The present disclosure generally relates to ultrasonic surgical systems and, more particularly, to ultrasonic systems that allow surgeons to perform cutting and coagulation of tissue.
Over the years, a variety of different types of non-ultrasonically powered cutters and shaving devices for performing surgical procedures have been developed. Some of these devices employ a rotary cutting instrument and other devices employ a reciprocating cutting member. For example, shavers are widely used in arthroscopic surgery. These devices generally consist of a power supply, a handpiece, and a single-use end effector. The end effector commonly has an inner and outer tube. The inner tube rotates relative to the outer tube and will cut tissue with its sharpened edges. The inner tube can rotate continuously or oscillate. In addition, such device may employ a suction channel that travels through the interior of the inner tube. For example, U.S. Pat. No. 4,850,354 to McGurk-Burleson, et al., discloses a non-ultrasonically powered surgical cutting instrument that comprises a rotary cutter for cutting material with a shearing action. It employs an inner cutting member which is rotatable within an outer tube. Those devices lack the ability to coagulate tissue.
U.S. Pat. No. 3,776,238 to Peyman et al. discloses an ophthalmic instrument in which tissue is cut by a chopping action set-up by the sharp end of an inner tube moving against the inner surface of the end of an outer tube. U.S. Pat. No. 5,226,910 to Kajiyama et al. discloses another surgical cutting instrument that has an inner member which moves relative to an outer member to cut tissue entering through an aperture in the outer member. Again each of those devices lack the ability to coagulate tissue.
U.S. Pat. No. 4,922,902 to Wuchinich et al. discloses a method and apparatus for endoscopic removal of tissue utilizing an ultrasonic aspirator. The device uses an ultrasonic probe which disintegrates compliant tissue and aspirates it through a narrow orifice. U.S. Pat. No. 4,634,420 to Spinosa et al. discloses an apparatus and method for removing tissue from an animal and includes an elongated instrument having a needle or probe, which is vibrated at an ultrasonic frequency in the lateral direction. The ultrasonic movement of the needle breaks-up the tissue into fragments. Pieces of tissue can be removed from the area of treatment by aspiration through a conduit in the needle. U.S. Pat. No. 3,805,787 to Banko discloses yet another ultrasonic instrument that has a probe that is shielded to narrow the beam of ultrasonic energy radiated from the tip of the probe. In one embodiment the shield extends past the free-end of the probe to prevent the probe from coming into contact with the tissue. U.S. Pat. No. 5,213,569 to Davis discloses a phaco-emulsification needle which focuses the ultrasonic energy. The focusing surfaces can be beveled, curved or faceted. U.S. Pat. No. 6,984,220 to Wuchinich and U.S. Patent Publication No. US 2005/0177184 to Easley disclose ultrasonic tissue dissection systems that provide combined longitudinal and torsional motion through the use of longitudinal-torsional resonators. U.S Patent Publication no. US 2006/0030797 A1 to Zhou et al. discloses an orthopedic surgical device that has a driving motor for driving an ultrasound transducer and horn. An adapter is provided between the driving motor and transducer for supplying ultrasonic energy signals to the transducer.
While the use of ultrasonically powered surgical instruments provide several advantages over traditional mechanically powered saws, drills, and other instruments, temperature rise in bone and adjacent tissue due to frictional heating at the bone/tissue interface can still be a significant problem. Current arthroscopic surgical tools include punches, reciprocating shavers and radio frequency (RF) devices. Mechanical devices such as punches and shavers create minimal tissue damage, but can sometimes leave behind ragged cut lines, which are undesirable. RF devices can create smoother cut lines and also ablate large volumes of soft tissue; however, they tend to create more tissue damage than mechanical means. Thus, a device which could provide increased cutting precision while forming smooth cutting surfaces without creating excessive tissue damage would be desirable.
It would be desirable to provide an ultrasonic surgical instrument that overcomes some of the deficiencies of current instruments. The ultrasonic surgical instruments described herein overcome many of those deficiencies.
The foregoing discussion is intended only to illustrate some of the shortcomings present in the field of the invention at the time, and should not be taken as a disavowal of claim scope.
In one general aspect, various embodiments are directed to an ultrasonic surgical instrument that may include a housing that has a motor therein. A cutting blade may be coupled to the motor and be supported for selective rotational travel relative to the housing. At least one ultrasonic transducer may be supported by the housing. An ultrasonic blade may protrude from the at least one ultrasonic transducer such that the ultrasonic blade extends coaxially through a lumen in the cutting blade to protrude through a distal end thereof.
In connection with another general aspect of the present invention, there is provided an ultrasonic surgical instrument that may include a housing that supports at least one ultrasonic transducer therein. A substantially hollow ultrasonic blade may be coupled to the at least one ultrasonic transducer. A cutting blade may extend through the substantially hollow ultrasonic blade. The cutting blade may have a tissue cutting distal end that protrudes outward from a distal end of the substantially hollow ultrasonic blade. A motor may be coupled to the cutting blade for rotating the cutting blade within the substantially hollow ultrasonic blade.
In connection with still another general aspect of the present invention, there is provided an ultrasonic surgical instrument that may include a housing that supports a motor. a cutting blade may be coupled to the motor and be supported for selective rotational travel relative to the housing. A least one ultrasonic transducer may be supported by the housing and have an ultrasonic blade protruding therefrom. The ultrasonic blade may be substantially parallel to the cutting blade.
The features of various embodiments are set forth with particularity in the appended claims. The various embodiments, however, both as to organization and methods of operation, together with further objects and advantages thereof, may best be understood by reference to the following description, taken in conjunction with the accompanying drawings as follows.
The owner of the present application also owns the following U.S. Patent Applications that were filed on even date herewith and which are herein incorporated by reference in their respective entireties:
U.S. patent application Ser. No. 12/703,860, entitled ULTRASONICALLY POWERED SURGICAL INSTRUMENTS WITH ROTATING CUTTING IMPLEMENT, now U.S. Patent Application Publication No. 2011/0196286;
U.S. patent application Ser. No. 12/703,864, entitled METHODS OF USING ULTRASONICALLY POWERED SURGICAL INSTRUMENTS WITH ROTATABLE CUTTING IMPLEMENTS, now U.S. Patent Application Publication No. 2011/0196287;
U.S. patent application Ser. No. 12/703,866, entitled SEAL ARRANGEMENTS FOR ULTRASONICALLY POWERED SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2011/0196398;
U.S. patent application Ser. No. 12/703,870, entitled ULTRASONIC SURGICAL INSTRUMENTS WITH ROTATABLE BLADE AND HOLLOW SHEATH ARRANGEMENTS, now U.S. Patent Application Publication No. 2011/0196399;
U.S. patent application Ser. No. 12/703,875, entitled ROTATABLE CUTTING IMPLEMENT ARRANGEMENTS FOR ULTRASONIC SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2011/0196400;
U.S. patent application Ser.l No.12/703,877, entitled ULTRASONIC SURGICAL INSTRUMENTS WITH PARTIALLY ROTATING BLADE AND FIXED PAD ARRANGEMENT, now U.S. Patent Application Publication No. 2011/0196401;
U.S. patent application Ser. No. 12/703,885, entitled OUTER SHEATH AND BLADE ARRANGEMENTS FOR ULTRASONIC SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2011/0196401;
U.S. patent application Ser. No. 12/703,893, entitled ULTRASONIC SURGICAL INSTRUMENTS WITH MOVING CUTTING IMPLEMENT, now U.S. Patent Application Publication No. 2011/0196404; and
U.S. patent application Ser. No. 12/703,899, entitled ULTRASONIC SURGICAL INSTRUMENT WITH COMB-LIKE TISSUE TRIMMING DEVICE, now U.S. Patent Application Publication No. 2011/0196405.
Various embodiments are directed to apparatuses, systems, and methods for the treatment of tissue Numerous specific details are set forth to provide a thorough understanding of the overall structure, function, manufacture, and use of the embodiments as described in the specification and illustrated in the accompanying drawings. It will be understood by those skilled in the art, however, that the embodiments may be practiced without such specific details. In other instances, well-known operations, components, and elements have not been described in detail so as not to obscure the embodiments described in the specification. Those of ordinary skill in the art will understand that the embodiments described and illustrated herein are non-limiting examples, and thus it can be appreciated that the specific structural and functional details disclosed herein may be representative and do not necessarily limit the scope of the embodiments, the scope of which is defined solely by the appended claims.
Reference throughout the specification to “various embodiments,” “some embodiments,” “one embodiment,” or “an embodiment”, or the like, means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases “in various embodiments,” “in some embodiments,” “in one embodiment,” or “in an embodiment”, or the like, in places throughout the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Thus, the particular features, structures, or characteristics illustrated or described in connection with one embodiment may be combined, in whole or in part, with the features structures, or characteristics of one or more other embodiments without limitation.
Various embodiments are directed to improved ultrasonic surgical systems and instruments configured for effecting tissue dissecting, cutting, and/or coagulation during surgical procedures as well as the cutting implements employed thereby. In one embodiment, an ultrasonic surgical instrument apparatus is configured for use in open surgical procedures, but has applications in other types of surgery, such as arthroscopic, laparoscopic, endoscopic, and robotic-assisted procedures. Versatile use is facilitated by selective use of ultrasonic energy and the selective rotation of the cutting/coagulation implement and/or protective sheaths.
It will be appreciated that the terms “proximal” and “distal” are used herein with reference to a clinician gripping a handpiece assembly. Thus, an end effector is distal with respect to the more proximal handpiece assembly. It will be further appreciated that, for convenience and clarity, spatial terms such as “top” and “bottom” also are used herein with respect to the clinician gripping the handpiece assembly. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and absolute.
As can also be seen in
In various embodiments, the ultrasonic generator 12 may include an ultrasonic generator module 13 and a signal generator module 15. See
Various forms of ultrasonic generators, ultrasonic generator modules and signal generator modules are known. For example, such devices are disclosed in commonly owned U.S. patent application Ser. No. 12/503,770, entitled Rotating Transducer Mount For Ultrasonic Surgical Instruments, filed Jul. 15, 2007, now U.S. Patent Application Publication No. 2011-0015660, which is herein incorporated by reference in its entirety. Other such devices are disclosed in one or more of the following U.S. Patents, all of which are incorporated by reference herein: U.S. Pat. No. 6,480,796 (Method for Improving the Start Up of an Ultrasonic System Under Zero Load Conditions); U.S. Pat. No. 6,537,291 (Method for Detecting a Loose Blade in a Handle Connected to an Ultrasonic Surgical System); U.S. Pat. No. 6,626,926 (Method for Driving an Ultrasonic System to Improve Acquisition of Blade Resonance Frequency at Startup); U.S. Pat. No. 6,633,234 (Method for Detecting Blade Breakage Using Rate and/or Impedance Information); U.S. Pat. No. 6,662,127 (Method for Detecting Presence of a Blade in an Ultrasonic System); U.S. Pat. No. 6,678,621 (Output Displacement Control Using Phase Margin in an Ultrasonic Surgical Handle); U.S. Pat. No. 6,679,899 (Method for Detecting Transverse Vibrations in an Ultrasonic Handle); U.S. Pat. No. 6,908,472 (Apparatus and Method for Altering Generator Functions in an Ultrasonic Surgical System); U.S. Pat. No. 6,977,495 (Detection Circuitry for Surgical Handpiece System); U.S. Pat. No. 7,077,853 (Method for Calculating Transducer Capacitance to Determine Transducer Temperature); U.S. Pat. No. 7,179,271 (Method for Driving an Ultrasonic System to Improve Acquisition of Blade Resonance Frequency at Startup); and U.S. Pat. No. 7,273,483 (Apparatus and Method for Alerting Generator Function in an Ultrasonic Surgical System).
In various embodiments, the housing 102 may be provided in two or more sections that are attached together by fasteners such as screws, snap features, etc. and may be fabricated from, for example, plastics such as polycarbonate, polyetherimide (GE Ultem®) or metals such as aluminum, titanium or stainless steel. As indicated above, the housing 102 non-rotatably supports a piezoelectric ultrasonic transducer assembly 114 for converting electrical energy to mechanical energy that results in longitudinal vibrational motion of the ends of the transducer assembly 114. The ultrasonic transducer assembly 114 may comprise at least one and preferably a stack of, for example, four to eight ceramic piezoelectric elements 115 with a motion null point located at some point along the stack. The ultrasonic transducer assembly 114 may further include an ultrasonic horn 124 that is attached at the null point on one side and to a coupler 126 on the other side. An ultrasonic blade 200 that may be fabricated from, for example, titanium may be fixed to the coupler 126. In alternative embodiments, the ultrasonic blade 200 is integrally formed with the ultrasonic horn 124. In either case, the ultrasonic blade 200 will vibrate in the longitudinal direction at an ultrasonic frequency rate with the ultrasonic transducer assembly 114. The ends of the ultrasonic transducer assembly 114 achieve maximum motion with a portion of the stack constituting a motionless node, when the ultrasonic transducer assembly 114 is driven at maximum current at the transducer's resonant frequency. However, the current providing the maximum motion will vary with each instrument and is a value stored in the non-volatile memory of the instrument so the system can use it.
The parts of the ultrasonic instrument 100 may be designed such that the combination will oscillate at the same resonant frequency. In particular, the elements may be tuned such that the resulting length of each such element is one-half wavelength or a multiple thereof. Longitudinal back and forth motion is amplified as the diameter closer to the ultrasonic blade 200 of the acoustical mounting horn 124 decreases. This phenomenon is greatest at the node and essentially non-existent when the diameteral change is made at an anti-node. Thus, the ultrasonic horn 124, as well as the blade/coupler, may be shaped and dimensioned so as to amplify blade motion and provide ultrasonic vibration in resonance with the rest of the acoustic system, which produces the maximum back and forth motion of the end of the acoustical mounting horn 124 close to the ultrasonic blade 200. Motions of approximately 10 microns may be achieved at the piezoelectric elements 115. Motions of approximately 20-25 microns may be achieved at the end of the acoustical horn 124 and motions of approximately 40-100 microns may be achieved at the end of the ultrasonic blade 200.
When power is applied to the ultrasonic instrument 100 by operation of the foot pedal 30 or other switch arrangement, the ultrasonic generator 12 may, for example, cause the ultrasonic blade 200 to vibrate longitudinally at approximately 55.5 kHz, and the amount of longitudinal movement will vary proportionately with the amount of driving power (current) applied, as adjustably selected by the user. When relatively high power is applied, the ultrasonic blade 200 may be designed to move longitudinally in the range of about 40 to 100 microns at the ultrasonic vibrational rate. Such ultrasonic vibration of the blade 200 will generate heat as the blade contacts tissue, i.e., the acceleration of the ultrasonic blade 200 through the tissue converts the mechanical energy of the moving ultrasonic blade 200 to thermal energy in a very narrow and localized area. This localized heat creates a narrow zone of coagulation, which will reduce or eliminate bleeding in small vessels, such as those less than one millimeter in diameter. The cutting efficiency of the ultrasonic blade 200, as well as the degree of hemostasis, will vary with the level of driving power applied, the cutting rate or force applied by the surgeon to the blade, the nature of the tissue type and the vascularity of the tissue.
As indicated above, the surgical instrument 100 may further include a motor 190 which is employed to apply rotational motion to a tissue cutting blade 220 that is coaxially aligned with the ultrasonic blade 200. More particularly, the tissue cutting blade 220 has an axial lumen 221 therethrough through which the ultrasonic blade 200 extends. The tissue cutting blade 220 may be fabricated from, for example, stainless steel. In various embodiments, one or more seals 250 of the type described in co-pending U.S. patent application Ser. No. 12/703,866, entitled SEAL ARRANGEMENTS FOR ULTRASONICALLY POWERED SURGICAL INSTRUMENTS, filed Feb. 11, 2010, now U.S. Patent Application Publication No. 2011/0196398, which has been herein incorporated by reference in its entirety may be employed. However, other seal arrangements could also be employed. The motor 190 may comprise, for example, a conventional stepper motor. When used with an encoder 194, the encoder 194 converts the mechanical rotation of the motor shaft 192 into electrical pulses that provide speed and other motor control information to the control module 24.
As can also be seen in
The tissue cutting blade 220 may have various configurations. In the embodiment depicted in
An ultrasonic blade 200 of the types and construction described above may be attached to the ultrasonic horn 324 in a manner described above and may extend through a bore 342 in a motor 340 that is mounted within the housing 302. In alternative embodiments, however, the ultrasonic blade 200 may be integrally formed with the ultrasonic horn 324. A tissue cutting blade 220 of the various types and constructions described above may be attached to a rotatable portion/shaft of the motor 340. For example, those motors manufactured by National Instruments may be used. However, other motors may also be successfully employed. The tissue cutting blade 220 may coaxially extend through an outer sheath 230 that is attached to the housing 302. The outer sheath 230 may be fabricated from, for example, aluminum, titanium, aluminum alloys, steels, ceramics, etc. The tissue cutting blade 220 may be rotatably supported by one or more bearings 332 mounted between the housing 302 and/or the outer sheath 230. One or more seals 250 of the type and construction described in one of the aforementioned patent applications or others may be mounted between the ultrasonic blade 200 and the tissue cutting blade 220. The ultrasonic horn 324 may be coupled to the proximal end of the ultrasonic blade 200 in the manner described above. In use, the surgeon may use the portion of the rotating tissue cutting blade 220 that is exposed through the distal tissue cutting opening 234 in the outer sheath 230 to cut tissue and then activate the ultrasonic blade 200 when it is needed for coagulation purposes. The surgeon would simply contact the target tissue with the distal end 202 of the ultrasonic blade 200 while activating the ultrasonic transducer assembly 314. It will be understood that the instrument 300 may be used in a tissue cutting rotation mode, an ultrasonic mode, or tissue cutting and ultrasonic mode (“duel mode”).
This embodiment may include a conventional stepper motor 440. The motor 440 may have an encoder associated therewith that communicates with the control module 24 as was described above. The motor 440 may receive power from the motor drive 26 through conductors 441, 442 that comprise motor cable 74 that extends through the common sheath 76. The motor 440 may have a hollow motor shaft 444 attached thereto that extends through a slip ring assembly 450. The hollow motor shaft 444 may be rotatably supported within the housing 402 by a proximal bearing 446.
The slip ring assembly 450 may be fixed (i.e., non-rotatable) within the housing 402 and may include a fixed outer contact 452 that is coupled to conductors 453, 454 that form generator cable 14 as was described above. An inner contact 456 may be mounted on the rotatable hollow drive shaft 444 such that it is in electrical contact or communication with outer contact 452. Conductors 453, 454 are attached to the inner contact 456 and extend through the hollow motor shaft 444 to be coupled to the ultrasonic transducer assembly 414. In various embodiments, to facilitate ease of assembly and also acoustically isolate the motor 440 from the ultrasonic transducer assembly 414, the hollow motor shaft 444 may be detachably coupled to the transducer 430 by one of the various coupling assemblies disclosed in copending U.S. patent application Ser. No. 12/703,860, entitled ULTRASONICALLY POWERED SURGICAL INSTRUMENTS WITH ROTATING CUTTING IMPLEMENT, now U.S. Patent Application Publication No. 2011/0196286, the disclosure of which has been herein incorporated by reference in its entirety.
When power is supplied to the motor 440, the drive shaft 444 rotates about axis A-A which also causes the transducer housing 430 to rotate about axis A-A. Because ultrasonic transducer assembly 414 and the tissue cutting blade 220 are attached to the transducer housing 430, they, too, rotate about axis A-A. When the clinician desires to power the ultrasonic transducer assembly 414, power is supplied from the ultrasonic generator 12 to the fixed contact 452 in the slip ring assembly 450. Power is transmitted to the ultrasonic transducer assembly 414 by virtue of rotational sliding contact or electrical communication between the inner contact 456 and the fixed contact 452. Those signals are transmitted to the ultrasonic transducer assembly 414 by conductors 460, 462. The surgical instrument 400 may include a control arrangement of the type described above and be used in the various modes described above. It will be understood that the instrument 400 may be used in rotation mode, ultrasonic mode, or rotation and ultrasonic mode (“duel mode”).
This embodiment includes a motor 540 that may comprise a stepper motor of the type and construction described above. The motor 540 may have an encoder associated therewith that communicates with the control module 24 as was described above. The motor 540 may receive power from the motor drive 26 through conductors 541, 542 that comprise motor cable 74 that extends through the common sheath 76 (
A movable contact 550 may be fixed to the sealed transducer chamber 526 and is coupled to the transducer assembly 514 by conductors 552 and 553. A fixed outer contact 554 may be attached to the housing 502 and is coupled to conductors 555, 556 that form generator cable 14 as was described above. When power is supplied to the motor 540, the motor shaft 544 rotates about axis A-A which also causes the transducer chamber 526 to rotate about axis A-A. Because ultrasonic transducer assembly 514 and the tissue cutting blade 220 are attached to the transducer chamber 526, they, too, rotate about axis A-A. When the clinician desires to power the ultrasonic transducer assembly 514, power is supplied from the ultrasonic generator 12 to the fixed contact 554. Power is transmitted to the ultrasonic transducer assembly 514 by virtue of rotational sliding contact or electrical communication between the fixed contact 554 and the movable contact 550. Those signals are transmitted to the ultrasonic transducer assembly 514 by conductors 553, 554. The surgical instrument 500 may include a control arrangement of the type described above and be used in the various modes described above. It will be understood that the instrument 500 may be used in rotation mode, ultrasonic mode, or rotation and ultrasonic mode (“duel mode”).
In various embodiments, the shaver blade 650 may have a distal end 654 that may be configured to cut tissue when the blade 650 is rotated about axis A-A. In one embodiment, for example, the distal end 654 has a series of teeth 656 formed thereon. See
The instrument 600 may further have an acoustically isolated hollow sheath 680 that extends from the housing 602 to cover a substantial portion of the ultrasonic blade 630. That is, in various embodiments, the hollow sheath 680 may cover all of the ultrasonic blade 630 except for a distal end portion 634 that has a blade opening 635 therein. See
When power is supplied to the motor 660, the drive shaft 662 rotates about axis A-A which also causes the shaver blade 650 to rotate about axis A-A. Activation of the source of suction 678 causes suction to be applied to the suction lumen 657 in the shaver blade 650 to draw tissue into the opening 635 in the hollow sheath 680 and into contact with the rotating shaver blade 650. The source of suction 678 may communicate with and be controlled by the control system 10 such that suction is only applied to the lumen 657 when the shaver blade 650 is being rotated by motor 660.
The surgical instrument 600 may have two primary modes of operation. One mode is the shaver mode, in which the shaver blade 650 rotates in concert with suction to cut tissue that enters the opening 636. The other mode is the ultrasonic coagulation mode. As an ultrasonic instrument, the ultrasonic blade 630 is driven in a linear ultrasonic vibration mode by the transducers 622. The user is able to coagulate bleeders and tissue as needed with the exposed distal end 634 of the ultrasonic blade 630. In use, the instrument 600 can be activated in shaver modes independently or in ultrasonic mode independently. Both modes can also be activated together and suction can be turned on and off at any time. When using the instrument 600 in one of the ultrasonic modes, the distal end 634 of the ultrasonic blade 630 can be used to coagulate tissue while the remainder of the device can safely come in contact with tissue outside of the targeted site because it is not ultrasonically active.
An ultrasonic transducer assembly 720 that has an ultrasonic horn portion 722 attached thereto or integrally formed therewith may also be supported within the housing 702. The ultrasonic transducer assembly 720 may comprise at least one and preferably a stack of, for example, four to eight lead zirconate titanate (PZT-8) ceramic piezoelectric elements 725 with a motion null point located at some point along the stack. In various embodiments, for example, a series of internal threads (not shown) may be formed on the distal end portion of the horn portion 722 for attachment to an ultrasonic blade 760. Ultrasonic blade 760 may have a threaded proximal end 762 for threaded attachment to the horn portion 722 as will be discussed in further detail below. The surgical instrument 700 may further include a hollow tissue cutting or “shaver” blade 730 that may be fabricated from, for example, aluminum, titanium, aluminum alloys, titanium alloys, steels, ceramics, etc. A distal end 732 of the shaver blade 730 may have serrations 734 formed thereon or, in other embodiments, the serrations may be omitted. In some embodiments, a proximal end 736 of the shaver blade 730 may be fabricated for removable attachment to the drive shaft 712 of the motor 710. In one embodiment, for example, a “quarter-twist” or bayonet-type coupling 738 may be employed to couple the proximal end 736 of the shaver blade 730 to a corresponding coupling portion 713 that is attached to the drive shaft 712. Such bayonet coupling arrangements are known and may facilitate coupling of the shaver blade 730 to the drive shaft 712 by engaging the coupling portions 738, 713 and rotating the blade 730 while the drive shaft 712 remains stationary. Other forms of coupling arrangements could also be successfully employed without departing from the spirit and scope of the present invention. The shaver blade 730 may further have a suction lumen 740 that extends therethrough. At least one suction hole 742 may provided in the proximal end 736 of the shaver blade 730 to enable the suction lumen 740 extending therethrough to discharge into the suction chamber 703 when the proximal end 736 is coupled to the drive shaft 712 as illustrated in
In various embodiments, the surgical instrument 700 may further include an outer sheath assembly 770 that may be fixedly attached to the housing 702. In one embodiment, for example, the proximal end 772 of the outer sheath assembly 770 may include a quarter-turn or bayonet-type coupling arrangement that is configured for attachment to the distal end 701 of the housing 702. However, other known coupling arrangements may be employed for removably coupling the outer sheath assembly 770 to the housing 702 without departing from the spirit and scope of the present invention. As can be most particularly seen in
Assembly of the instrument 700 will now be explained with reference to
In use, the control system 10 components may be employed to control motor 710 such that the drive shaft 712 is caused to oscillate back and forth about axis A-A which also causes the shaver blade 730 to rotate about axis A-A. Activation of the source of suction 711 may cause suction to be applied to the suction lumen 740 in the shaver blade 730 to draw tissue into contact with the oscillating distal end 732 of the shaver blade 730. Pieces of severed tissue may be drawn in through the suction lumen 740 and ultimately be collected in the collection receptacle 709. If hemostasis is desired, the surgeon can activate the ultrasonic transducer assembly 720 to ultrasonically power the ultrasonic blade 760. The distal end 764 of the ultrasonic blade 760 that protrudes out of the outer sheath assembly 770 (
Also supported in the housing 802 is an ultrasonic transducer assembly 820 that has an ultrasonic horn portion 822 attached thereto or integrally formed therewith. The ultrasonic transducer assembly 820 may comprise at least one and preferably a stack of, for example, four to eight lead zirconate titanate (PZT-8) ceramic piezoelectric elements 821 with a motion null point located at some point along the stack. In various embodiments, the ultrasonic blade 860 may be attached to the distal end of the horn portion 822 by, for example, a screw fitting. The surgical instrument 800 may further include a hollow shaver blade 830 that may be fabricated from, for example, aluminum, titanium, aluminum alloys, titanium alloys, steels, ceramics, etc. A distal end 832 of the shaver blade 830 may have an opening 834 therein that forms two sharp tissue cutting edges 835, 837 as shown in
In various embodiments, the surgical instrument 800 may further include a shaver blade sheath 870 that may be fixedly attached to the housing 802. In one embodiment the proximal end 872 of the shaver blade sheath 870 may be fabricated from, for example, a metal material such as aluminum, titanium, steels, titanium alloys or aluminum alloys and include a quarter-turn or bayonet-type coupling arrangement that is configured for attachment to the distal end 801 of the housing 802. However, other known coupling arrangements may be employed for removably coupling the shaver blade sheath 870 to the housing 802 without departing from the spirit and scope of the present invention. As can be most particularly seen in
Also in this embodiment, an ultrasonic blade sheath 890 may be attached to the housing 802. In various embodiments, for example, the ultrasonic blade sheath 890 may be fabricated from a polymer material such as polyetherimide, liquid crystal polymers, polycarbonate, nylon or ceramic material and be attached to the housing 802 by screw threads, bonding, press fitting, crimping, etc. The ultrasonic blade sheath 890 may further have an ultrasonic blade lumen 892 extending therethrough for receiving the ultrasonic blade 860 therein. One or more seal members (not shown) of the type and construction described in the aforementioned pending patent applications that have been incorporated by reference or others may be employed to support the ultrasonic blade 860 within the lumen 892 while achieving a substantially fluid-tight seal between the blade 860 and the lumen 892. The ultrasonic blade sheath 890 may further have an opening 896 in a distal end 894 to expose a distal end 864 of the ultrasonic blade 860.
In use, the control system 10 components may be used to control motor 810 such that the drive shaft 812 is rotated about axis A-A which also causes the shaver blade 830 to rotate about axis A-A. Activation of the source of suction 811 will cause suction to be applied to the suction lumen 840 in the shaver blade 830 to draw tissue in through the opening 880 in the distal end 878 of the shaver blade sheath 870 and into the opening 834 in the shaver blade 830. Pieces of severed tissue may be drawn in through the suction lumen 840 and ultimately be collected in the collection receptacle 809. If hemostasis is desired, the surgeon can activate the ultrasonic transducer assembly 820 to ultrasonically power the ultrasonic blade 860. The distal end 864 that protrudes out of the ultrasonic sheath assembly 890 (
The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, the device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the device can be disassembled, and any number of the particular pieces or parts of the device can be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, the device can be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
Preferably, the various embodiments described herein will be processed before surgery. First, a new or used instrument is obtained and if necessary cleaned. The instrument can then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and instrument are then placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation kills bacteria on the instrument and in the container. The sterilized instrument can then be stored in the sterile container. The sealed container keeps the instrument sterile until it is opened in the medical facility. Sterilization can also be done by any number of ways known to those skilled in the art including beta or gamma radiation, ethylene oxide, and/or steam.
In various embodiments, an ultrasonic surgical instrument can be supplied to a surgeon with a waveguide and/or end effector already operably coupled with a transducer of the surgical instrument. In at least one such embodiment, the surgeon, or other clinician, can remove the ultrasonic surgical instrument from a sterilized package, plug the ultrasonic instrument into a generator, as outlined above, and use the ultrasonic instrument during a surgical procedure. Such a system can obviate the need for a surgeon, or other clinician, to assemble a waveguide and/or end effector to the ultrasonic surgical instrument. After the ultrasonic surgical instrument has been used, the surgeon, or other clinician, can place the ultrasonic instrument into a sealable package, wherein the package can be transported to a sterilization facility. At the sterilization facility, the ultrasonic instrument can be disinfected, wherein any expended parts can be discarded and replaced while any reusable parts can be sterilized and used once again. Thereafter, the ultrasonic instrument can be reassembled, tested, placed into a sterile package, and/or sterilized after being placed into a package. Once sterilized, the reprocessed ultrasonic surgical instrument can be used once again.
Although various embodiments have been described herein, many modifications and variations to those embodiments may be implemented. For example, different types of end effectors may be employed. Also, where materials are disclosed for certain components, other materials may be used. The foregoing description and following claims are intended to cover all such modification and variations.
All of the above U.S. Patents and U.S. Patent applications, and published U.S. Patent Applications referred to in this specification are incorporated herein by reference in their entirety, but only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
Number | Name | Date | Kind |
---|---|---|---|
969528 | Disbrow | Sep 1910 | A |
1570025 | Young | Jan 1926 | A |
2704333 | Calosi et al. | Mar 1955 | A |
2736960 | Armstrong | Mar 1956 | A |
2849788 | Creek | Sep 1958 | A |
RE25033 | Balamuth et al. | Aug 1961 | E |
3015961 | Roney | Jan 1962 | A |
3513848 | Winston et al. | May 1970 | A |
3526219 | Balamuth | Sep 1970 | A |
3614484 | Shoh | Oct 1971 | A |
3636943 | Balamuth | Jan 1972 | A |
3776238 | Peyman et al. | Dec 1973 | A |
3805787 | Banko | Apr 1974 | A |
3830098 | Antonevich | Aug 1974 | A |
3854737 | Gilliam, Sr. | Dec 1974 | A |
3862630 | Balamuth | Jan 1975 | A |
3900823 | Sokal et al. | Aug 1975 | A |
3918442 | Nikolaev et al. | Nov 1975 | A |
3946738 | Newton et al. | Mar 1976 | A |
3955859 | Stella et al. | May 1976 | A |
3956826 | Perdreaux, Jr. | May 1976 | A |
4156187 | Murry et al. | May 1979 | A |
4188927 | Harris | Feb 1980 | A |
4200106 | Douvas et al. | Apr 1980 | A |
4306570 | Matthews | Dec 1981 | A |
4445063 | Smith | Apr 1984 | A |
4491132 | Aikins | Jan 1985 | A |
4574615 | Bower et al. | Mar 1986 | A |
4617927 | Manes | Oct 1986 | A |
4633119 | Thompson | Dec 1986 | A |
4634420 | Spinosa et al. | Jan 1987 | A |
4640279 | Beard | Feb 1987 | A |
4649919 | Thimsen et al. | Mar 1987 | A |
4708127 | Abdelghani | Nov 1987 | A |
4712722 | Hood et al. | Dec 1987 | A |
4827911 | Broadwin et al. | May 1989 | A |
4832683 | Idemoto et al. | May 1989 | A |
4838853 | Parisi | Jun 1989 | A |
4850354 | McGurk-Burleson et al. | Jul 1989 | A |
4865159 | Jamison | Sep 1989 | A |
4896009 | Pawlowski | Jan 1990 | A |
4903696 | Stasz et al. | Feb 1990 | A |
4922902 | Wuchinich et al. | May 1990 | A |
4965532 | Sakurai | Oct 1990 | A |
4979952 | Kubota et al. | Dec 1990 | A |
4981756 | Rhandhawa | Jan 1991 | A |
5026387 | Thomas | Jun 1991 | A |
5109819 | Custer et al. | May 1992 | A |
5112300 | Ureche | May 1992 | A |
5123903 | Quaid et al. | Jun 1992 | A |
5126618 | Takahashi et al. | Jun 1992 | A |
5162044 | Gahn et al. | Nov 1992 | A |
5163537 | Radev | Nov 1992 | A |
5167725 | Clark et al. | Dec 1992 | A |
D332660 | Rawson et al. | Jan 1993 | S |
5176695 | Dulebohn | Jan 1993 | A |
5184605 | Grzeszykowski | Feb 1993 | A |
5188102 | Idemoto et al. | Feb 1993 | A |
5213569 | Davis | May 1993 | A |
5221282 | Wuchinich | Jun 1993 | A |
5226909 | Evans et al. | Jul 1993 | A |
5226910 | Kajiyama et al. | Jul 1993 | A |
5241236 | Sasaki et al. | Aug 1993 | A |
5257988 | L'Esperance, Jr. | Nov 1993 | A |
5261922 | Hood | Nov 1993 | A |
5263957 | Davison | Nov 1993 | A |
5275609 | Pingleton et al. | Jan 1994 | A |
5282800 | Foshee et al. | Feb 1994 | A |
5304115 | Pflueger et al. | Apr 1994 | A |
D347474 | Olson | May 1994 | S |
5322055 | Davison et al. | Jun 1994 | A |
5324299 | Davison et al. | Jun 1994 | A |
5326342 | Pflueger et al. | Jul 1994 | A |
5344420 | Hilal et al. | Sep 1994 | A |
5346502 | Estabrook et al. | Sep 1994 | A |
5353474 | Good et al. | Oct 1994 | A |
5357423 | Weaver et al. | Oct 1994 | A |
5366466 | Christian et al. | Nov 1994 | A |
5371429 | Manna | Dec 1994 | A |
D354564 | Medema | Jan 1995 | S |
5381067 | Greenstein et al. | Jan 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5411481 | Allen et al. | May 1995 | A |
5419761 | Narayanan et al. | May 1995 | A |
5421829 | Olichney et al. | Jun 1995 | A |
5438997 | Sieben et al. | Aug 1995 | A |
5449370 | Vaitekunas | Sep 1995 | A |
5471988 | Fujio et al. | Dec 1995 | A |
5483501 | Park et al. | Jan 1996 | A |
5486162 | Brumbach | Jan 1996 | A |
5500216 | Julian et al. | Mar 1996 | A |
5501654 | Failla et al. | Mar 1996 | A |
5505693 | Mackool | Apr 1996 | A |
5507738 | Ciervo | Apr 1996 | A |
5527331 | Kresch et al. | Jun 1996 | A |
5562609 | Brumbach | Oct 1996 | A |
5562610 | Brumbach | Oct 1996 | A |
5601601 | Tal et al. | Feb 1997 | A |
5603773 | Campbell | Feb 1997 | A |
5607436 | Pratt et al. | Mar 1997 | A |
5618492 | Auten et al. | Apr 1997 | A |
5628760 | Knoepfler | May 1997 | A |
5630420 | Vaitekunas | May 1997 | A |
D381077 | Hunt | Jul 1997 | S |
5651780 | Jackson et al. | Jul 1997 | A |
5653713 | Michelson | Aug 1997 | A |
5669922 | Hood | Sep 1997 | A |
5674235 | Parisi | Oct 1997 | A |
5690269 | Bolanos et al. | Nov 1997 | A |
5694936 | Fujimoto et al. | Dec 1997 | A |
5713896 | Nardella | Feb 1998 | A |
5730752 | Alden et al. | Mar 1998 | A |
5733074 | Stöck et al. | Mar 1998 | A |
5741226 | Strukel et al. | Apr 1998 | A |
5792135 | Madhani et al. | Aug 1998 | A |
5808396 | Boukhny | Sep 1998 | A |
5810859 | DiMatteo et al. | Sep 1998 | A |
5817084 | Jensen | Oct 1998 | A |
5817119 | Klieman et al. | Oct 1998 | A |
5827323 | Klieman et al. | Oct 1998 | A |
5828160 | Sugishita | Oct 1998 | A |
5836897 | Sakurai et al. | Nov 1998 | A |
5843109 | Mehta et al. | Dec 1998 | A |
5878193 | Wang et al. | Mar 1999 | A |
5879364 | Bromfield et al. | Mar 1999 | A |
5883615 | Fago et al. | Mar 1999 | A |
5893835 | Witt et al. | Apr 1999 | A |
5897523 | Wright et al. | Apr 1999 | A |
5897569 | Kellogg et al. | Apr 1999 | A |
5906628 | Miyawaki et al. | May 1999 | A |
5935143 | Hood | Aug 1999 | A |
5935144 | Estabrook | Aug 1999 | A |
5938633 | Beaupre | Aug 1999 | A |
5944718 | Austin et al. | Aug 1999 | A |
5944737 | Tsonton et al. | Aug 1999 | A |
5954736 | Bishop et al. | Sep 1999 | A |
5954746 | Holthaus et al. | Sep 1999 | A |
5957882 | Nita et al. | Sep 1999 | A |
5957943 | Vaitekunas | Sep 1999 | A |
5968007 | Simon et al. | Oct 1999 | A |
5968060 | Kellogg | Oct 1999 | A |
D416089 | Barton et al. | Nov 1999 | S |
5980510 | Tsonton et al. | Nov 1999 | A |
5989274 | Davison et al. | Nov 1999 | A |
5989275 | Estabrook et al. | Nov 1999 | A |
5993972 | Reich et al. | Nov 1999 | A |
6024741 | Williamson, IV et al. | Feb 2000 | A |
6027515 | Cimino | Feb 2000 | A |
6033375 | Brumbach | Mar 2000 | A |
6050943 | Slayton et al. | Apr 2000 | A |
6051010 | DiMatteo et al. | Apr 2000 | A |
6056735 | Okada et al. | May 2000 | A |
6063098 | Houser et al. | May 2000 | A |
6066132 | Chen et al. | May 2000 | A |
6068647 | Witt et al. | May 2000 | A |
6077285 | Boukhny | Jun 2000 | A |
6083191 | Rose | Jul 2000 | A |
6086584 | Miller | Jul 2000 | A |
6090120 | Wright et al. | Jul 2000 | A |
6109500 | Alli et al. | Aug 2000 | A |
6110127 | Suzuki | Aug 2000 | A |
6113594 | Savage | Sep 2000 | A |
6126629 | Perkins | Oct 2000 | A |
6129735 | Okada et al. | Oct 2000 | A |
6132368 | Cooper | Oct 2000 | A |
6139320 | Hahn | Oct 2000 | A |
6139561 | Shibata et al. | Oct 2000 | A |
6142615 | Qiu et al. | Nov 2000 | A |
6147560 | Erhage et al. | Nov 2000 | A |
6152902 | Christian et al. | Nov 2000 | A |
6159160 | Hsei et al. | Dec 2000 | A |
6159175 | Strukel et al. | Dec 2000 | A |
6165150 | Banko | Dec 2000 | A |
6204592 | Hur | Mar 2001 | B1 |
6206844 | Reichel et al. | Mar 2001 | B1 |
6210403 | Klicek | Apr 2001 | B1 |
6214023 | Whipple et al. | Apr 2001 | B1 |
6231565 | Tovey et al. | May 2001 | B1 |
6233476 | Strommer et al. | May 2001 | B1 |
6238366 | Savage et al. | May 2001 | B1 |
6252110 | Uemura et al. | Jun 2001 | B1 |
D444365 | Bass et al. | Jul 2001 | S |
6254623 | Haibel, Jr. et al. | Jul 2001 | B1 |
6258034 | Hanafy | Jul 2001 | B1 |
6267761 | Ryan | Jul 2001 | B1 |
6270831 | Kumar et al. | Aug 2001 | B2 |
6273852 | Lehe et al. | Aug 2001 | B1 |
6274963 | Estabrook et al. | Aug 2001 | B1 |
6277115 | Saadat | Aug 2001 | B1 |
6278218 | Madan et al. | Aug 2001 | B1 |
6283981 | Beaupre | Sep 2001 | B1 |
6309400 | Beaupre | Oct 2001 | B2 |
6319221 | Savage et al. | Nov 2001 | B1 |
6325811 | Messerly | Dec 2001 | B1 |
6328751 | Beaupre | Dec 2001 | B1 |
6340352 | Okada et al. | Jan 2002 | B1 |
6352532 | Kramer et al. | Mar 2002 | B1 |
6364888 | Niemeyer et al. | Apr 2002 | B1 |
6379320 | Lafon et al. | Apr 2002 | B1 |
D457958 | Dycus et al. | May 2002 | S |
6383194 | Pothula | May 2002 | B1 |
6387109 | Davison et al. | May 2002 | B1 |
6388657 | Natoli | May 2002 | B1 |
6391042 | Cimino | May 2002 | B1 |
6405733 | Fogarty et al. | Jun 2002 | B1 |
6416486 | Wampler | Jul 2002 | B1 |
6423073 | Bowman | Jul 2002 | B2 |
6423082 | Houser et al. | Jul 2002 | B1 |
6428539 | Baxter et al. | Aug 2002 | B1 |
6432118 | Messerly | Aug 2002 | B1 |
6436114 | Novak et al. | Aug 2002 | B1 |
6436115 | Beaupre | Aug 2002 | B1 |
6443969 | Novak et al. | Sep 2002 | B1 |
6454781 | Witt et al. | Sep 2002 | B1 |
6454782 | Schwemberger | Sep 2002 | B1 |
6458142 | Faller et al. | Oct 2002 | B1 |
6480796 | Wiener | Nov 2002 | B2 |
6485490 | Wampler et al. | Nov 2002 | B2 |
6491708 | Madan et al. | Dec 2002 | B2 |
6497715 | Satou | Dec 2002 | B2 |
6500176 | Truckai et al. | Dec 2002 | B1 |
6500188 | Harper et al. | Dec 2002 | B2 |
6524251 | Rabiner et al. | Feb 2003 | B2 |
6524316 | Nicholson et al. | Feb 2003 | B1 |
6527736 | Attinger et al. | Mar 2003 | B1 |
6533784 | Truckai et al. | Mar 2003 | B2 |
6537291 | Friedman et al. | Mar 2003 | B2 |
6543452 | Lavigne | Apr 2003 | B1 |
6543456 | Freeman | Apr 2003 | B1 |
6544260 | Markel et al. | Apr 2003 | B1 |
6561983 | Cronin et al. | May 2003 | B2 |
6572632 | Zisterer et al. | Jun 2003 | B2 |
6575969 | Rittman, III et al. | Jun 2003 | B1 |
6582451 | Marucci et al. | Jun 2003 | B1 |
6589200 | Schwemberger et al. | Jul 2003 | B1 |
6589239 | Khandkar et al. | Jul 2003 | B2 |
6610059 | West, Jr. | Aug 2003 | B1 |
6616450 | Mossle et al. | Sep 2003 | B2 |
6623501 | Heller et al. | Sep 2003 | B2 |
6626926 | Friedman et al. | Sep 2003 | B2 |
6633234 | Wiener et al. | Oct 2003 | B2 |
6656177 | Truckai et al. | Dec 2003 | B2 |
6662127 | Wiener et al. | Dec 2003 | B2 |
6663941 | Brown et al. | Dec 2003 | B2 |
6669690 | Okada et al. | Dec 2003 | B1 |
6676660 | Wampler et al. | Jan 2004 | B2 |
6678621 | Wiener et al. | Jan 2004 | B2 |
6679899 | Wiener et al. | Jan 2004 | B2 |
6682544 | Mastri et al. | Jan 2004 | B2 |
6689146 | Himes | Feb 2004 | B1 |
6716215 | David et al. | Apr 2004 | B1 |
6731047 | Kauf et al. | May 2004 | B2 |
6733506 | McDevitt et al. | May 2004 | B1 |
6762535 | Take et al. | Jul 2004 | B2 |
6770072 | Truckai et al. | Aug 2004 | B1 |
6773443 | Truwit et al. | Aug 2004 | B2 |
6773444 | Messerly | Aug 2004 | B2 |
6783524 | Anderson et al. | Aug 2004 | B2 |
6786382 | Hoffman | Sep 2004 | B1 |
6786383 | Stegelmann | Sep 2004 | B2 |
6790216 | Ishikawa | Sep 2004 | B1 |
6802843 | Truckai et al. | Oct 2004 | B2 |
6827712 | Tovey et al. | Dec 2004 | B2 |
6828712 | Battaglin et al. | Dec 2004 | B2 |
6869439 | White et al. | Mar 2005 | B2 |
6875220 | Du et al. | Apr 2005 | B2 |
6905497 | Truckai et al. | Jun 2005 | B2 |
6908472 | Wiener et al. | Jun 2005 | B2 |
6913579 | Truckai et al. | Jul 2005 | B2 |
6923804 | Eggers et al. | Aug 2005 | B2 |
6926716 | Baker et al. | Aug 2005 | B2 |
6929632 | Nita et al. | Aug 2005 | B2 |
6929644 | Truckai et al. | Aug 2005 | B2 |
6933656 | Matsushita et al. | Aug 2005 | B2 |
D509589 | Wells | Sep 2005 | S |
6942677 | Nita et al. | Sep 2005 | B2 |
6945981 | Donofrio et al. | Sep 2005 | B2 |
D511145 | Donofrio et al. | Nov 2005 | S |
6976844 | Hickok et al. | Dec 2005 | B2 |
6976969 | Messerly | Dec 2005 | B2 |
6977495 | Donofrio | Dec 2005 | B2 |
6984220 | Wuchinich | Jan 2006 | B2 |
7001335 | Adachi et al. | Feb 2006 | B2 |
7011657 | Truckai et al. | Mar 2006 | B2 |
7033357 | Baxter et al. | Apr 2006 | B2 |
7041083 | Chu et al. | May 2006 | B2 |
7041088 | Nawrocki et al. | May 2006 | B2 |
7041102 | Truckai et al. | May 2006 | B2 |
7070597 | Truckai et al. | Jul 2006 | B2 |
7074219 | Levine et al. | Jul 2006 | B2 |
7077039 | Gass et al. | Jul 2006 | B2 |
7077853 | Kramer et al. | Jul 2006 | B2 |
7083619 | Truckai et al. | Aug 2006 | B2 |
7087054 | Truckai et al. | Aug 2006 | B2 |
7090672 | Underwood et al. | Aug 2006 | B2 |
7101378 | Salameh et al. | Sep 2006 | B2 |
7108695 | Witt et al. | Sep 2006 | B2 |
7112201 | Truckai et al. | Sep 2006 | B2 |
7118564 | Ritchie et al. | Oct 2006 | B2 |
7124932 | Isaacson et al. | Oct 2006 | B2 |
7125409 | Truckai et al. | Oct 2006 | B2 |
7135018 | Ryan et al. | Nov 2006 | B2 |
7135030 | Schwemberger et al. | Nov 2006 | B2 |
7144403 | Booth | Dec 2006 | B2 |
7153315 | Miller | Dec 2006 | B2 |
D536093 | Nakajima et al. | Jan 2007 | S |
7156189 | Bar-Cohen et al. | Jan 2007 | B1 |
7156853 | Muratsu | Jan 2007 | B2 |
7157058 | Marhasin et al. | Jan 2007 | B2 |
7159750 | Racenet et al. | Jan 2007 | B2 |
7163548 | Stulen et al. | Jan 2007 | B2 |
7169146 | Truckai et al. | Jan 2007 | B2 |
7179271 | Friedman et al. | Feb 2007 | B2 |
7186253 | Truckai et al. | Mar 2007 | B2 |
7189233 | Truckai et al. | Mar 2007 | B2 |
7204820 | Akahoshi | Apr 2007 | B2 |
7217269 | El-Galley et al. | May 2007 | B2 |
7220951 | Truckai et al. | May 2007 | B2 |
7223229 | Inman et al. | May 2007 | B2 |
7229455 | Sakurai et al. | Jun 2007 | B2 |
7273483 | Wiener et al. | Sep 2007 | B2 |
7285895 | Beaupré | Oct 2007 | B2 |
7309849 | Truckai et al. | Dec 2007 | B2 |
7311709 | Truckai et al. | Dec 2007 | B2 |
7317955 | McGreevy | Jan 2008 | B2 |
7326236 | Andreas et al. | Feb 2008 | B2 |
7331410 | Yong et al. | Feb 2008 | B2 |
7353068 | Tanaka et al. | Apr 2008 | B2 |
7354440 | Truckal et al. | Apr 2008 | B2 |
7380695 | Doll et al. | Jun 2008 | B2 |
7380696 | Shelton, IV et al. | Jun 2008 | B2 |
7381209 | Truckai et al. | Jun 2008 | B2 |
7390317 | Taylor et al. | Jun 2008 | B2 |
7404508 | Smith et al. | Jul 2008 | B2 |
7408288 | Hara | Aug 2008 | B2 |
D576725 | Shumer et al. | Sep 2008 | S |
D578643 | Shumer et al. | Oct 2008 | S |
D578644 | Shumer et al. | Oct 2008 | S |
D578645 | Shumer et al. | Oct 2008 | S |
7431704 | Babaev | Oct 2008 | B2 |
7441684 | Shelton, IV et al. | Oct 2008 | B2 |
7455208 | Wales et al. | Nov 2008 | B2 |
7472815 | Shelton, IV et al. | Jan 2009 | B2 |
7473263 | Johnston et al. | Jan 2009 | B2 |
7479148 | Beaupre | Jan 2009 | B2 |
7479160 | Branch et al. | Jan 2009 | B2 |
7494468 | Rabiner et al. | Feb 2009 | B2 |
7503893 | Kucklick | Mar 2009 | B2 |
7503895 | Rabiner et al. | Mar 2009 | B2 |
7506790 | Shelton, IV | Mar 2009 | B2 |
7506791 | Omaits et al. | Mar 2009 | B2 |
7524320 | Tierney et al. | Apr 2009 | B2 |
7534243 | Chin et al. | May 2009 | B1 |
D594983 | Price et al. | Jun 2009 | S |
7549564 | Boudreaux | Jun 2009 | B2 |
7559450 | Wales et al. | Jul 2009 | B2 |
7567012 | Namikawa | Jul 2009 | B2 |
7578820 | Moore et al. | Aug 2009 | B2 |
7654431 | Hueil et al. | Feb 2010 | B2 |
7665647 | Shelton, IV et al. | Feb 2010 | B2 |
7670334 | Hueil et al. | Mar 2010 | B2 |
7691098 | Wallace et al. | Apr 2010 | B2 |
7713202 | Boukhny et al. | May 2010 | B2 |
7714481 | Sakai | May 2010 | B2 |
D618797 | Price et al. | Jun 2010 | S |
7751115 | Song | Jul 2010 | B2 |
7770774 | Mastri et al. | Aug 2010 | B2 |
7770775 | Shelton, IV et al. | Aug 2010 | B2 |
7780054 | Wales | Aug 2010 | B2 |
7780659 | Okada et al. | Aug 2010 | B2 |
7784662 | Wales et al. | Aug 2010 | B2 |
7798386 | Schall et al. | Sep 2010 | B2 |
7806891 | Nowlin et al. | Oct 2010 | B2 |
7810693 | Broehl et al. | Oct 2010 | B2 |
7824401 | Manzo et al. | Nov 2010 | B2 |
7837699 | Yamada et al. | Nov 2010 | B2 |
7854735 | Houser et al. | Dec 2010 | B2 |
D631155 | Peine et al. | Jan 2011 | S |
7861906 | Doll et al. | Jan 2011 | B2 |
7876030 | Taki et al. | Jan 2011 | B2 |
D631965 | Price et al. | Feb 2011 | S |
7892606 | Thies et al. | Feb 2011 | B2 |
7901423 | Stulen et al. | Mar 2011 | B2 |
7905881 | Masuda et al. | Mar 2011 | B2 |
7922651 | Yamada et al. | Apr 2011 | B2 |
7959050 | Smith et al. | Jun 2011 | B2 |
7959626 | Hong et al. | Jun 2011 | B2 |
7976544 | Mcclurken et al. | Jul 2011 | B2 |
7998157 | Culp et al. | Aug 2011 | B2 |
8038693 | Allen | Oct 2011 | B2 |
8061014 | Smith et al. | Nov 2011 | B2 |
8089197 | Rinner et al. | Jan 2012 | B2 |
8152825 | Madan et al. | Apr 2012 | B2 |
8157145 | Shelton, IV et al. | Apr 2012 | B2 |
8162966 | Connor et al. | Apr 2012 | B2 |
8177800 | Spitz et al. | May 2012 | B2 |
8182502 | Stulen et al. | May 2012 | B2 |
D661801 | Price et al. | Jun 2012 | S |
D661802 | Price et al. | Jun 2012 | S |
D661803 | Price et al. | Jun 2012 | S |
D661804 | Price et al. | Jun 2012 | S |
8253303 | Giordano et al. | Aug 2012 | B2 |
20010025183 | Shahidi | Sep 2001 | A1 |
20010025184 | Messerly | Sep 2001 | A1 |
20010031950 | Ryan | Oct 2001 | A1 |
20010039419 | Francischelli et al. | Nov 2001 | A1 |
20020002377 | Cimino | Jan 2002 | A1 |
20020019649 | Sikora et al. | Feb 2002 | A1 |
20020022836 | Goble et al. | Feb 2002 | A1 |
20020049551 | Friedman et al. | Apr 2002 | A1 |
20020052617 | Anis et al. | May 2002 | A1 |
20020077550 | Rabiner et al. | Jun 2002 | A1 |
20020156493 | Houser et al. | Oct 2002 | A1 |
20030036705 | Hare et al. | Feb 2003 | A1 |
20030055443 | Spotnitz | Mar 2003 | A1 |
20030204199 | Novak et al. | Oct 2003 | A1 |
20030212332 | Fenton et al. | Nov 2003 | A1 |
20030212422 | Fenton et al. | Nov 2003 | A1 |
20030229344 | Dycus et al. | Dec 2003 | A1 |
20040030254 | Babaev | Feb 2004 | A1 |
20040047485 | Sherrit et al. | Mar 2004 | A1 |
20040054364 | Aranyi et al. | Mar 2004 | A1 |
20040092921 | Kadziauskas et al. | May 2004 | A1 |
20040097919 | Wellman et al. | May 2004 | A1 |
20040097996 | Rabiner et al. | May 2004 | A1 |
20040199193 | Hayashi et al. | Oct 2004 | A1 |
20040204728 | Haefner | Oct 2004 | A1 |
20040260300 | Gorensek et al. | Dec 2004 | A1 |
20050021065 | Yamada et al. | Jan 2005 | A1 |
20050033337 | Muir et al. | Feb 2005 | A1 |
20050049546 | Messerly et al. | Mar 2005 | A1 |
20050070800 | Takahashi | Mar 2005 | A1 |
20050096683 | Ellins et al. | May 2005 | A1 |
20050143769 | White et al. | Jun 2005 | A1 |
20050149108 | Cox | Jul 2005 | A1 |
20050165345 | Laufer et al. | Jul 2005 | A1 |
20050177184 | Easley | Aug 2005 | A1 |
20050192610 | Houser et al. | Sep 2005 | A1 |
20050209620 | Du et al. | Sep 2005 | A1 |
20050261581 | Hughes et al. | Nov 2005 | A1 |
20050261588 | Makin et al. | Nov 2005 | A1 |
20050273090 | Nieman et al. | Dec 2005 | A1 |
20050288659 | Kimura et al. | Dec 2005 | A1 |
20060030797 | Zhou et al. | Feb 2006 | A1 |
20060063130 | Hayman et al. | Mar 2006 | A1 |
20060079878 | Houser | Apr 2006 | A1 |
20060084963 | Messerly | Apr 2006 | A1 |
20060095046 | Trieu et al. | May 2006 | A1 |
20060190034 | Nishizawa et al. | Aug 2006 | A1 |
20060200123 | Ryan | Sep 2006 | A1 |
20060206115 | Schomer et al. | Sep 2006 | A1 |
20060211943 | Beaupre | Sep 2006 | A1 |
20060235306 | Cotter et al. | Oct 2006 | A1 |
20060253050 | Yoshimine et al. | Nov 2006 | A1 |
20060264809 | Hansmann et al. | Nov 2006 | A1 |
20070016235 | Tanaka et al. | Jan 2007 | A1 |
20070016236 | Beaupre | Jan 2007 | A1 |
20070055228 | Berg et al. | Mar 2007 | A1 |
20070056596 | Fanney et al. | Mar 2007 | A1 |
20070060915 | Kucklick | Mar 2007 | A1 |
20070060935 | Schwardt et al. | Mar 2007 | A1 |
20070063618 | Bromfield | Mar 2007 | A1 |
20070106317 | Shelton, IV et al. | May 2007 | A1 |
20070129716 | Daw et al. | Jun 2007 | A1 |
20070130771 | Ehlert et al. | Jun 2007 | A1 |
20070131034 | Ehlert et al. | Jun 2007 | A1 |
20070149881 | Rabin | Jun 2007 | A1 |
20070162050 | Sartor | Jul 2007 | A1 |
20070173872 | Neuenfeldt | Jul 2007 | A1 |
20070185380 | Kucklick | Aug 2007 | A1 |
20070219481 | Babaev | Sep 2007 | A1 |
20070239028 | Houser et al. | Oct 2007 | A1 |
20070249941 | Salehi et al. | Oct 2007 | A1 |
20070260234 | McCullagh et al. | Nov 2007 | A1 |
20070265560 | Soltani et al. | Nov 2007 | A1 |
20070275348 | Lemon | Nov 2007 | A1 |
20070282335 | Young et al. | Dec 2007 | A1 |
20070287933 | Phan et al. | Dec 2007 | A1 |
20080009848 | Paraschiv et al. | Jan 2008 | A1 |
20080051812 | Schmitz et al. | Feb 2008 | A1 |
20080058585 | Novak et al. | Mar 2008 | A1 |
20080058775 | Darian et al. | Mar 2008 | A1 |
20080058845 | Shimizu et al. | Mar 2008 | A1 |
20080082039 | Babaev | Apr 2008 | A1 |
20080082098 | Tanaka et al. | Apr 2008 | A1 |
20080171938 | Masuda et al. | Jul 2008 | A1 |
20080172051 | Masuda et al. | Jul 2008 | A1 |
20080177268 | Daum et al. | Jul 2008 | A1 |
20080188878 | Young | Aug 2008 | A1 |
20080200940 | Eichmann et al. | Aug 2008 | A1 |
20080208231 | Ota et al. | Aug 2008 | A1 |
20080234708 | Houser et al. | Sep 2008 | A1 |
20080234709 | Houser | Sep 2008 | A1 |
20080234710 | Neurohr et al. | Sep 2008 | A1 |
20080234711 | Houser et al. | Sep 2008 | A1 |
20080243106 | Coe et al. | Oct 2008 | A1 |
20080245371 | Gruber | Oct 2008 | A1 |
20080249553 | Gruber et al. | Oct 2008 | A1 |
20080262490 | Williams | Oct 2008 | A1 |
20080281200 | Voic et al. | Nov 2008 | A1 |
20080287948 | Newton et al. | Nov 2008 | A1 |
20090030311 | Stulen et al. | Jan 2009 | A1 |
20090030351 | Wiener et al. | Jan 2009 | A1 |
20090030437 | Houser et al. | Jan 2009 | A1 |
20090030438 | Stulen | Jan 2009 | A1 |
20090030439 | Stulen | Jan 2009 | A1 |
20090036911 | Stulen | Feb 2009 | A1 |
20090036912 | Wiener et al. | Feb 2009 | A1 |
20090036913 | Wiener et al. | Feb 2009 | A1 |
20090036914 | Houser | Feb 2009 | A1 |
20090048537 | Lydon et al. | Feb 2009 | A1 |
20090054886 | Yachi et al. | Feb 2009 | A1 |
20090054894 | Yachi | Feb 2009 | A1 |
20090076506 | Baker | Mar 2009 | A1 |
20090082716 | Akahoshi | Mar 2009 | A1 |
20090105750 | Price et al. | Apr 2009 | A1 |
20090118802 | Mioduski et al. | May 2009 | A1 |
20090138006 | Bales et al. | May 2009 | A1 |
20090143795 | Robertson | Jun 2009 | A1 |
20090143797 | Smith et al. | Jun 2009 | A1 |
20090143798 | Smith et al. | Jun 2009 | A1 |
20090143799 | Smith et al. | Jun 2009 | A1 |
20090143800 | Deville et al. | Jun 2009 | A1 |
20090143801 | Deville et al. | Jun 2009 | A1 |
20090143802 | Deville et al. | Jun 2009 | A1 |
20090143803 | Palmer et al. | Jun 2009 | A1 |
20090143804 | Palmer et al. | Jun 2009 | A1 |
20090143805 | Palmer et al. | Jun 2009 | A1 |
20090143806 | Witt et al. | Jun 2009 | A1 |
20090149801 | Crandall et al. | Jun 2009 | A1 |
20090270853 | Yachi et al. | Oct 2009 | A1 |
20090270899 | Carusillo et al. | Oct 2009 | A1 |
20090318945 | Yoshimine et al. | Dec 2009 | A1 |
20090327715 | Smith et al. | Dec 2009 | A1 |
20100004668 | Smith et al. | Jan 2010 | A1 |
20100004669 | Smith et al. | Jan 2010 | A1 |
20100016785 | Takuma | Jan 2010 | A1 |
20100030248 | Palmer et al. | Feb 2010 | A1 |
20100036370 | Mirel et al. | Feb 2010 | A1 |
20100036405 | Giordano et al. | Feb 2010 | A1 |
20100069940 | Miller et al. | Mar 2010 | A1 |
20100158307 | Kubota et al. | Jun 2010 | A1 |
20100179577 | Houser | Jul 2010 | A1 |
20100187283 | Crainich et al. | Jul 2010 | A1 |
20100193567 | Scheib et al. | Aug 2010 | A1 |
20100234906 | Koh | Sep 2010 | A1 |
20100268211 | Manwaring et al. | Oct 2010 | A1 |
20100298743 | Nield et al. | Nov 2010 | A1 |
20100298851 | Nield | Nov 2010 | A1 |
20100331869 | Voegele et al. | Dec 2010 | A1 |
20100331870 | Wan et al. | Dec 2010 | A1 |
20100331871 | Nield et al. | Dec 2010 | A1 |
20100331872 | Houser et al. | Dec 2010 | A1 |
20110009850 | Main et al. | Jan 2011 | A1 |
20110015627 | Dinardo et al. | Jan 2011 | A1 |
20110015631 | Wiener et al. | Jan 2011 | A1 |
20110015660 | Wiener et al. | Jan 2011 | A1 |
20110082486 | Messerly et al. | Apr 2011 | A1 |
20110087212 | Aldridge et al. | Apr 2011 | A1 |
20110087213 | Messerly et al. | Apr 2011 | A1 |
20110087214 | Giordano et al. | Apr 2011 | A1 |
20110087215 | Aldridge et al. | Apr 2011 | A1 |
20110087216 | Aldridge et al. | Apr 2011 | A1 |
20110087217 | Yates et al. | Apr 2011 | A1 |
20110087218 | Boudreaux et al. | Apr 2011 | A1 |
20110087256 | Wiener et al. | Apr 2011 | A1 |
20110196286 | Robertson et al. | Aug 2011 | A1 |
20110196287 | Robertson et al. | Aug 2011 | A1 |
20110196398 | Robertson et al. | Aug 2011 | A1 |
20110196399 | Robertson et al. | Aug 2011 | A1 |
20110196400 | Robertson et al. | Aug 2011 | A1 |
20110196401 | Robertson et al. | Aug 2011 | A1 |
20110196403 | Robertson et al. | Aug 2011 | A1 |
20110196404 | Dietz et al. | Aug 2011 | A1 |
20110196405 | Dietz | Aug 2011 | A1 |
20110288452 | Houser et al. | Nov 2011 | A1 |
20120029546 | Robertson | Feb 2012 | A1 |
20120059289 | Nield et al. | Mar 2012 | A1 |
20120078139 | Aldridge et al. | Mar 2012 | A1 |
20120078247 | Worrell et al. | Mar 2012 | A1 |
20120083783 | Davison et al. | Apr 2012 | A1 |
20120083784 | Davison et al. | Apr 2012 | A1 |
20120132450 | Timm et al. | May 2012 | A1 |
20120138660 | Shelton, IV | Jun 2012 | A1 |
20120177005 | Liang et al. | Jul 2012 | A1 |
20120184946 | Price et al. | Jul 2012 | A1 |
20120199630 | Shelton, IV | Aug 2012 | A1 |
20120199631 | Shelton, IV et al. | Aug 2012 | A1 |
20120199632 | Spivey et al. | Aug 2012 | A1 |
20120199633 | Shelton, IV et al. | Aug 2012 | A1 |
20120203247 | Shelton, IV et al. | Aug 2012 | A1 |
20120203257 | Stulen et al. | Aug 2012 | A1 |
20120205421 | Shelton, IV | Aug 2012 | A1 |
20120210223 | Eppolito | Aug 2012 | A1 |
20120211546 | Shelton, IV | Aug 2012 | A1 |
20120259353 | Houser et al. | Oct 2012 | A1 |
20120265196 | Turner et al. | Oct 2012 | A1 |
20120269676 | Houser et al. | Oct 2012 | A1 |
20120289984 | Houser et al. | Nov 2012 | A1 |
20120310262 | Messerly et al. | Dec 2012 | A1 |
20120310263 | Messerly et al. | Dec 2012 | A1 |
20120310264 | Messerly et al. | Dec 2012 | A1 |
20120323265 | Stulen | Dec 2012 | A1 |
20130012970 | Houser | Jan 2013 | A1 |
Number | Date | Country |
---|---|---|
1634601 | Jul 2005 | CN |
1640365 | Jul 2005 | CN |
1694649 | Nov 2005 | CN |
1922563 | Feb 2007 | CN |
101040799 | Sep 2007 | CN |
0171967 | Feb 1986 | EP |
0443256 | Aug 1991 | EP |
0456470 | Nov 1991 | EP |
0482195 | Apr 1992 | EP |
0482195 | Jan 1996 | EP |
0612570 | Jun 1997 | EP |
0908148 | Jan 2002 | EP |
0908155 | Jun 2003 | EP |
1199044 | Dec 2005 | EP |
1199043 | Mar 2006 | EP |
1433425 | Jun 2006 | EP |
1844720 | Oct 2007 | EP |
1862133 | Dec 2007 | EP |
1199045 | Jun 2008 | EP |
1974771 | Oct 2008 | EP |
1832259 | Jun 2009 | EP |
2074959 | Jul 2009 | EP |
2298154 | Mar 2011 | EP |
2032221 | Apr 1980 | GB |
2379878 | Nov 2004 | GB |
2447767 | Aug 2011 | GB |
62-2292153 | Dec 1987 | JP |
63-315049 | Dec 1988 | JP |
02-71510 | May 1990 | JP |
04-25707 | Feb 1992 | JP |
4-30508 | Mar 1992 | JP |
6-104503 | Apr 1994 | JP |
6-507081 | Aug 1994 | JP |
H 7-508910 | Oct 1995 | JP |
7-308323 | Nov 1995 | JP |
11-253451 | Sep 1999 | JP |
2002-186901 | Jul 2002 | JP |
2003-126110 | May 2003 | JP |
2003-310627 | May 2003 | JP |
2003-339730 | Dec 2003 | JP |
2005027026 | Jan 2005 | JP |
2005-534451 | Nov 2005 | JP |
2006217716 | Aug 2006 | JP |
2008-508065 | Mar 2008 | JP |
2008-119250 | May 2008 | JP |
2009-511206 | Mar 2009 | JP |
WO 9222259 | Dec 1992 | WO |
WO 9314708 | Aug 1993 | WO |
WO 9826739 | Jun 1998 | WO |
WO 9837815 | Sep 1998 | WO |
WO 0154590 | Aug 2001 | WO |
WO 0195810 | Dec 2001 | WO |
WO 2004037095 | May 2004 | WO |
WO 2005122917 | Dec 2005 | WO |
WO 2006012797 | Feb 2006 | WO |
WO 2006042210 | Apr 2006 | WO |
WO 2006058223 | Jun 2006 | WO |
WO 2006063199 | Jun 2006 | WO |
WO 2006083988 | Aug 2006 | WO |
WO 2006129465 | Dec 2006 | WO |
WO 2007008710 | Jan 2007 | WO |
WO 2007047531 | Apr 2007 | WO |
WO 2007143665 | Dec 2007 | WO |
WO 2008016886 | Feb 2008 | WO |
WO 2008042021 | Apr 2008 | WO |
WO 2008130793 | Oct 2008 | WO |
WO 2009018406 | Feb 2009 | WO |
WO 2009027065 | Mar 2009 | WO |
WO 2011144911 | Nov 2011 | WO |
Entry |
---|
U.S. Appl. No. 12/703,860, filed Feb. 11, 2010. |
U.S. Appl. No. 12/703,864, filed Feb. 11, 2010. |
U.S. Appl. No. 12/703,866, filed Feb. 11, 2010. |
U.S. Appl. No. 12/703,870, filed Feb. 11, 2010. |
U.S. Appl. No. 12/703,875, filed Feb. 11, 2010. |
U.S. Appl. No. 12/703,877, filed Feb. 11, 2010. |
U.S. Appl. No. 12/703,885, filed Feb. 11, 2010. |
U.S. Appl. No. 12/703,893, filed Feb. 11, 2010. |
U.S. Appl. No. 12/703,899, filed Feb. 11, 2010. |
Technology Overview, printed from www.harmonicscalpel.com, Internet site, website accessed on Jun. 13, 2007, (3 pages). |
Sherrit et al., “Novel Horn Designs for Ultrasonic/Sonic Cleaning Welding, Soldering, Cutting and Drilling,” Proc. SPIE Smart Structures Conference, vol. 4701, Paper No. 34, San Diego, CA, pp. 353-360, Mar. 2002. |
AST Products, Inc., “Principles of Video Contact Angle Analysis,” 20 pages, (2006). |
Lim et al., “A Review of Mechanism Used in Laparoscopic Surgical Instruments,” Mechanism and Machine Theory, vol. 38, pp. 1133-1147, (2003). |
Gooch et al., “Recommended Infection-Control Practices for Dentistry, 1993,” Published: May 28, 1993; [retrieved on Aug. 23, 2008]. Retrieved from the internet: URL: http//wonder.cdc.gov/wonder/prevguid/p0000191/p0000191.asp (15 pages). |
Huston et al., “Magnetic and Magnetostrictive Properties of Cube Textured Nickel for Magnetostrictive Transducer Applications,” IEEE Transactions on Magnetics, vol. 9(4), pp. 636-640 (Dec. 1973). |
U.S. Appl. No. 12/896,351, filed Oct. 1, 2010. |
U.S. Appl. No. 12/896,479, filed Oct. 1, 2010. |
U.S. Appl. No. 12/896,360, filed Oct. 1, 2010. |
U.S. Appl. No. 12/896,345, filed Oct. 1, 2010. |
U.S. Appl. No. 12/896,384, filed Oct. 1, 2010. |
U.S. Appl. No. 12/896,467, filed Oct. 1, 2010. |
U.S. Appl. No. 12/896,451, filed Oct. 1, 2010. |
U.S. Appl. No. 12/896,470, filed Oct. 1, 2010. |
U.S. Appl. No. 12/896,411, filed Oct. 1, 2010. |
U.S. Appl. No. 12/896,420, filed Oct. 1, 2010. |
International Search Report for PCT/US2011/024205, Apr. 27, 2011 included in PCT Publication No. WO 2011/100335 A1 (44 pages). |
Incropera et al., Fundamentals of Heat and Mass Transfer, Wiley, New York (1990). (Book—not attached). |
F. A. Duck, “Optical Properties of Tissue Including Ultraviolet and Infrared Radiation,” pp. 43-71 in Physical Properties of Tissue (1990). |
Orr et al., “Overview of Bioheat Transfer,” pp. 367-384 in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gernert, eds., Plenum, New York (1995). |
Campbell et al, “Thermal Imaging in Surgery,” p. 19-3, in Medical Infrared Imaging, N. A. Diakides and J. D. Bronzino, Eds. (2008). |
U.S. Appl. No. 29/404,676, filed Oct. 24, 2011. |
U.S. Appl. No. 13/448,175, filed Apr. 16, 2012. |
U.S. Appl. No. 13/151,181, filed Jun. 2, 2011. |
U.S. Appl. No. 13/369,561, filed Feb. 9, 2012. |
U.S. Appl. No. 13/369,569, filed Feb. 9, 2012. |
U.S. Appl. No. 13/369,578, filed Feb. 9, 2012. |
U.S. Appl. No. 13/369,584, filed Feb. 9, 2012. |
U.S. Appl. No. 13/369,588, filed Feb. 9, 2012. |
U.S. Appl. No. 13/369,594, filed Feb. 9, 2012. |
U.S. Appl. No. 13/369,601, filed Feb. 9, 2012. |
U.S. Appl. No. 13/369,609, filed Feb. 9, 2012. |
U.S. Appl. No. 13/369,629, filed Feb. 9, 2012. |
U.S. Appl. No. 13/369,666, filed Feb. 9, 2012. |
U.S. Appl. No. 13/545,292, filed Jul. 10, 2012. |
U.S. Appl. No. 13/584,020, filed Aug. 13, 2012. |
U.S. Appl. No. 13/584,445, filed Aug. 13, 2012. |
U.S. Appl. No. 13/584,878, filed Aug. 14, 2012. |
U.S. Appl. No. 13/585,124, filed Aug. 14, 2012. |
U.S. Appl. No. 13/585,292, filed Aug. 14, 2012. |
International Preliminary Report on Patentability for PCT/US2011/024205, Aug. 14, 2012 (6 pages). |
Number | Date | Country | |
---|---|---|---|
20110196402 A1 | Aug 2011 | US |