This application claims priority from German Patent Application No. DE 10 2011 081 376.4 filed on Aug. 23, 2011. The disclosure of the above-referenced patent application is incorporated herein in its entirety by reference.
The invention relates to fiber-optic collimators, and, in particular, to fiber-optic collimator configured for use in optical rotary joints and a method for producing fiber collimators.
Optical rotary joints for the simultaneous transmission of several channels usually use a derotating optical element such as, for example, the one including a Dove prism. U.S. Pat. No. 5,371,814 discloses an example of such rotary joint. Here, GRIN lenses are used to collimate the light from glass fibers. The lenses must be individually adjusted. An improvement can be achieved by combining a plurality of fibers with a common fiber holder to form a fiber array. Such a fiber array is disclosed, for example in US 2004/0165854 A1. The fibers are shown to be aligned in V grooves and fixed with a retaining plate. A Dove prism, which has a circular imaging area, cannot be effectively used with a linear fiber arrangement according to this document. An improvement, disclosed in U.S. Pat. No. 6,704,483 B2, is based on a plurality of one-dimensional fiber arrays that are held with respect to one another by a precise but structurally complex holder with means for alignment of the individual fiber arrays.
Embodiments of the present invention are directed to a two-dimensional (2D) fiber array configured for use in fiber-optic (FO) collimators and, in particular, in FO-collimators for optical rotary joints in such a manner as to ensure technologically simple, cost-efficient, and high precision operational structure. Further embodiments relate to optical rotary joints comprising a two-dimensional fiber array and a method for producing fiber collimators.
In an embodiment, a fiber array has two rows of fibers that are disposed in mutually offset planes. The fiber array is further based or positioned on a substrate that can be manufactured without changing the clamping (or, without reclamping), thereby ensuring a very high precision assembly. To this end, the substrate has V grooves for receiving first light-guiding fibers in a first plane. Located between the V grooves of the first plane are recesses having further V grooves in a second plane for receiving second light-guiding fibers. The first plane and the second plane are spaced, with respect to one another, in a predefined fashion. Consequently, the light-guiding fibers associated with the first plane are spaced apart from the light-guiding fibers associated with the second plane. The V grooves corresponding to either the first or the second plane can be produced without changing clamping or re-clamping of the substrate. As a result, positional tolerances of individual V grooves with respect to one another are advantageously ensured to be extremely tight. Covers are provided for fixing the light-guiding fibers in the V grooves. Preferably a first cover covers the light-guiding fibers of the first plane whilst a second cover (which may comprise a plurality of preferably strip-shaped segments) covers the light-guiding fibers of the second plane. Alternatively, there may be a plurality of strip-shaped covers. These covers can themselves be held by a finger-shaped holder.
In a further embodiment, the fiber array includes a first substrate and a second substrate, which are connected and/or attached to one another along corresponding substantially flat surfaces. Here, the fibers associated with the first plane are disposed on the upper side of the first substrate and the fibers associated with the second plane are disposed on the upper side of the second substrate. The fixing of the fibers in the corresponding V grooves is accomplished in a fashion similar to that described above.
A fiber-optic collimator contains at least one of the fiber arrays.
Furthermore, an optical rotary joint includes at least one collimator and/or at least one of the fiber arrays.
The embodiments are not limited to those including a dual-row arrangement of optical fibers. Generally, an embodiment of the invention may include any other number of such rows.
The term fibers as used in this document refers, generally, to light-guiding fibers, such as single-mode or multi-mode optical fibers, which may be made, for example, of glass or plastic.
In the following, the invention will be described by way of examples of embodiments, without limitation of a general inventive concept, and with reference to the drawings among which:
While the invention allows for various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the present invention as defined by the appended claims.
It will be appreciated to those skilled in the art having the benefit of this disclosure that this invention is believed to provide optical rotary joints and micro-optical systems, such as collimators, used for multi-channel transmission of optical signals. Further modifications and alternative embodiments of various aspects of the invention will be apparent to those skilled in the art in view of this description. Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the general manner of carrying out the invention. It is to be understood that the forms of the invention shown and described herein are to be taken as the presently preferred embodiments. Elements and materials may be substituted for those illustrated and described herein, parts and processes may be reversed, and certain features of the invention may be utilized independently, all as would be apparent to one skilled in the art after having the benefit of this description of the invention. Changes may be made in the elements described herein without departing from the spirit and scope of the invention as described in the following claims.
Number | Date | Country | Kind |
---|---|---|---|
102011081376.4 | Aug 2011 | DE | national |