The present disclosure belongs to the technical field of packaging container designs, and in particular to a dual-pump outflowing liquid container.
At present, ordinary flexible tubes available on the market discharge liquids by directly squeezing the flexible tubes, there is no quantitation about how much to squeeze, sometimes it is more and sometimes it is less. Some products are used requiring a mixture of two substances; in the prior art, a small flexible tube is sleeved in a big flexible tube, with their outlets aligned to form one squeezing outlet. When in use, the two flexible tubes are squeezed simultaneously, so that the two substances are squeezed from the same squeezing outlet and then are mixed to use. However, the operation of squeezing the two flexible tubes simultaneously is difficult to control the amount of substances squeezed out from the two flexible tubes and it is impossible to achieve precise rationing. Furthermore, when the two squeezed flexible tubes are released, tube bodies of the two flexible tubes can recover automatically under their elastic deformation and then suck back the substances squeezed out, which causes a problem that the mixed substances squeezed out are sucked back to the tubes to lead to a mixing of substances.
The technical problem to be solved in the present disclosure is to provide a dual-pump outflowing liquid container, aiming to solve the problems in the prior art that the operation of squeezing the two flexible tubes simultaneously is difficult to control the amount of substances squeezed out from the two flexible tubes and that the mixed substances squeezed out are sucked back to the tubes to lead to a mixing of substances.
In order to solve the above technical problem, the present disclosure is implemented in the following way. A dual-pump outflowing liquid container includes: an outer tube, an inner tube and a pump core mechanism; the outer tube has the first pump core intercommunication hole and an inner tube embedding mounting hole, the first pump core intercommunication hole and the inner tube embedding mounting hole are arranged side by side on a top end of the outer tube and are both intercommunicated with the an accommodation space of the outer tube; a top end of the inner tube is provided with an embedding connector, the embedding connector is connected to the inner tube embedding mounting hole in a sealing manner, the embedding connector has the second pump core intercommunication hole, the second pump core intercommunication hole is intercommunicated with an accommodation space of the inner tube, an accommodation gap is provided between an outer wall of the inner tube and an inner wall of the outer tube, the outer tube and the inner tube are both made of flexible materials; the pump core mechanism includes a pump core mounting seat, the first vacuum pump, the second vacuum pump and a pressing head, the pump core mounting seat is detachably connected to the top end of the outer tube, the pump core mounting seat has the first pump core mounting hole and the second pump core mounting hole, the first pump core mounting hole corresponds to the first pump core intercommunication hole, the second pump core mounting hole corresponds to the second pump core intercommunication hole, the first vacuum pump is mounted in the first pump core mounting hole, the second vacuum pump is mounted in the second pump core mounting hole, the first vacuum pump passes through the first pump core intercommunication hole and extends into the accommodation gap, the second vacuum pump passes through the second pump core intercommunication hole and extends into the accommodation space of the inner tube, the pressing head is slidably connected to the pump core mounting seat, the pressing head has the first outflowing liquid passage and the second outflowing liquid passage, a passage inlet of the first outflowing liquid passage is abutting with a pump outlet of the first vacuum pump in a sealing manner, a passage inlet of the second outflowing liquid passage is abutting with a pump outlet of the second vacuum pump in a sealing manner, a passage outlet of the first outflowing liquid passage and a passage outlet of the second outflowing liquid passage are converged to form one liquid outlet.
Further, a fixed ring groove is provided on an inner wall of a passage opening of the inner tube embedding mounting hole, and a ring sealing convex is provided between the passage opening of the inner tube embedding mounting hole and the fixed ring groove, an outer wall of the embedding connector is provided with an assembling convex, the assembling convex is clamped and assembled in the fixed ring groove, the outer wall of the embedding connector abuts against the ring sealing convex, and the embedding connector has a gradually expanding shape in a direction from an end thereof to a bottom end of the inner tube.
Further, an outer wall of the top end of the outer tube has an assembling locating groove that extends along a central axial direction of the outer tube, and an inner wall of the pump core mounting seat is provided with a locating rib that fits with the assembling locating groove to locate.
Further, an inner wall of the pump core mounting seat is provided with a retaining ring convex, a ring step extending inwards is provided on edges of passage openings of both the first pump core mounting hole and the second pump core mounting hole, the outer wall of the top end of the outer tube is provided with a retaining ring mating convex, the first vacuum pump sealing convex extending inwards is provided at the first pump core intercommunication hole, the second vacuum pump sealing convex extending inwards is provided at the second pump core intercommunication hole, the first vacuum pump and the second vacuum pump both have a gradually shrinking shape in a direction from the pump core mounting seat to a bottom end of the outer tube, an outer wall of the first vacuum pump abuts against the first vacuum pump sealing convex, an outer wall of the second vacuum pump abuts against the second vacuum pump sealing convex, both the first vacuum pump and the second vacuum pump are provided with a stop ring, the stop ring of the first vacuum pump abuts against the ring step of the first pump core mounting hole, the stop ring of the second vacuum pump abuts against the ring step of the second pump core mounting hole, and the retaining ring mating convex blocks the retaining ring convex so as to prevent the pump core mounting seat falling off the outer tube.
Further, a central axis of a tube body of the outer tube is arranged coaxially with that of a tube body of the inner tube.
Further, an outer wall of a passage inlet of the first outflowing liquid passage and an outer wall of a passage inlet of the second outflowing liquid passage are both provided with a sealing connection position, and a pump outlet of the first vacuum pump and a pump outlet of the second vacuum pump are both provided with a mating connection position that is tightly sleeved in and in sealing connection with the sealing connection position.
Further, the pressing head is provided with a guide rail which extends along a sliding direction thereof, and the pump core mounting seat has a guide chute that is fit and installed with the guide rail.
Further, a top outer surface of the pressing head is provided with a pressing anti-slip tooth.
Further, the dual-pump outflowing liquid container further includes a cover, an inner wall of the cover has a ring groove, an outer wall of the pump core mounting seat is provided with a plurality of buckle bumps at intervals along a circumferential direction, and each of the plurality of buckle bumps is clamped in the ring groove when the cover is covered on the pump core mounting seat.
Further, the embedding connector is configured to have a cross-section profile of D shape, and an inner wall of the inner tube embedding mounting hole is configured to have a cross-section profile of D shape matching with the embedding connector; or, the embedding connector is configured to have a column shape, and the inner wall of the inner tube embedding mounting hole is configured to have a cross-section profile of circle matching with the embedding connector having a column shape; or, the embedding connector is configured to have a cross-section profile of oval, and the inner tube embedding mounting hole is configured to have a cross-section profile of oval matching with the embedding connector; or, the embedding connector is configured to have a cross-section profile of polygon, and the inner tube embedding mounting hole is configured to have a cross-section profile of polygon matching with the embedding connector.
Compared with the prior art, the present disclosure has the following benefits.
With the dual-pump outflowing liquid container provided in the present disclosure, two substances that are used requiring a mixing can be stored simultaneously. When in use, through one time of pressing of the pressing head, the first vacuum pump and the second vacuum pump can be simultaneously driven to pump out the two substances simultaneously, which are then are mixed and directly used, which greatly facilitates the mixing and usage of the two substances. Moreover, the dual-pump outflowing liquid container will not suck back the liquid substances pumped out and can guarantee a same ratio of liquid substances pumped by the first vacuum pump and the second vacuum pump, thereby achieving a purpose of precise rationing.
To make the purpose, the technical scheme and the advantages of the present disclosure better understood, the present disclosure is described below in further detail in conjunction with accompanying drawings and embodiments. It should be understood that the specific embodiments described below are merely to illustrate but not to limit the present disclosure.
It is to be noted that when an element is described as “fixed on” or “provided on” another element, it may be directly or indirectly on the another element. When one element is described as “connected to” another element, it may be directly or indirectly connected to the another element.
It should be understood that directional or positional relations indicated by terms such as “length”, “width”, “upper”, “lower”, “front”, “behind”, “left”, “right”, “vertical”, “horizontal”, “top”, “bottom”, “inner”, “outer” etc. are directional or positional relations shown based on the drawings, merely to conveniently describe the present disclosure and simplify the description, but not to indicate or imply that the designated device or element must have a specific orientation, be constructed and operated in a specific orientation, therefore cannot be understood as a limitation to the present disclosure.
In addition, terms “first” and “second” are merely for the purpose of description, but cannot be understood as the indication or implication of relative importance or as the implicit indication of the number of the designated technical features. Therefore, features defined by “first” and “second” may explicitly or implicitly include one or more such features. In the description of the present disclosure, unless otherwise clearly and specific stated, “a plurality of” means two or more than two.
As shown in
When the dual-pump outflowing liquid container provided in the present disclosure is used to store two substances that need to be mixed before normal usage (the two substances cannot be stored after being mixed, for example, some existing common liquid super glue, the two substances can only be stored separately and mixed before usage), the two substances are stored in the accommodate gap and the accommodate space of the inner tube 20 respectively, wherein after the embedding connector 21 of the inner tube 20 is fixedly connected to the inner tube embedding mounting hole 12, a tube body of the inner tube 20 is partially accommodated in the accommodation space of the outer tube 10 to form an accommodation gap. During the usage process, a user presses the pressing head 34 of the dual-pump outflowing liquid container so that the pressing head 34 slides on the pump core mounting seat 31, thereby driving the first vacuum pump 32 and the second vacuum pump 33 to work; the first vacuum pump 32 pumps out a liquid substance stored in the accommodation gap through the first outflowing liquid passage 341, meanwhile the second vacuum pump 33 pumps out a liquid substance stored in the accommodation space of the inner tube 20 through the second outflowing liquid passage 342; then, two liquid substances are converged at the liquid outlet 343 and pumped out for use after being mixed. With the dual-pump outflowing liquid container provided in the present disclosure, two substances that are used requiring a mixture thereof can be stored simultaneously. When in use, the first vacuum pump 32 and the second vacuum pump 33 can be simultaneously driven by pressing the pressing head 34 once to pump out the two substances simultaneously, and the two substances are mixed and then directly used, which greatly facilitates the mixing and usage of the two substances. Moreover, the first vacuum pump 32 and the second vacuum pump 33 are used to pump substances, in such a way that the amount of substances pumped out each time remains the same, that is, the proportion of respective liquid substances pumped out through the first vacuum pump 32 and the second vacuum pump 33 have a same ratio after pressing the pressing head 34 each time, thereby achieving a purpose of precise rationing. Furthermore, since the first vacuum pump 32 and the second vacuum pump 33 are used to pump the two substances respectively, and the vacuum pump does not suck back the liquid substance pumped out, which completely eliminates the problem that the mixed substances squeezed out are sucked back to the tubes to lead to a mixing of substances, compared with the prior art.
In the present disclosure, the first vacuum pump 32 and the second vacuum pump 33 both adopt the vacuum pumps widely used and mature in the prior art, therefore, the first vacuum pump 32 and the second vacuum pump 33 adopted in the present disclosure can be directly purchased from the market; moreover, respective pump outputs of the first vacuum pump 32 and the second vacuum pump 33 are selected according to a precise quantitative ratio of specific requirements, for example, if the two substances have a ratio of 1:3, then a ratio of the pump output of the first vacuum pump 32 to that of the second vacuum pump 33 is 1:3. Therefore, the first vacuum pump 32 and the second vacuum pump 33 are neither limited to have the same pump output, nor limited to have the same model number. Specifically, as shown in
Moreover, after the embedding connector 21 of the inner tube 20 is connected to the inner tube embedding mounting hole 12, the tube body of the inner tube 20 is located in the accommodation space of the outer tube 10, and a central axis of a tube body of the outer tube 10 is arranged coaxially with that of the tube body of the inner tube 20, which guarantees that the accommodation gap formed between the outer tube 10 and the inner tube 20 has enough space to store the liquid substance and makes the pressure of the pressure difference transmitted from the external atmosphere to the inner tube 20 more uniform.
As shown in
As shown in
During the process of mounting the pump core mechanism 30 to the top end of the outer tube 10, firstly, the first vacuum pump 32 and the second vacuum pump 33 are placed in the first pump core intercommunication hole 11 and the second pump core intercommunication hole 22, then the pump core mounting seat 31 is covered on the top end of the outer tube 10, in such a way that the locating rib 313 is aligned to the assembling locating groove 13, and the first pump core mounting hole 311 and the second pump core mounting hole 312 are aligned to the pump core driving parts 321 of the first vacuum pump 32 and the second vacuum pump 33 respectively, and finally the pump core mounting seat 31 is pressed down with a force, and the assembly is finished when the retaining ring convex 314 crosses the retaining ring mating convex 14. At such time, as shown in
Specifically, as shown in
As shown in
In the dual-pump outflowing liquid container provided in the present disclosure, as shown in
During the production process using the dual-pump outflowing liquid container, the inner tube 20 is firstly assembled into the outer tube 10, then the first vacuum pump 32 and the second vacuum pump 33 are assembled, at this time the bottoms of both the outer tube 10 and the inner tube 20 are not covered, next, the first liquid substance is injected into the accommodation gap from the bottom of the outer tube 10 and meanwhile the second liquid substance is injected from the bottom of the inner tube 20, and finally the bottom of the inner tube 20 is sealed and the bottom of the outer tube 10 is sealed (where the bottom of the inner tube 20 is exposed out of the outer tube 10, as shown in
In the second embodiment, as shown in
In addition, the embedding connector 21 in the present disclosure can also be designed to have a cross-section profile of polygon, preferably regular polygon, for example, regular triangle, square, regular pentagon and regular hexagon; correspondingly, the inner tube embedding mounting hole 12 is designed to have a cross-section profile of polygon matching with the embedding connector 21. The embedding connector 21 in the present disclosure can also be designed to have a cross-section profile of oval, and the inner tube embedding mounting hole 12 is designed to have a cross-section profile of oval matching with the embedding connector 21. When the embedding connector 21 is designed to have a cross-section profile of polygon or oval, an adaptive anti-rotating mating structure is formed between the embedding connector 21 having a cross-section profile of oval and the inner tube embedding mounting hole 12 matching with the embedding connector 21 having a cross-section profile of oval; therefore, it is not necessary to provide the reinforcement locating rib 23 as described in the second embodiment on the outer wall of the embedding connector 21 and the anti-rotating locating groove matching with the reinforcement locating rib 23 on the inner wall of the inner tube embedding mounting hole 12; except the above differences, other structure design is of the same.
Except the above structure, the second embodiment has the same structure as the first embodiment. No further description is needed here.
In the third embodiment, the bottom of the inner tube 20 is completely wrapped in the accommodation space of the outer tube 10, the accommodation space of the inner tube 20 is firstly filled with one liquid substance and the bottom of the inner tube 20 is sealed, then the accommodation gap is filled with the other liquid substance, and finally the bottom of the outer tube 10 is sealed. In the third embodiment, since the outer tube 10 and the inner tube 20 are both made of flexible materials easy to deform, hot melt sealing is adopted when sealing the bottoms of the outer tube 10 and the inner tube 20, as shown in
Except the above structure, the third embodiment has the same structure as the first embodiment and the second embodiment. No further description is needed here.
The above are merely the preferred embodiments of the present disclosure and are not intended to limit the present disclosure. Any modification, equivalent substitute and improvement made within the principle of the present disclosure are intended to be included within the scope of protection of the present disclosure.
Description of reference signs in the accompanying drawings:
10 represents an outer tube, 11 represents a first pump core intercommunication hole, 111 represents a first vacuum pump sealing convex, 12 represents an inner tube embedding mounting hole, 121 represents a fixed ring groove, 122 represents a ring sealing convex, 13 represents an assembling locating groove, 14 represents a retaining ring mating convex, 20 represents an inner tube, 21 represents an embedding connector, 211 represents an assembling convex, 22 represents a second pump core intercommunication hole, 221 represents a second vacuum pump sealing convex, 23 represents a reinforcement locating rib, 30 represents a pump core mechanism, 31 represents a pump core mounting seat, 311 represents a first pump core mounting hole, 312 represents a second pump core mounting hole, 313 represents a locating rib, 314 represents a retaining ring convex, 315 represents a ring step, 316 represents a guide chute, 317 represents a buckle bump, 318 represents a T shaped block, 32 represents a first vacuum pump, 33 represents a second vacuum pump, 34 represents a pressing head, 341 represents a first outflowing liquid passage, 342 represents a second outflowing liquid passage, 343 represents a liquid outlet, 344 represents a guide rail, 345 represents a sealing connection position, 346 represents a pressing anti-slip tooth, 310 represents a stop ring, 320 represents a mating connection position, 40 represents a cover, 41 represents a ring groove, 321 represents a pump core driving part, and 322 represents a pump core fixing part.
Number | Date | Country | Kind |
---|---|---|---|
201910653591.5 | Jul 2019 | CN | national |
The present application is a Continuation Application of PCT Application No. PCT/CN2020/087982 filed on Apr. 30, 2020, which claims the benefit of Chinese Patent Application No. 201910653591.5 filed on Jul. 19, 2019. All the above are hereby incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2020/087982 | Apr 2020 | US |
Child | 17160357 | US |