This application relates generally to wearable technology and virtual-reality technology, including but not limited to a head-mounted display.
Virtual-reality head-mounted displays have wide applications in various fields, including engineering design, medical surgery practice, military simulated practice, and video gaming. For example, a user wears a virtual-reality head-mounted display integrated with audio headphones while playing video games so that the user can have an interactive experience in an immersive virtual environment.
However, it may be difficult for a user to properly adjust and comfortably wear the head-mounted displays and the integrated audio systems using the existing technology, which may negatively affect the user's experience. Also, use of a single screen to provide images to both eyes may negatively affect the image quality.
In accordance with some embodiments, a head-mounted display system includes a left lens for a user's left eye and a right lens for the user's right eye. The head-mounted display system also includes left and right display screens. The left display screen is coupled to the left lens to provide images to the user's left eye through the left lens. The right display screen is coupled to the right lens to provide images to the user's right eye through the right lens.
In accordance with some embodiments, a head-mounted display system includes an opaque housing; a left display screen, mounted within the opaque housing, for a user's left eye; and a right display screen, mounted within the opaque housing, for the user's right eye.
Various advantages of the present application are apparent in light of the descriptions below.
For a better understanding of the various described embodiments, reference should be made to the Description of Embodiments below, in conjunction with the following drawings. Like reference numerals refer to corresponding parts throughout the figures and description.
Reference will now be made to embodiments, examples of which are illustrated in the accompanying drawings. In the following description, numerous specific details are set forth in order to provide an understanding of the various described embodiments. However, it will be apparent to one of ordinary skill in the art that the various described embodiments may be practiced without these specific details. In other instances, well-known systems, methods, procedures, components, circuits, and networks have not been described in detail so as not to unnecessarily obscure aspects of the embodiments.
It will also be understood that, although the terms first, second, etc. are, in some instances, used herein to describe various elements, these elements should not be limited by these terms. These terms are used only to distinguish one element from another. For example, a first segment could be termed a second segment, and, similarly, a second segment could be termed a first segment, without departing from the scope of the various described embodiments. The first segment and the second segment are both segments, but they are not the same segment.
The terminology used in the description of the various embodiments described herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used in the description of the various described embodiments and the appended claims, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “includes,” “including,” “comprises,” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
The strap system 120 is used for mounting the head-mounted display 200 on a user's head. In the example of
In some embodiments, the strap 120 comprises a single and continuous semi-rigid segment 140 including two arc portions, and each arc portion is to extend from above a user's ears to below the user's occipital lobe to conform to a portion of the user's head. Alternatively, the strap 120 may comprise two separate and symmetric semi-rigid segments each including an arc portion.
In some embodiments, the rigid segments 130 and 150 are respectively connected to the semi-rigid segment 140. The rigid segments 130 and 150 are also respectively coupled to the head-mounted display 200 and positioned on respective sides of the user's head to extend along the lateral dimension (e.g., the Z dimension in
In some embodiments, the strap 120 comprises a back piece 160 coupled with the semi-rigid segment 140 to rest against the back of the user's head (e.g., around the user's occipital lobe). For example as shown in
In some embodiments, the strap 120 comprises a top strap 170 coupled to the back piece 160 (or the semi-rigid segment 140) and the head-mounted display 200 to adjustably conform to the top of the user's head when the user is wearing the head-mounted display.
In some embodiments, various electrical connection mechanisms (e.g., flat flexible circuits and/or electric cables) are used in the head-mounted display system 100 to provide power management, signal transmission, and/or other functionalities to the head-mounted display 200 and the detachable audio subsystem 180. For example, the head-mounted display 200 is integrated with the detachable audio subsystem 180 using suitable electrical connection mechanisms to provide both visual and audio virtual-reality experiences to the user.
Various embodiments of the strap system 120 and the head-mounted display system 100 are described in U.S. patent application Ser. No. 14/603,335, filed on Jan. 22, 2015, and U.S. patent application Ser. No. 14/681,001, filed on Apr. 7, 2015, the disclosures of which are incorporated herein by reference in their entireties.
Various embodiments of the detachable audio subsystem 180 and coupling mechanisms between the detachable audio subsystem 180 and the head-mounted display system 100 are described in U.S. patent application Ser. No. 14/627,639, filed on Feb. 20, 2015, U.S. Provisional Patent Application No. 62/174,298, filed on Jun. 11, 2015, and U.S. Provisional Patent Application No. 62/174,359, filed on Jun. 11, 2015, the disclosures of which are incorporated herein by reference in their entireties.
A plurality of infrared (IR) LED lights 260 are distributed on the surfaces of the housing 230 and the front cover 210. In conjunction with an external camera, the IR LED lights 260 are used for sensing motions of the user's head. The flexible circuits 220 provide power management and transmit electrical signals among different components (e.g., display screens, IR LED lights 260, and detachable audio system 180) of the head-mounted display system 100.
As shown in
As shown in
As shown in
In some embodiments, the assembly 300 also includes a left panel 350 situated in front of the left display screen 330, and a right panel 355 situated in front of the right display screen 335. The left panel 350 and right panel 355 provide backing for the left and right display screens and protect the left and right display screens.
In some embodiments, the assembly 300 includes a left mounting ring 360 to mount the left lens 310 on the left eye cup 320. Similarly, a right mounting ring 365 is used to mount the right lens 315 on the right eye cup 325.
In some embodiments as shown in
As shown in
The assembly 300 also includes a circuit board 370 to provide various functionalities, such as power management, electrical connection, and signal transmission. For example, the circuit board 370 includes driver circuitry for the left display screen 330 and the right display screen 335. The circuit board 370 is connected with the flexible circuit 220 and the cable 240. A left flexible circuit 390 and a right flexible circuit 395 are situated on top of the circuit board 370 to electrically connect the circuit board 370 to the left display screen 330 and the right display screen 335.
One or more connectors 326 (e.g., screws) are used to couple the circuit board 370 and the top bracket 380 together. For example, the one or more connectors 326 insert through one or more screw holes 372 on the circuit board 370 and one or more screw holes 384 on the top bracket 380 to couple the circuit board 370 with the top bracket 380.
The assembly 500 includes a left eye cup 520 coupled between the left lens 510 and the left display screen 530, and a right eye cup 525 coupled between the right lens 515 and the right display screen 535. The assembly 500 further includes a top bracket 580 and a bottom bracket 570 to mount the assembly 500 to the top housing 460 and the bottom housing 470 as shown in
In the assembly 500, the left eye cup 520 and the right eye cup 525 are separate from each other. For example, each eye cup of the left eye cup 520 and the right eye cup 525 is mounted between the top bracket 580 and the bottom bracket 570 respectively. As shown in
In some embodiments, a lateral distance between the left eye cup 520 and the right eye cup 525, and a lateral distance between the left display screen 530 and the right display screen 535 are adjustable using any suitable mechanisms, such as a gear train. A corresponding interpupillary distance is thus adjustable.
For example, as shown in
Various embodiments of the position adjustment mechanism 518 are described in U.S. Patent Application No. 62/175,919, filed on Jun. 15, 2015, the disclosure of which is incorporated herein by reference in its entirety.
As illustrated in
The assembly 500 further includes a right display screen 535 disposed in front of the right lens 515 to provide images to the user's right eye through the right lens 515. Similarly referring to
As shown in
The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the scope of the claims to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen in order to best explain the principles underlying the claims and their practical applications, to thereby enable others skilled in the art to best use the embodiments with various modifications as are suited to the particular uses contemplated.
This application claims priority to U.S. Provisional Patent Application Ser. No. 62/175,877, filed Jun. 15, 2015, entitled “Dual-Screen Head-Mounted Displays,” which application is incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1636443 | Schumacher | Jul 1927 | A |
5347400 | Hunter | Sep 1994 | A |
6072626 | Ichikawa | Jun 2000 | A |
6597346 | Havey | Jul 2003 | B1 |
20020020005 | Tsubooka | Feb 2002 | A1 |
20040008157 | Brubaker | Jan 2004 | A1 |
20060072206 | Tsuyuki et al. | Apr 2006 | A1 |
20090147358 | Charlesworth | Jun 2009 | A1 |
20120218301 | Miller | Aug 2012 | A1 |
20140266986 | Magyari | Sep 2014 | A1 |
20150077416 | Villmer | Mar 2015 | A1 |
20150234189 | Lyons | Aug 2015 | A1 |
20150253574 | Thurber | Sep 2015 | A1 |
20160320612 | Zhang | Nov 2016 | A1 |
Entry |
---|
Tempel, Office Action, U.S. Appl. No. 14/861,917, dated May 3, 2017, 16 pgs. |
Tempel, Notice of Allowance, U.S. Appl. No. 14/861,917, dated Oct. 20, 2017, 8 pgs. |
Number | Date | Country | |
---|---|---|---|
20160366399 A1 | Dec 2016 | US |
Number | Date | Country | |
---|---|---|---|
62175877 | Jun 2015 | US |