Not Applicable
The invention relates to a heat exchanger for efficient transfer of heat between a thin film of primary fluid and a secondary fluid or vapour, and to a method of heating or cooling of liquids, especially those with high viscosity, which have a tendency to solidify on the heat-transmitting surface, and where scraping of said surface is essential for an optimum heat transfer.
Flowing of highly viscous liquids tends to be laminar, which means that most of the heat transferred to the fluid from a heat-transmitting surface will be conductive. Agitation can more or less alter the laminar flow to turbulent flow and thereby increase the convectional heat transmission. In very viscous liquids, it is very hard to create much of a turbulent flow within the confines of the heat exchanger, and thus most of the heat transfer will be conductive. In these cases it is essential that the layer of liquid be heated is as thin as possible.
To increase the heating area, some heat exchangers are built with double walls, such that the liquid flows between two heat-transferring walls. This obviously increases the efficiency of the heat exchanger.
Some liquids tend to solidify on the heating surface, thus retarding the conductive heat process by building an insulating layer of product on the heat-conducting wall. This obviously reduces the efficiency of the heat exchanger.
Installing means to scrape the heat conductive surface often solves this problem. The scraped heat exchangers which are described in the patent literature can de divided into three basic categories: (1) those with single or dual scraped surfaces; (2) those with rotating or linear scraper movement; and (3) those with product propelled or foreign propelled scrapers.
A scraped heat exchanger much similar to the one here described is disclosed by R. L. Smith in U.S. Pat. No. 3,430,928, where the scrapers are imbedded into a rotating inner shaft. The main differences are that the machine here described has the facility for scraping both surfaces, and the force applied to the scraper to enhance the scraping action comes from axial forces applied from the outside rather than the centrifugal forces applied to the scrapers in the cited patent.
Douglas W. P. Smith in his U.S. Pat. No. 5,228,503 describes a dual scraped surface heat exchanger where a helically-formed auger on which scrapers are mounted is located in the annulus between two stationary cylinders. As the viscous liquid is pumped into the annulus the flow will affect the helical auger and it will start rotating. The rotating helical auger has two purposes 1) to create a turbulent flow; and 2) to scrape the two surfaces by means of scrapers affixed to the helical auger.
U.S. Pat. No. 4,126,177 to Robert L. Smith describes a similar machine with an external power source to drive the helical auger. The disadvantage of both the inventions is that the annular space required for the auger and scrapers limits possibility for thin film fluid processing. This is particularly a problem with highly viscous products, such as licorice, which tends to behave as in laminar flow if not forcibly agitated. Thus to agitate such product will require a very rigid, and consequently a space consuming, agitator. With such liquids it is sometimes an advantage to maintain the laminar flow in a thin film while keeping the dual heat transmitting surfaces scraped. In such a system the proximity of the surfaces is essential to the transfer of heat by conductivity. In none of the cited inventions is this possible.
In the present invention, the exchanger has an annular passage formed between an inner body and an outer body. The primary fluid passes through the annular passage and the secondary fluid passes through both the inside of the inner body and the outside casing of the outer body. The inner body, being capable of partial movement, has one or more equally spaced longitudinal grooves in which are installed scraper blades. The outer body has on its inner surface also the same equally spaced groves with similar scraper blades installed. Both bodies can be matching, coaxial frustums, spheres or wedges and the distance that the scraper blade protrudes from the groove is equal to the annular thickness or film thickness desired. By rotating or sliding the inner body or outer body back and forth covering the distance between the scrapers, the entire areas on both the inner and outer surfaces are scraped. Pressure exerted perpendicular to the scraping action will increase the scraping effect. The invention allows a thin film of liquid to be heated or cooled between two scraped surfaces by conductivity, which at the same time only requires a relatively small volume of liquid inside the heat exchanger, resulting in a reduced loss of product compared to other heat exchangers.
By allowing only a thin film of liquid to be treated at one time, the invention increases the efficiency of conductive heat transfer. Also, by use of the thin film to minimize the annulus volume, the amount of product trapped and lost at the end of each process cycle is minimized.
Another important problem with the cited and many other heat exchangers is their relatively large internal volume, which during the end of each cycle will contain much valuable product, which in most cases is lost in the subsequent cleaning operation. The object of the invention is to efficiently heat or cool a viscous liquid in laminar flow and to do this even when the liquid solidifies on the heat conductive surfaces.
According to the invention this is achieved by forcing the liquid into the annulus of two geometrically matching bodies; for clarity the description here will be two cylinders, where one of the cylinders is stationary and the other cylinder can rotate around its longitudinal axis. Both cylinders have means of heating or cooling their respective walls forming the annulus. To facilitate dual scraping of the surfaces, each wall has one or more evenly spaced grooves or slots, which extend along the entire length of the cylinder, and in each of which there is inserted a strip of scraping material. Said scraper penetrates into the annulus and touches the opposing wall. Since each scraper is imbedded in the wall by means of a groove, there is no requirement for external fixtures that occupy space in the annulus; thus the distance between the two cylinders can be very small and approach zero. To prevent the scrapers on the inner and outer walls from colliding when one of the cylinders is turning, the turning cylinder only rotates in an angle less than the equivalent of the angular division of the evenly spread scrapers. In other words, if there are 4 scrapers on each cylinder, then the cylinder reciprocates less than 90°
To facilitate the exertion of a variable force on the scrapers, and at the same time to compensate for wear of the scrapers, a pair of matching frustum bodies, where the bodies can be forced together by an axial force coming from outside, can replace the cylindrical bodies. This also allows for easy changing of scraper thickness to accommodate the film thickness required for various products.
A practical example of the invention is shown in
The angular movement of the inner body 1 is also transferred through the same shaft 6 from an outside lever or crankshaft 9. The liquid to be processed enters the exchanger at 10 and exits at 11. The secondary liquid or gas enters the inner and outer bodies at 12 and 13, and exits at 14 and 15. An outside axial force can be applied at 12 or 14 to increase or decrease the surface pressure of the scrapers.
The matching bodies can also be spherical or shaped as wedges moving back and forth.
In a further refinement shown in
Radially-mounted scrapers following the same concept as above may be employed to dually scrape the radial surfaces of the inner bodies. This concept, however, introduces more complicated structures. A more simple way to avoid product build-up on the radial surfaces is to keep them relatively tempered by isolating them from the heating and cooling medium.
Another version of the heat exchanger has multiple strands of narrow scrapers which only require a very small angular movement to scrape the surface. The angular movement can then be done at a frequency approaching the ultrasonic spectrum. This will have the added advantage of aiding the flow of extremely viscous fluids through the exchanger by introducing a pumping action.
Number | Date | Country | Kind |
---|---|---|---|
PA 2003 00292 | Feb 2003 | DK | national |
This application is a national stage filing, under 35 U.S.C. §371, of International Application No. PCT/DK2004/000089, filed 9 Feb. 2004, the disclosure of which is incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DK04/00089 | 2/9/2004 | WO | 8/17/2005 |