The invention relates to improvements in vibrating screen systems for the separation of solids and fluids and particularly for the separation of drill cuttings from drilling fluid. In various embodiments, dual screen systems for retro-fit attachment to existing single-deck vibratory shakers are described.
Screening machines have been used in various industries including the mining and oil industries for many years to enhance the separation of solids and liquids. Within these industries, drilling and mineral extraction processes often produce slurries of solids and liquids that must be separated from one another. As is well known, a screening machine typically includes a screen bed over which a solution containing fluids and solids is passed and then subjected to various separation forces including gravity and shaking. Each screen separation apparatus will utilize different types and sizes of screens to enable separation of different fluids/solids. In addition, the use of vacuum systems to improve separation within screening systems has also been implemented including the use of pulsed vacuum pressure as described in the inventor's co-pending and issued patent applications.
Depending on the industry, the fluid/solid solutions being screened and the commercial objectives of the screening systems, different designs of screening machines exist. In different machines, certain functions have been incorporated into each machine for use within a specific industry or with specific solid/liquid solutions. The nuances of each general type of solid/liquid solution and each machine generally means that one type of machine will not be operative or effective within a different industry as, in many cases, unique problems exist in the handling of specific types of materials or solutions. For example, many screening machine designs have been designed to optimize recovery of the solid materials from within a slurry; however, this format tends to ignore the quality of the recovered fluid. As such, it has generally not been considered how to effect separation of solids and liquids while maintaining or improving the quality of the fluid being recovered.
In the specific case of separating drilling fluid from drill cuttings at a well site, vacuum systems for the separation of drilling fluid from drill cuttings have been effectively deployed in the field in recent years by the applicant. As described in the inventor's co-pending applications and incorporated herein by reference (PCT/CA2009/001555 filed Oct. 29, 2009, PCT/CA2010/00501 filed Mar. 31, 2010, and PCT/CA2011/000542 filed May 11, 2011) the use of a vacuum force on a shaker system, when applied correctly, can be highly effective in reducing drilling fluid retained on cuttings for increasing the quantity of recovered drilling fluid, while also minimizing damage to drill cuttings which can result in contamination of the drilling fluid with fine solid materials that can pass through the screens for increasing the quality of recovered drilling fluid.
Furthermore, the efficiency of shaker systems is important to minimize the costs of solids control processing at a well. For example, at most drilling rigs, multiple shaker systems are installed to simultaneously process drill cuttings from the rig. As is common practice, typically two or more shakers (often 3 or more and potentially up to 9 shakers) are configured to the drilling rig adjacent the blowout preventer (BOP). As drilling fluids and drill cuttings exit the well head, they are conveyed to the shakers via conduits to the possum belly of each the shakers. The conveyed cuttings and drilling fluids are generally split into separate flow streams at the well head in order that a relatively consistent amount of cuttings/fluid is delivered to each shaker.
As can be appreciated, the total number of shakers that may be utilized at a drill site will significantly influence the total costs of the solids handling program. That is, to the extent that fewer shakers are required, the costs of solids handling can be reduced.
In addition, in a typical scenario, shaker systems may be configured in series to one another wherein an upstream shaker may utilize a coarse screen and a downstream shaker may utilize a finer screen. As is understood, the coarse screen will enable relatively finer solids and drilling fluid to pass through the screen and a finer screen will allow drilling fluid to pass through the screen while retaining the finer solids on the upper surface of the screen.
Generally, a balance must be maintained between the pore size of the screen and the desired processing rate. For example, in order to maintain an effective flow rate over a shaker, a combination of coarse and fine screens is usually used such that sufficient volumes of fluid are recovered within a particular time period. That is, if too fine of a screen is used, the time required to process a volume of drill cuttings and drill fluid becomes inefficient, and/or separation of drill cuttings and drill fluid may be prevented due to screen clogging and/or blinding. However, if too coarse a screen is used, the fluid/solids separation becomes inefficient in that the quality of recovered drilling fluid is reduced by solid contaminants.
In the past, various screens and shaker systems have been designed to improve the separation efficiencies including 3-dimensional screen designs and shaker systems. For example, U.S. Pat. No. 6,032,806 describes a “pyramid” style shaker screen in which a three-dimensional screen is used to increase the surface area of the screen. In other systems, shaker systems have been designed to include separate decks for separating solids at different vertical positions within a shaker. However, these past systems remain inefficient in a number of aspects. For example, double deck shakers are more expensive to build in that separate deck and attachment systems, such as clamps, wedges or hooks, are required for each level of deck. In addition, these systems are often significantly taller than a conventional single level shaker.
There are several different attachment systems that are commonly used to secure a screen system to a shaker, specifically within the shaker basket. One such attachment system is a wedge system. The wedge system typically comprises compressing wedges that are located on the sides of the shaker basket, each wedge being driven into a guide located above the position where the screen is located to secure the screen in place in the basket. A compressing wedge is typically about 1 inch wide and 12-18 inches long, and two wedges are typically used per screen.
An alternative attachment system is a plate clamping system, which generally comprises plates or rails located on the sides of the shaker basket that are squeezed together using air or hydraulic pressure to clamp the edge of the screen between the plates/rails. The plates or rails are typically about 1 to 1½″ wide.
A third type of attachment system is a hook screen system that pulls the edges of the screen toward the sides of the shaker basket to apply tension to the screen. This is generally done by using a lever that can attach to the side of the screen with a hook. A force is applied to the lever, pulling the lever through a hole located in the side of the shaker basket, thereby pulling the screen outwards to apply tension to the screen. Typically the force applied to the lever is a spring force, however in some designs the spring is replaced with a bolt and screw arrangement which is adjusted to a predetermined torque, or with an air or hydraulic piston assembly. With the hook screen attachment system, the screen may be pulled over a flat surface or a curved surface, such as a convex surface. Pyramidal style shaker screens are often attached to shakers using a hook screen attachment. An example of a hook screen attachment system is described in U.S. Pat. No. 6,179,128.
A problem with prior art shakers is the effect of both large and small particles on a screen. That is, larger particles have the tendency to impact a screen with greater force due to the momentum of the particle. Fine screens, with narrower and less strong wires may be degraded more rapidly as a result of impact with larger particles. Thus, a layered screen system with a coarser upper screen and a finer lower screen has the advantage of protecting the lower screen from larger and potentially damaging particles as these particles will be carried on the upper screen and will not transit through the coarse screen to impact the fine screen below.
Another issue is that it is important to ensure that a layered screen system won't be compromised by the flow of drill cuttings and drilling fluid over the shaker such that the performance of the screens/shaker is affected. In particular, it is important that the gap between a lower screen and upper screen does not become clogged if the flow of drilling fluid/drill cuttings through the gap becomes high due to the volume of material in the shaker.
As a result, there continues to be a need for systems that improve the effectiveness of shaker systems to enable the sequential separation of coarser and fine solids. In addition, there is also a need for systems that can be retrofit to existing shaker systems, including existing shaker system attachment systems, to effectively turn single deck systems into double-deck screening systems.
In accordance with the invention, there is provided a dual screen system for retrofit connection to a vibratory shaker.
In one embodiment of the invention, the dual screen system comprises an upper screen assembly in operative connection with a lower screen assembly defining a channel between the upper screen and lower screen assemblies, each screen assembly having a frame and a screen mesh attached to the frame and wherein the upper screen assembly has a coarser screen mesh than the lower screen and the dual screen system is adapted for operative connection to the vibratory shaker.
In a further embodiment, the upper screen assembly is detachable from the lower screen assembly. The upper screen frame may include a plurality of leg members for attaching to a plurality of corresponding leg members on the lower screen frame, and the plurality of leg members on the upper and lower screen frames may snap together.
In another embodiment, the dual screen system further comprises a separate connector assembly located between the upper and lower screen assemblies for connecting the upper screen frame to the lower screen assembly frame, the connector assembly defining the channel. In one embodiment, the connector assembly comprises a frame supported by a plurality of legs, the frame for operative connection to the upper and lower screen frames. The connector assembly may further comprise a first plurality of pins protruding from the top of the frame for insertion into holes in the bottom of the upper screen frame; and a second plurality of pins protruding from the bottom of the legs for insertion into holes in the top of the bottom screen frame.
In yet another embodiment, the connector assembly comprises a plurality of bars running parallel with the upper and lower screen assembly frames. The plurality of bars may have a first plurality of pins protruding from the top of the bars for insertion into holes in the bottom of the upper screen frame; and a second plurality of pins protruding from the bottom of the bars for insertion into holes in the top of the bottom screen frame. In another embodiment, to ensure that the upper and lower screen assemblies do not slide, rubber gaskets and/or high pressure clamping systems may be used.
In one embodiment, the side edges of the upper screen frame are inset with respect to the side edges of the lower screen frame. In a further embodiment, the upper screen frame includes a lip that extends over one end of the dual screen system for directing flow over the end of the dual screen assembly.
In another embodiment, the upper and/or lower screen frames are wedge-shaped. The channel defined by the wedge-shaped frames may have a substantially constant height.
In a further embodiment, a plurality of dual screen systems are positioned in a vibratory shaker to define a continuous flow path through the channels of the plurality of dual screen systems from an upstream end to a downstream end. The plurality of dual screen systems may be positioned in a stepped-manner in the vibratory shaker, with the upstream end of the upper screen assemblies inset with respect to the upstream end of the lower screen assemblies for enlarging the flow path between adjacent lower screen assemblies.
In one embodiment, where the upper and/or lower screen frames are wedge-shaped, they may be positioned in a stepped-manner in the vibratory shaker to define a continuous flow path through the channels. The continuous flow path may be a cascading flow path.
In yet another embodiment, the upper screen mesh has a mesh size of 325 mesh or less and the lower screen mesh has a mesh size of greater than 30 mesh.
In a further embodiment, the channel has a height of 3 inches or less, and preferably 2 inches or less.
In one embodiment, the dual screen system is for retrofit connection to a shaker having a pre-existing flat screen bed, wherein the plurality of dual screen systems have height dimensions to create a cascading effect between dual screen systems.
In another embodiment of the invention, the dual screen system is configured to be secured in a shaker bed of the vibratory shaker using an existing wedge clamping attachment system in the shaker bed. The dual screen system may include an attachment arm at each side, the attachment arms for clamping with the wedges of the wedge clamping system. The dual screen system may be dimensioned such that the existing wedges of the wedge clamping attachment system can be used to secure the dual screen system in the shaker bed without modifying the wedge clamping system. The width of at least one of the upper or lower screen assemblies is narrower than the attachment arms.
In one embodiment of the invention, the dual screen system is configured to be secured in a shaker bed of the vibratory shaker using an existing hydraulic or air pressure clamping attachment system in the shaker bed.
In another embodiment, the dual screen system is configured to be secured in a shaker bed of the vibratory shaker using an existing hook attachment system in the shaker bed. The hook attachment system may be modified to include an upper and lower hook, and the upper and lower screen assemblies each include a corresponding hook for attachment to the upper and lower hook, respectively. The upper and lower screen assemblies may be tensioned using one tensioning attachment device.
In a further embodiment, the upper and lower screens are pyramidal screens.
In another aspect, the invention provides a dual screen system for retro-fit connection to a shaker supporting at least two stepped screens on corresponding support brackets within a shaker basket, the dual screen system comprising: a lower screen support having dimensions to fit between and lower than the support brackets, the lower screen support for supporting a first lower screen; an upper screen support operatively connected to the lower screen support, the upper screen support having dimensions to fit over the support brackets, the upper screen support for supporting a first upper screen; wherein the lower screen support and upper screen support define a dual screen support pair and wherein the dual screen system includes a dual screen support pair for each step within the shaker.
In one embodiment, adjacent dual screen support pairs are attached together.
In another embodiment, screen surfaces are affixed to each of the lower screen support and upper screen support for each dual screen support pair.
In one embodiment, each screen surface includes a downstream lip having dimensions to overlap an upstream edge of an adjacent downstream screen.
In one embodiment, a coarse screen is attached to each upper screen support and a fine screen is attached to each lower screen support.
The invention is described with reference to the accompanying figures in which:
With reference to the figures, a dual screen system 10 for attachment to an existing vibratory shaker is described.
Referring to
The channel 16 between the upper and lower screen is of sufficient height to accommodate the flow of drill cuttings through the upper screen and across the lower screen, but also kept to a minimum in order to create a dual screen system having low clearance in order to fit into an existing shaker designed to accommodate a single screen. In one embodiment, the channel 16 is approximately ½ to 2″ in height. However, this can be greater if the manner in which the system is attached does not interfere with existing screen clamping systems.
Each screen assembly generally has a frame 12a, 14a having cross members 12b, 14b, and a screen mesh 12c, 14c that is supported on top the frame and cross members.
The upper and lower screen assemblies may be made of a single structure or be two separate screen assemblies that operatively connect to one another. In one embodiment, shown in
To keep the upper and lower screen assemblies from sliding apart when they are composed of two pieces, a piece of rubber may be placed between the upper and lower screen assemblies, which in combination with pressure from the attachment system (e.g. a wedge or clamping attachment system), keeps the upper and lower screen in the proper orientation with respect to each other.
Other methods for connecting the upper and lower screen may be used as would be known to one skilled in the art, including bolting, welding, riveting, or gluing.
The dual screen system 10 can be adapted to operate on existing shakers without any substantive modifications needed to the shaker. Certain shakers may require no modification, while other shakers may require repositioning the attachment system, such as the wedge guides, hydraulic equipment or hooks that fix the screen system in place in the shaker basket, and/or the addition of a blocking plate at the inbound end of the shaker to accommodate a taller screen system, as discussed below.
In accordance with the invention, the prior art shaker 20 is retrofit with a number of dual screen systems 10, each screen system having an intake end 10a and a discharge end 10b and connected to the shaker beds 24 with the wedge guides 26. In this embodiment, each upper screen assembly 12 includes a lip 18 at the discharge end to direct the flow of drill cuttings and drilling fluid from the discharge end onto a top surface 12f of the intake end of an adjacent upper screen assembly. The lip prevents the drill cuttings and drilling fluid from flowing into a gap 28 between the dual screen systems, or into the channel 16 between the upper screen assembly 12 and lower screen assembly 14.
If when the dual screen system 10 is installed in the existing shaker and the top surface 12f of a first upper screen 12g is located above the existing contact plate 39, a blocking plate 38 or similar apparatus is retrofit above the contact plate into the first screen assembly to prevent this in order to direct the flow of cuttings onto the upper screen top surface 12f in the first dual screen system. This ensures that coarse particles do not contact the first lower screen.
A further embodiment of a prior art shaker 20 retrofit with the dual screen systems of the invention is illustrated in
The dual screen system is preferably modular, allowing the upper and/or lower screen to be changed based on the properties of the slurry being processed in order to optimize the separation of drill cuttings from the drilling fluid. This allows an operator to select the optimal mesh size, screen material, configuration, and slope angle for both the upper and lower screen assembly. It also enables an operator to easily repair and/or replace components of the upper or lower screen assembly without having to replace the entire dual screen system if the screen assemblies are not permanently fixed into one piece. Importantly, this allows for only necessary screen components to be changed out due to uneven wear between the upper and lower screen assemblies on the dual screen system.
In the prior art, a series of shakers are often used to progressively separate drilling fluid from drill cuttings as the slurry proceeds through the series of shakers. By replacing a single screen in a shaker with the dual screen system in accordance with the invention, the dual screen system is able to process potentially double the volume of slurry in the same time with the substantially the same energy requirements as the single screen system. This reduces the number of shakers that are required and the associated time, costs, and space requirements. Thus, the dual screen system creates a more efficient and cost-effective system for separating drilling fluids and drill cuttings. In field trials the flow rate of a shaker which struggled to deal with a 0.5 m3/min flow rate of drill cuttings/drill fluid when using a single 200 mesh API screen had a dual screen system installed with an upper screen using an 80 API screen and a lower screen using a 200 API screen, the dual screen system was able to process slurry flow rates in excess of 1.5 m3/min.
In one embodiment, the upper screen assembly or the lower screen assembly is sloped to create a “wedge-shaped” screen 40, shown in
In a further embodiment, both the upper screen and the lower screen assemblies are sloped. The screens may be sloped in the same direction or in opposite directions. The dual screen systems 10 installed in the shakers 20 shown in
A wedge-shaped screen assembly changes the dynamics and the rate of flow of drilling fluid and drill cuttings across the screens. By sloping the screen at a downward angle, the rate of flow is increased, which is particularly useful when the slurry on the screen is viscous or sludge-like. Sloping the screen assembly upward decreases the rate of flow, allowing more time for a slurry to pass over a screen which may increase the separation of drilling fluid from drill cuttings. The slope angle and slope direction of the upper and lower screen assemblies can be independently modified based on the properties of the slurry to optimize the processing efficiency of the shaker. This design is for both single and dual screen applications and not been previously contemplated.
In the prior art, there are shaker baskets that can be tilted in either an upward or downward direction to vary the rate of flow of the slurry across the shaker screens. By allowing for individual modification of individual shaker screens and angles, the rate of flow can be further individualized at different points across the shaker screens. Furthermore, modifying the angle of the shaker screens allows for the rate of flow to be adjusted in shakers lacking the ability to tilt the shaker basket.
In prior art vibratory shaker screens 32, as illustrated in
In order to effectively retrofit a dual screen support system 100 to an existing shaker utilizing the existing wedge system, it is preferred that the upper screen does not completely fill the wedge space such that similar wedges (or at least narrower wedges) can used. Accordingly, as shown in
As shown, the lower screen support system 100a has a narrower width relative to the width of the shaker basket 22 that enables the upper surface of the lower screen support system 100a and lower screen 108 to be lower than the screen support brackets 102. Support legs 100c, 100d are configured to provide the vertical separation distance between the lower screen 108a and the upper screen 108b and a seat to support the system on the screen support brackets 102. For the purposes of clarity, other midsection support legs that may be incorporated are omitted from
In various embodiments, a screen support system is welded, bolted or glued together to support two layers of screens and may be assembled as a one piece frame.
As shown in
As described above, some shaker systems provide a stepped configuration within the shaker basket such that drill cuttings step downwardly as they progress across the individual screens of the shaker bed. The dual screen system of the invention can be utilized in such stepped or cascading screen shakers. As shown in
In another embodiment shown in
Alternatively, as shown in
Importantly, by placing coarser and hence stronger screens on the upper surfaces, the finer screens on the lower surfaces will be protected from larger drill cuttings and hence, the life of the finer screens will be enhanced.
It should be noted that more than two screen support systems may be incorporated if space considerations enable such a configuration.
In a still further embodiment, the dual screen systems may be retrofit to a shaker having a flat non-cascading screen bed to create a dual screen system having a cascading effect between adjacent screens. In this case, the upstream dual screen system would be elevated above the normal screen bed level and each subsequent downstream dual screen system positioned at a lower level such that drill cuttings can step down. In this case, additional support members 110 would be included as shown schematically in
Alternatively, the dual screen system can be used in a flat screen bed shaker without positioning the dual screens in a cascading manner. The prior art shaker would typically have a single screen running from the upstream end of the shaker to the downstream end of the shaker, and there can be one screen bed or multiple screen beds, arranged as parallel decks on top of one another or in another configuration. The dual screen system of the invention could be used in such a shaker by replacing the one or more single screens with one or more dual screens that extend along the entire screen bed. In this embodiment, there would not be a gap between adjacent upper screen sections, or adjacent lower screen sections, since each upper screen would be substantially continuous, as would each lower screen.
In another embodiment, the screen bed may be curved instead of flat, such as in a convex manner. Furthermore, the dual screen system may include one or more three-dimensional screens, such as a pyramidal screen. Such a screen may be used to increase the surface area of the screen.
As discussed in the background, single screens of the prior art are attached to shaker systems using various attachment systems, which may include wedge clamping systems, air or hydraulic pressure plate clamping systems, and hook screen tensioning systems. Shaker systems having any of these attachment systems can be retrofit to accommodate the dual screen system of the present invention, including dual screen systems made of a single structure (i.e. a one-piece dual screen system) or of multiple structures (i.e. a two-piece dual screen system). An example of a dual screen system of the present invention held in place with a wedge clamping system is shown in
Alternatively,
The hook screen attachment system of the prior art can be adapted for securing the dual screen system 10 of the invention in a shaker basket. One embodiment of doing so is shown in
Testing was conducted to determine the difference in the cuttings fluid retention factor of a single screen of the prior art versus a dual screen in accordance with the invention using the same shaker and the same drilling fluid/cuttings mixture. The testing was conducted in accordance with industry standards. The results show that the single screen had a cuttings retention factor (measured in m3 mud/m3 cuttings) of 0.894, while the dual screen had a lower cuttings retention factor of 0.818. During the testing, the single screen was tilted against the direction of fluid/cuttings flow at a +2 setting on a shaker, whereas the dual screen was tilted with the direction of flow at −1. This difference in screen angle would actually benefit the single screen system for separating drill cuttings from drilling fluid, since the cuttings/fluid would be retained on the single screen for a longer period of time based on the tilt against the direction of flow compared to the dual screen system.
Although the present invention has been described and illustrated with respect to preferred embodiments and preferred uses thereof, it is not to be so limited since modifications and changes can be made therein which are within the full, intended scope of the invention as understood by those skilled in the art.
This application is a continuation of U.S. patent application Ser. No. 15/876,513, filed Jan. 22, 2018, pending, which is a divisional of U.S. patent application Ser. No. 14/915,130, filed Feb. 26, 2016, issued, which is a national phase entry under 35 U.S.C. § 371 of International Patent Application PCT/CA2014/000655, filed Aug. 26, 2014, designating the United States of America and published in English as International Patent Publication WO 2015/027321 A1 on Mar. 5, 2015, which claims the benefit under Article 8 of the Patent Cooperation Treaty and under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application Ser. No. 62/008,868, filed Jun. 6, 2014, to U.S. Provisional Patent Application Ser. No. 61/936,119, filed Feb. 5, 2014, and to U.S. Provisional Patent Application Ser. No. 61/870,687, filed Aug. 27, 2013, the disclosure of each of which is hereby incorporated herein in its entirety by this reference.
Number | Date | Country | |
---|---|---|---|
62008868 | Jun 2014 | US | |
61936119 | Feb 2014 | US | |
61870687 | Aug 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14915130 | Feb 2016 | US |
Child | 15876513 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15876513 | Jan 2018 | US |
Child | 16390467 | US |