilled in the art, the first pump 14 is “on-axis” because it has a centerline, i.e., a center axis, 24 that is concentric with the input axis 24 of the transmission 20 (shown in
The auxiliary pump 18 is an off-axis pump that is preferably electrically driven, however, the pump 18 may alternatively be driven by any presently known device adapted for such purpose.
The second pump 18 is “off-axis” because its centerline, i.e., a central axis, 124 is not concentric with the input axis 24 of the transmission 20 (shown in
The housing 25 advantageously retains the primary pump 14, the auxiliary pump 18, and the valve body 17 in sufficiently close proximity to each other such that the dual-pump assembly 13 is more compact. The compact design of the dual-pump assembly 13 is particularly advantageous for applications such as hybrid vehicles wherein there is limited available space. Additionally, the positioning of the components in close proximity to each other allows shorter fluid connections therebetween which minimizes line losses associated with the transfer of fluid and thereby improves the efficiency of the dual-pump assembly 13. As is known in the art, “line losses” are frictional losses incurred when transferring fluid through a line such as a channel. As friction is a function of surface area, a longer channel generally has a greater line loss than a similarly constructed shorter channel.
The housing 25 retains the primary pump 14 and the auxiliary pump 18 such that the inlet bore 28 of the primary pump 14 and the inlet aperture 32 of the auxiliary pump 18 positioned at a predefined location relative to each other. The positioning of the inlet bore 28 and inlet aperture 32 relative to each other facilitates the attachment of a filter assembly 34 that, according to a preferred embodiment, is attached in the manner described in commonly assigned U.S. Provisional Application 60/651,165, filed Feb. 9, 2005, which is hereby incorporated by reference in its entirety.
According to a preferred embodiment, the dual-pump assembly 13 is pre-assembled as shown in
Referring to
Referring to
Referring to
The channels 2A-2B, 4A-C, 5A-5B, and 6A-6B shown in
According to a preferred embodiment, the pump housing 25 and/or the valve body 17 are composed of die cast aluminum. The preferred composition facilitates processing and represents a substantial weight savings. According to an alternate embodiment, the pump housing 25 and/or the valve body 17 are composed of cast iron. The alternate construction could reduce the number of components required to create the dual pump assembly 13 via the use of sand cores to create internal channels including bends in a compact manner.
While the best modes for carrying out the invention have been described in detail, those familiar with the art to which this invention relates will recognize various alternative designs and embodiments for practicing the invention within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2257095 | Gottlieb | Sep 1941 | A |
4177018 | Granet | Dec 1979 | A |
4204811 | Carter et al. | May 1980 | A |
4745743 | Boulanger | May 1988 | A |
5084964 | Cyphers | Feb 1992 | A |
5273411 | Lipscombe | Dec 1993 | A |
5378128 | Yanagisawa | Jan 1995 | A |
6125799 | Van Son et al. | Oct 2000 | A |
6220832 | Schob | Apr 2001 | B1 |
6739305 | Takahara et al. | May 2004 | B2 |
6805647 | Silveri et al. | Oct 2004 | B2 |
20010016165 | Shimabukuro et al. | Aug 2001 | A1 |
Number | Date | Country |
---|---|---|
102006005553 | Feb 2007 | DE |
Number | Date | Country | |
---|---|---|---|
20070098567 A1 | May 2007 | US |