The invention relates to a dual reflector offset antenna for telecommunications, direct TV broadcasting and broadband multimedia applications. It is located in an outdoor unit, in turn located on a vehicle in motion. The reduced dimensions of said antenna, deriving from a suitable choice of the optical system, facilitate its use in all situations of satellite and terrestrial connections from vehicles in motion, such as trains, aircrafts, watercrafts, motor vehicles, etc. Moreover, the invention is useful in a military context, just as it is capable of transmitting and receiving even under critical conditions of connecting (linking) with the satellite and/or base stations.
The invention lies within the technical field of electronics, and accordingly of telecommunications, in particular the applicative field of movable system antennas of reduced dimensions, and accordingly within that of telecommunications in general.
The invention, in its best application, is part of an outdoor unit, along with a front end, a platform stabilized by a tracking device, a mechanical device for realigning the polarization, which may even be implemented electronically, and a DC converter.
The antenna is connected to an indoor unit for modulation and control, providing outputs for the users.
Users can link to the indoor unit by means of connection types widely used and present on the market, like e.g. LAN networks, WiFi or Bluetooth connections, etc. The antenna feed and optical system were contrived so as to ensure operation over the entire operating band, concomitantly maintaining a high pointing stability on the same band. The optics uses a corrugated horn as primary feed.
In addition to the reduced dimensions of the antenna, the solution disclosed herein allows, with ease and modularity, an increase in performances proportionally to the increase of the height dimensions. When dimensional requirements allow it, antenna performances can be improved, maintaining the utmost effectiveness between dimensions, above all the vertical one, and antenna yield.
In the solution advanced herein the sole mechanical parts in motion are the platform, the main reflector and optionally the subreflector and the mechanical device for realigning the polarization.
The configuration of the two reflecting surfaces, respectively denominated ‘main reflector’ (‘Main’) and ‘subreflector’ (‘Sub’), allows a high angular scanning, in elevation, of the antenna beam under operating conditions. The two surfaces of said antenna configuration can be represented by a second-order polynomial, currently preferred by the Inventors, reported by the following mathematical expression:
A
xx
x
2
+A
xy
xy+A
yy
y
2
+A
x
x+A
y
y+A
c
=A
zz
z
2
+A
z
z+A
xz
xz+A
yz
yz (1)
The polynomial at issue describes a surface in the space referred to a Cartesian coordinate system XYZ.
The main reflector surface, described by the preceding mathematical equation (1), utilizes coefficients reported herein:
From the two-dimensional profile defined hereto further surface optimizations can be effected, with the aim of minimizing gain losses in beam scanning, in elevation, and of improving side lobe control.
The subreflector surface, it also described by the preceding mathematical equation (1), utilizes coefficients reported herein:
The subreflector profile is a double-curvature one, so as to attain the utmost feeding efficiency of the main reflector, in compliance with the limits of the available dimensions.
From the two-dimensional contour defined hereto further numerical surface optimizations can be effected, with the aim of minimizing gain losses in beam scanning, in elevation, and of improving side lobe control.
The above-mentioned data are reported in order to facilitate an understanding of the invention and its originality.
Control of the interfering power transmitted to the receiving units is carried out by keeping the side lobes very low in the radiation diagram. Moreover, the antenna system is optimized to reduce overall losses due to antenna beam scanning in elevation and to the presence of the antenna-protecting cover formed by the radome. A relevant aspect of the invention is represented by the moving of the mechanical device for realigning the polarization. One of the alternatives envisaged for said realigning is represented by the rotation of the feed, by means of a motor and related gears and/or driving belts, so as to realign the electromagnetic signal polarization, subject to variations due to the geographical location and to the roll and pitch motions of the vehicle in motion.
The invention will hereinafter be described, by way of illustration and not for limitative purposes, making reference to the annexed figures.
FIG. 1—Schematic depiction of the antenna;
FIG. 2—Schematic depiction of the elements contained in the outdoor unit;
FIG. 3—Schematic depiction of the motion-prone antenna parts;
FIG. 4—Schematic depiction of the rotation of the antenna main reflector;
FIG. 5—Schematic depiction of the rotation of the antenna subreflector.
Referring to
The main functions of the indoor unit are reported hereinafter:
In
The surface of the subreflector 2 was designed to optimize the feeding of the main reflector 1 on both the main planes of the antenna. The feed 3 is mounted on a mechanical support 5, provided with ball bearings, (not shown in figure) that, by a rotation motor 4, allows to realign the polarization required on any vehicle prone to roll and pitch motions. Moreover, in
The original arrangement of the elements, shown in
Another relevant aspect is that related to the pointing of the antenna beam in the elevation plane. This antenna configuration ensures a nominal pointing of the beam, in the elevation plane, from which an angular scanning of over 30 degrees can be effected. The angular value of the nominal elevation pointing can be selected with extreme flexibility in order to best meet the pointing requirements deriving from the type of connection requested and the geographic position of the receiving-transmitting system, especially in satellite telecommunication connections.
Unlike other solutions, in which for the pointing of the beam in elevation the whole antenna has to be moved, this configuration allows lesser mechanical stresses, simplification in the construction, lesser physical limitations and it avoids limitations in the wiring and electrical connection of the parts in motion.
Moreover, the antenna offers the option of recovering the misalignment of the polarization of the satellite-transmitted signal, with respect to that of the antenna-received signal, by a mere mechanical rotation of the entire feed or by rotation of a polarizer.
Number | Date | Country | Kind |
---|---|---|---|
RM2006A000418 | Aug 2006 | IT | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2007/053034 | 8/1/2007 | WO | 00 | 1/29/2009 |