Dual sensor liquid accumulator

Information

  • Patent Grant
  • 6684902
  • Patent Number
    6,684,902
  • Date Filed
    Monday, October 21, 2002
    22 years ago
  • Date Issued
    Tuesday, February 3, 2004
    20 years ago
Abstract
An accumulator for collecting a volume of a liquid, which includes controls to permit the liquid to rise in a container to a preset upper level, at which level a drain valve is opened causing liquid to flow out of the accumulator. The accumulator utilizes two opened bottom pipes, which are connected through check valves to a controller. The controller is sensitive to the pressure at its inlet port. The pipes are interconnected so that when the liquid reaches an upper level, the pressure at the controller is sufficient to open the drain valve, and once the accumulator is almost empty, the drain valve is closed.
Description




BACKGROUND OF THE INVENTION




The field of the invention is plumbing fixtures and the invention relates more particularly to piping a control system for permitting the accumulation of water or other liquids in a box and emptying the accumulated liquid when the box is full.




A pressure sensitive controller is shown in U.S. Pat. No. 6,311,718, assigned to the assignee of the present invention. The specification and drawings of this patent are incorporated by reference herein for purposes of background. A waste disposal system is shown in U.S. Pat. No. 6,385,789, which utilizes a vacuum operated discharge valve. The system utilizes an electrically operated control valve and is operated by depressing a flush button.




U.S. Pat. No. 6,349,425 also shows a vacuum toilet system. The unit is operated in response to a flush command. The same unit is shown in U.S. Pat. Nos. 6,353,942 and 6,370,709. A vacuum drainage system is shown in U.S. Pat. No. 6,305,403. A buffer box used in a vacuum drainage system is shown in U.S. Pat. No. 6,311,717.




BRIEF SUMMARY OF THE INVENTION




It is an object of the present invention to provide an accumulator box which will empty liquid from the accumulator box when the liquid reaches a predetermined level without the use of any electrical signal.




The present invention is for an accumulator for collecting a volume of a liquid, including means for removing the liquid when the liquid reaches a predetermined level in the accumulator. The accumulator has a box for holding a volume of liquid and the box has an outlet port near its bottom for passing liquid out of the box. An inlet opening allows liquid to pass into the box and to be accumulated in the box. A first control pipe is held within the interior of the box and has an open bottom near the bottom of the box and has a closed top. A second control pipe is also held within the interior of the box and has an open bottom spaced further away from the bottom of the box than the open bottom of the first control pipe. A conduit passes from the closed top of the first control pipe to the inlet port of a pressure sensitive controller. The first conduit has a first check valve permitting the flow of gas only in the direction of the first control pipe. A second conduit leads from the closed top of the second control pipe to a point where it joins the first conduit at a location in the first conduit between the first check valve and the inlet port of the pressure sensitive controller. The second conduit has a second check valve therein permitting the flow of gas only in the direction of the pressure sensitive controller. As the level of liquid rises in the box, it initially increases the air pressure within the first control pipe, but the first check valve prevents this increase in pressure from passing to the inlet of the pressure sensitive controller. As the liquid level rises further, it reaches the open bottom of the second control pipe. As the pressure within the second control pipe increases, this increase in pressure is passed to the inlet port of the pressure sensitive controller. When the level of liquid has reached a predetermined distance above the open bottom of the second control pipe, the pressure is sufficient to actuate the pressure sensitive controller, thereby opening a drain valve and emptying the contents of the box. The present invention is also for the process of operating the accumulator. The drain valve is closed when the liquid level drops below the bottom of the first control pipe.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a diagrammatic view of the accumulator of the present invention.





FIG. 2

is a top view thereof.





FIG. 3

is a side view thereof.





FIG. 4A

is a diagrammatic view thereof, showing the liquid level at a lowermost position.





FIG. 4B

is a diagrammatic view thereof, showing the liquid level increased from that shown in FIG.


4


A.





FIG. 4C

is a diagrammatic view thereof, showing the liquid level increased to a further height, as compared to that shown in FIG.


4


B.





FIG. 4D

is a diagrammatic view thereof, showing the liquid level decreasing.





FIG. 4E

is a diagrammatic view thereof, showing the liquid level at the end of the draining step.











DESCRIPTION OF THE PREFERRED EMBODIMENTS




The accumulator of the present invention is shown in diagrammatic view in FIG.


1


and indicated generally by reference character


10


. Accumulator


10


has a box or receptacle


11


, which is typically a stainless steel rectangular box. Box


11


has a bottom


12


, sides


13


, and a top


14


. Box


11


has an outlet drain line


15


affixed over an outlet opening


16


adjacent the bottom


12


of box


11


. The word “adjacent” is intended to include an outlet in bottom


12


itself, as well as along the side, either at the bottom or a short distance from the bottom. Furthermore, the outlet drain line could extend into the interior volume


17


of the accumulator. Thus, the important feature is that the outlet drain line


15


be connected to box


11


such that the imposition of a vacuum in line


15


will cause the liquid contents of box


11


to be largely removed from the interior volume


17


.




A pair of control pipes comprising a first control pipe


18


and a second control pipe


19


, are positioned largely within the interior volume


17


of box


11


. First control pipe has an open bottom


20


which is positioned a first distance


21


from the bottom


12


of the box


11


. Control pipe


18


has a first interior space


21


and a closed top


22


. A first conduit


23


is connected in an airtight manner to closed top


22


and permits air or whatever gas the accumulator is positioned within to pass from the first interior space


21


into the first conduit


23


. A first check valve


24


is positioned in first conduit


23


and permits the flow of air in the direction of arrow


25


toward the first interior space


21


. It, of course, prevents the flow of air out of interior space


21


.




First conduit


23


continues from first check valve


24


and is connected to the inlet port


26


of a pressure sensitive controller


27


.




Pressure sensitive controller


27


may be of the type shown in U.S. Pat. No. 6,311,718, however any other pressure sensitive controller with sufficient sensitivity can be used. The pressure sensitive controller is preferably of the type which may be adjusted to output a signal when the pressure at the inlet port reaches a predetermined level. For instance, the controller


27


can be set so that when the pressure at inlet port


26


reaches two inches of water, a signal is initiated through line


28


to control valve


29


. When control valve


29


is opened, a vacuum is pulled on outlet drain line


15


as long as control valve remains open. The pressure sensitive controller typically is set so that when the pressure at inlet port


26


reaches


0


, the signal is discontinued through line


28


turning off control valve


29


. of course when the term “pressure” is used herein, it is intended to indicate gauge pressure and not absolute pressure. It is also to be understood that the controller


27


could be set so that when the pressure at the inlet port reaches, for instance ¼ of an inch of water, the signal through line


28


is discontinued.




When the pressure sensitive control valve indicated above is utilized, it is not necessary that any source of electricity be utilized in the elements shown in

FIG. 1

, since they are all controlled by air pressure and vacuum.




A liquid inlet line


30


provides a source of water or other liquid. This source might be the condensate from a refrigeration system or from some other source which causes the liquid level


31


to increase until the drain signal is received. Top cover


9


has an inlet opening


44


over which a source of liquid, such as sink drain


45


shown in phantom view in

FIG. 3

, is positioned).




The second control pipe


19


has a second interior space


32


, an open bottom


33


, and a closed top


34


. A second conduit


35


is connected to closed top


34


to pass air or other gas from second interior space


32


into second conduit


35


.




Second conduit


35


has a second check valve


36


which permits air to flow only in the direction of arrow


37


out of second interior space


32


. Second conduit


35


continues to a connection tee


38


. This connects second conduit


35


to first conduit


23


between first check valve


24


and inlet port


26


.




The open bottom


33


of second control pipe


19


is positioned a third distance


39


from bottom


12


. Third distance


39


is greater than first distance


21


for reasons discussed below. Closed top


22


is spaced a second distance


40


from bottom


12


and closed top


36


is separated a fourth distance


41


from bottom


12


.




The diagrammatic view of

FIG. 1

is shown in top view in FIG.


2


. Control pipes


18


and


19


are shown with their respective closed tops


22


and


34


. An outlet port


42


leads through closed top


22


into first conduit


23


. Similarly, outlet port


43


leads through closed top


34


into second conduit


35


.




Turning to

FIG. 3

, box


11


is shown in side view and control pipes


18


and


19


are shown in phantom view with their bottoms


20


and


33


, respectively, also being indicated in phantom view. Details of the outlet port


43


are shown as are details of the closed top


34


.




The operation of the accumulator can be understood best from a description of air pressures at various liquid levels indicated in

FIGS. 4A through 4E

. Pressure will be indicated in the discussion in units of inches of water, although of course, if other liquids are being accumulated, the units would be inches of whatever liquid is being accumulated.




As liquid enters through sink drain


45


, the water level within box


11


rises to that shown in FIG.


4


A and indicated by reference character


46


. Water level


46


is above the bottom


20


of control pipe


18


and, thus, a small amount of pressure builds up in that portion of line


23


which is between first check valve


24


and control pipe


18


, as well as in the control pipe interior space


21


. Because check valve


24


does not permit the flow of gas out of control pipe


18


, the pressure in that portion of line


23


between check valve


24


and inlet port


26


remains at 0 atmospheric pressure.




As shown in

FIG. 4B

, as the water level continues to increase, the pressure in control pipe


18


in the portion of conduit


23


up to check valve


24


also increases to, for instance, four inches, whereas the pressure in line


23


after check valve remains at atmospheric pressure. The water level in

FIG. 4B

is indicated by reference character


47


and is still below the bottom


33


of control pipe


19


.




Turning now to

FIG. 4C

, the water level


48


has risen above the open bottom


33


of control pipe


19


and causes the pressure in second conduit


35


to increase to two inches, since the air which is being compressed within control pipe


19


, will pass through second check valve


36


. This causes the pressure from first check valve


24


to the inlet


26


of controller


27


and in that portion of conduit


35


between check valve


36


and conduit


23


all to rise to two inches. Assuming that this is the set pressure of controller


27


, a signal is sent through line


28


to open drain valve


29


and cause the water level to drop as indicated in

FIG. 4D

, first to a position below the bottom


33


of second control pipe


19


. Since the second check valve


36


maintains the pressure of two inches-in conduit


23


, the signal continues to be sent to valve


29


to continue the draining of water out of outlet drain line


15


. Thus, when the water level


49


falls below bottom


33


, there is no effect on the pressure at the inlet


26


of controller


27


.




However, when the water level reaches that shown by reference character


50


in

FIG. 4E

, air can escape, as indicated by arrows


51


into the atmosphere. Since first check valve


24


permits the pressure in line


23


to pass through it to the lower pressure or atmospheric pressure within first control pipe


18


, the controller


27


turns off the signal through line


28


, thereby shutting off control valve


29


and preparing the accumulator for a new collection cycle.




Obviously, the length of the control pipes can be adjusted to provide the desired upper and lower levels of liquid within box


11


. It is important that the first distance


21


between the open bottom


20


and bottom


12


is less than the distance


39


between open bottom


33


and bottom


12


. Typically, the second and fourth distances


40


and


41


, respectively, would be the same, although this is not essential. It is also preferred that the third distance


39


be less than half of the second distance


40


, so that sufficient pressure and volume can build up in the second interior space


22


and second conduit


35


, so that there will be sufficient pressure and volume transferred to interior space


21


to empty the interior space and permit air to enter open bottom


20


.




For a box having a height of 12 inches, one example of a set of useful distances are as follows:




First distance—½ inch




Second distance 14 inches




Third distance 4 inches




Fourth distance 14 inches.




A useful control pipe size has been 1½ inch PVC pipe with a cap. Obviously, the dimensions would be dependent upon the size of box


11


.




The present embodiments of this invention are thus to be considered in all respects as illustrative and not restrictive; the scope of the invention being indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are intended to be embraced therein.



Claims
  • 1. An accumulator for collecting a volume of a liquid including means for removing the liquid when the liquid reaches a predetermined level in the accumulator, said accumulator comprising:a box for holding said volume of liquid, said box having a bottom, and sides defining an interior box volume, and a top; an outlet port leading from said box positioned adjacent the bottom of said box, said outlet port being connected to an outlet line having means for causing said liquid to pass outwardly from said box; an inlet opening configured to allow liquid to pass into and to be accumulated in said interior volume of said box; a first control pipe held with at least a portion thereof within said interior volume of said box, said first control pipe having an open bottom at a first distance from the bottom of said box and a closed top located a second distance from the bottom of said box, said second distance being greater than said first distance and said first control pipe having a first interior space; a second control pipe held with at least a portion thereof within said interior volume of said box, said second control pipe having an open bottom at a third distance from the bottom of said box and a closed top located a fourth distance from the bottom of said box, said fourth distance being greater than said third distance and said third distance being greater than said first distance and said second control pipe having a second interior space; a first conduit leading from said closed top of said first control pipe to an inlet port of a pressure sensitive controller, said first conduit having a first check valve therein permitting the flow of gas only in the direction of said first control pipe, said pressure sensitive controller being of the type which sends a signal when the pressure at its inlet port reaches a desired upper pressure and sends no signal when the pressure at the inlet port reaches a desired lower pressure; a second conduit leading from said closed top of said second control pipe to said first conduit at a location in said first conduit between said first check valve and said inlet port of said pressure sensitive controller, said second conduit having a second check valve therein permitting the flow of gas only in the direction of said pressure sensitive controller; whereby as a level of liquid rises in said box above said first distance the pressure in the first interior space increases and as said level of liquid continues to rise in said box, the pressure in said first interior space continues to increase and when the level of liquid exceeds said third distance the pressure in the second interior space increases thereby increasing the pressure in the first conduit downstream of said first check valve which passes said increase in pressure to said inlet port of said pressure sensitive controller which is set to open when the pressure at said inlet port of said pressure sensitive controller reaches a desired pressure at which desired pressure said means for causing liquid to pass outwardly from said box is activated causing the liquid level in said box to decrease until it reaches said first distance at which point the pressure in said interior space in said first conduit decreases to zero thereby causing the pressure at the inlet port of said pressure sensitive controller to reach zero and to close said means for causing liquid to pass outwardly from said box thereby permitting the box to accumulate additional liquid.
  • 2. The accumulator of claim 1 wherein said first and second control pipes are mounted vertically.
  • 3. The accumulator of claim 1 wherein said box has a cover which supports said first and second control pipes.
  • 4. The accumulator of claim 1 wherein said means for causing said liquid to pass outwardly from said box comprises a source of a partial vacuum introduced into said outlet line.
  • 5. The accumulator of claim 1 wherein said desired lower pressure is zero.
  • 6. The accumulator of claim 1 wherein said second distance and said fourth distance are equal.
  • 7. The accumulator of claim 1 wherein said third distance is less than one half the second distance.
  • 8. A process for maintaining a range of liquid level in a receptacle having a top and a receptacle bottom and an interior volume comprising:placing at least a lower portion of a first control pipe having a first pipe open bottom and a first pipe closed top in said interior volume of said receptacle so that the first pipe open bottom is a first distance from said receptacle bottom and said first pipe closed top is a second distance from said receptacle bottom and said first control pipe having a first interior space; connecting a first conduit line between said first pipe closed top and to an inlet port of a pressure sensitive controller; setting said pressure sensitive controller to activate a drain valve when the air pressure at its inlet port reaches a desired upper pressure and to deactivate said drain valve when the air pressure at said inlet port reaches a desired lower pressure; placing a first check valve in said first conduit line which permits the flow of air only in the direction of said first interior space; placing at least a lower portion of a second control pipe having a second pipe open bottom and a second pipe closed top in said interior volume of said receptacle so that the second pipe open bottom is a third distance from said receptacle bottom and said second pipe closed top is a fourth distance from said receptacle bottom and said second control pipe having a second interior space and said third distance is greater than said first distance and said fourth distance is greater than said third distance; connecting a second conduit line between said second pipe closed top and said first conduit line between said first check valve and said inlet port of said pressure sensitive controller; placing a second check valve in said second conduit line between said second closed top and said first conduit line which permits the flow of air only in the direction of said pressure sensitive controller; placing an outlet line leading from said receptacle adjacent the bottom of said receptacle to drain liquid from said receptacle and positioning an outlet valve controlled by said pressure sensitive controller in said outlet line; whereby when a flow of liquid passes into said interior volume of said receptacle and rises beyond said third distance, the pressure at the inlet port increases to said desired upper pressure, the pressure sensitive controller activates said drain valve and as the liquid level lowers below said first distance the pressure at the inlet port decreases to said desired lower pressure thereby deactivating said drain valve.
  • 9. The process of claim 8 wherein said first distance is adjacent the bottom of said receptacle.
  • 10. The process of claim 9 wherein said third distance is less than half of said fourth distance.
  • 11. The process of claim 8 wherein said desired upper pressure is about two inches of water.
  • 12. The process of claim 8 wherein said desired lower pressure is zero.
US Referenced Citations (23)
Number Name Date Kind
1511432 Skidmore Oct 1924 A
2956581 Pearson Oct 1960 A
3360002 Weis et al. Dec 1967 A
3393642 Kordik et al. Jul 1968 A
3470902 Hackman Oct 1969 A
3573015 Canfield et al. Mar 1971 A
3775026 Hewlings Nov 1973 A
4202367 Roth et al. May 1980 A
4203462 Beller May 1980 A
4258745 Nicholson Mar 1981 A
4336825 Pion Jun 1982 A
4522228 Campau Jun 1985 A
4603709 Huisma Aug 1986 A
4607658 Fraser et al. Aug 1986 A
5615701 Yamabe et al. Apr 1997 A
5871027 Shimizu et al. Feb 1999 A
5969619 Niemiro et al. Oct 1999 A
6305403 von Palffy et al. Oct 2001 B1
6311718 Hafner et al. Nov 2001 B1
6349425 Stradinger et al. Feb 2002 B1
6353942 Pondelick et al. Mar 2002 B1
6370709 Stradinger et al. Apr 2002 B1
6385789 Pondelick et al. May 2002 B1
Non-Patent Literature Citations (1)
Entry
US 6,311,717, 11/2001, Stradinger et al. (withdrawn)