1. Field of the Invention
The present invention relates generally to an imaging apparatus, and more particularly, to a media picking mechanism in an imaging apparatus.
2. Description of the Related Art
An imaging apparatus, such as a printer, scanner, or copier, includes a media picking mechanism that is used to successively pick a single sheet of media, e.g., paper from a media stack.
A pick gear 22 is mounted on the pick shaft 16. The pick gear 22 is rotatably engaged with the second bevel gear 20b. A first pick tire 24a and a second pick tire 24b are attached to each end of the pick shaft 16.
The media picking mechanism 10 also includes a housing 26 that contains the pivot gear 18, the first bevel gear 20a, the second bevel gear 20b, the transmission shaft 14, and the pick gear 22.
During a media picking operation, the drive shaft 12 rotates in a first direction as illustrated by the arrow 28 to provide input torque to the transmission shaft 14. The input torque rotates the transmission shaft 14 in a second direction as illustrated by the arrow 30. The transmission shaft 14 transmits the input torque to the pick shaft 16 that rotates in a third direction as illustrated by the arrow 32.
As shown, force Fg applies a moment Mh on the housing 26 causing the portion of the housing 26 adjacent the second bevel gear 20b to twist in a direction of arrow 30. The moment Mh also causes the downward normal force FN1 applied to the first pick tire 24a towards the media 34 to be greater than the downward normal force FN2 applied to the second pick tire 24b towards the media 34. The uneven forces FN1 and FN2 applied on the media 34 causes the media 34 to skew during the media picking operation, and premature wear of the first pick tire 24a.
Additionally, another drawback of the prior art media picking mechanism 10 is that the diameter of the pivot gear 18 increases the height of the media picking mechanism 10. The desired architecture of the media picking mechanism 10 requires that the overall height of the media picking mechanism 10 be minimized. The limiting factor for keeping the height of the media picking mechanism 10 to a minimum is the diameter of the pivot gear 18, i.e., pivot gear 18 of a smaller diameter is desired to keep the height of the media picking mechanism 10 to a minimum. However, a reduced diameter of the pivot gear 18 that is too small have been found to cause the pivot gear 18 to either break or to skip teeth when transmitting the input torque to the first bevel gear 20a during a media picking operation.
Therefore, it would be advantageous to have a media picking mechanism that provides substantially equal normal forces FN1 and FN2 to the pick tires 24a and 24b, has a near zero moment on the housing 26, and also addresses the load carrying limitation of the pivot gear 18.
Disclosed herein is a media picking mechanism that includes a drive shaft, a pick shaft having a first end and a second end, a first pick tire and a second pick tire, the first pick tire attached to the first end of the pick shaft and the second pick tire attached to the second end of the pick shaft, and a first transmission shaft and a second transmission shaft, each transmission shaft having a first end and a second end, the first end of each transmission shaft operably connected to the drive shaft and the second end of each transmission shaft operably connected to the pick shaft, and the first transmission shaft and the second transmission shaft rotatable in opposite directions relative to one another.
In some embodiments, the media picking mechanism includes a housing mounted around the drive shaft, the pick shaft, and the first transmission shaft and the second with the first and second transmission shafts positioned approximately symmetrically about a centerline of the housing.
In another embodiment, the media picking mechanism includes a first pivot gear and a second pivot gear mounted on the drive shaft, and a gear mounted on the first end of each transmission shaft, the first pivot gear rotatably engaged with the gear mounted on the first transmission shaft and the second pivot gear rotatably engaged with the gear mounted on the second transmission shaft.
In another aspect, a media pick assembly includes a media input tray for storing a media, and a media picking mechanism disposed adjacent the media input tray, the media picking mechanism including a drive shaft, a pick shaft having a first end and a second end, a first pick tire and a second pick tire, the first pick tire attached to the first end of the pick shaft and the second pick tire attached to the second end of the pick shaft, the first pick tire and the second pick tire engaging the media, and a first transmission shaft and a second transmission shaft, each transmission shaft having a first end and a second end, the first end of each transmission shaft operably connected to the drive shaft and the second end of each transmission shaft operably connected to the pick shaft, and the first transmission shaft and the second transmission shaft rotatable in opposite directions relative to one another.
The above-mentioned and other features and advantages of the various embodiments of the invention, and the manner of attaining them, will become more apparent will be better understood by reference to the accompanying drawings, wherein:
Reference will now be made in detail to the exemplary embodiment(s) of the invention as illustrated in the accompanying drawings. Whenever possible, the same reference numerals will be used throughout the drawings to refer to the same or like parts.
The media picking mechanism 40 include a first transmission shaft 48a and a second transmission shaft 48b. The transmission shafts 48a and 48b have a first end 50a and 50b, respectively, and a second end 52a and 52b, respectively. A gear 54a is mounted on the first end 50a of the first transmission shaft 48a and engages the first pivot gear 46a. A gear 54b is mounted on the first end 50b of the second transmission shaft 48b and engages the second pivot gear 46b. A gear 56a is mounted on the second end 52a of the first transmission shaft 48a. A gear 56b is mounted on the second end 52b of the second transmission shaft 48b. The gears 54a, 54b, 56a, and 56b are bevel gears, but other configurations as known to those of skill in the art may be used and still fall within the scope of the present invention.
The media picking mechanism 40 further includes a pick shaft 58. The pick shaft 58 has a first end 60 and a second end 62. A first pick gear 64a and a second pick gear 64b, illustrated as bevel gears, are mounted on the pick shaft 58 and engage gears 56a and 56b, respectively. A first pick tire 66a is attached to the first end 60 of the pick shaft 58, and a second pick tire 66b is attached to the second end 62 of the pick shaft 58.
A housing 68 is mounted around drive shaft 42, the first transmission shaft 48a and the second transmission shaft 48b and extends to and around pick shaft 58. The housing 68 contains the pivot gears 46a and 46b, the transmission shafts 48a and 48b, gears 54a, 54b, 56a and 56b, the pick gears 64a and 64b, and the pick shaft 58. As shown pick tires 66a, 66b are mounted on the ends 60, 62, respectively, of pick shaft 58 outside of housing 68. The first transmission shaft 48a and the second transmission shaft 48b are positioned approximately symmetrically about a centerline 69 of the housing 68 extending generally from pivots gears 46a, 46b to pick gears 64a, 64b and substantially parallel to the centerline 69 of the housing 68.
During a media picking operation, the drive shaft 42 rotating in the direction of arrow 44 provides torque to the first transmission shaft 48a and the second transmission shaft 48b. The pivot gears 46a and 46b rotatably engaged with the gears 54a and 54b transmit torque to the transmission shafts 48a and 48b. Torque provided by the drive shaft 42 rotates the first transmission shaft 48a in a first direction of arrow 70 and the second transmission shaft 48b in a second direction of arrow 72, opposite to the first direction of arrow 70. The first transmission shaft 48a and the second transmission shaft 48b rotate at same speed. The first direction of arrow 70 is a clockwise direction and the second direction of arrow 72 is a counter-clockwise direction, or vice versa.
By virtue of the symmetry of the components, the first transmission shaft 48a transmits approximately 50 percent of torque to the first pick tire 66a, and the second transmission shaft 48b transmits approximately 50 percent of torque to the second pick tire 66b. The distribution of torque between the first transmission shaft 48a and the second transmission shaft 48b enables a greater amount of torque to be transmitted through the media picking mechanism 40 compared to the single transmission shaft 14 of the prior art media picking mechanism 10 shown in
As shown, the force Fg1 imposes a moment Mh1 on the housing 68 and the force Fg2 imposes a moment Mh2 on the housing 68 in opposite direction. Due to the approximate symmetric placement of the first transmission shaft 48a and the second transmission shaft 48b about the centerline of the housing 68, the two moments Mh1 and Mh2, which are acting in opposite directions, cancel each other and result in a substantially zero net moment on the housing 68. The near zero net moment acting on the housing 68 ensures that there is substantially no twisting of the housing 68. Thus, the two transmission shafts 48a and 48b rotating in opposite directions resolves the problem of twisting of the housing 68 encountered in prior art systems.
During a media picking operation, the drive shaft 42 rotates in the direction of arrow 44 to provide torque to the first transmission shaft 48a and the second transmission shaft 48b. The torque rotates the first transmission shaft 48a in the first direction of arrow 70 and the second transmission shaft 48b in the second direction of arrow 72, opposite to the first direction of arrow 70.
The torque creates a first downward normal force FN1 on the first pick tire 66a towards the media 84 and a second downward normal force FN2 on the second pick tire 66b towards the media 84. As discussed above, the first transmission shaft 48a and the second transmission shaft 48b rotate in opposite directions, which results in a zero net moment on the housing 68. The near zero net moment acting on the housing 68 ensures that the first downward normal force FN1 acting on the first pick tire 66a towards the media 84 is approximately the same as the second downward normal force FN2 acting on the second pick tire 66b towards the media 84. This allows the first pick tire 66a and the second pick tire 66b to contact the media 84 with substantially the same force, thus reducing media skew during the media picking operation.
The present invention also alleviates the problem of height of the media picking mechanism 40, due to the constraint on the diameter of the pivot gear 18 (see
Further, as the torque is distributed between two pivot gears 46a and 46b, torque required to rotate longer transmission shafts 48a and 48b is provided. As the media picking mechanism 40 has longer transmission shafts 48a and 48b, than those of the prior art system the change between an angle illustrated by doubled headed arrow 86 formed between the media picking mechanism 40 and the surface of media 84 when the media tray 82 is full with media 84 and when the media tray 82 has little media 84 is reduced significantly, compared to the prior art system.
Due to this reduction in change of the angle illustrated by double headed arrow 86, during the media picking operation, the normal forces FN1, and FN2 applied to the pick tires 66a and 66b towards the media 84 when the media tray 84 is full with media 82 are similar to the normal forces FN1, and FN2 applied to the pick tires 66a and 66b towards the media 84, when the media tray 82 has little media 84. Thus, the pick performance of the media picking mechanism 40 is considerably improved compared to the prior art system.
The maximum capacity of the media tray determines the maximum height of the media stack and the minimum height of the media stack occurs when there is one media sheet left in the stack. With both the prior art picking mechanism 10 and picking mechanism 40, the normal force increases as the media stack height decreases. The twin transmission picking mechanism 40 has a greater efficiency than the previous single transmission mechanism (assuming gear losses are comparable) because the load is shared and efficiency losses due to angular displacements in the shaft are reduced. The twin transmission shafts provide a more torsionally rigid structure than the prior art picking mechanism 10. Because of the increased torsional rigidity longer transmission shafts can be used than was possible with the prior art picking mechanism 10, assuming that for both mechanisms, the transmission shafts were made of the same materials. Longer transmission shafts allow the angle between the picking mechanism and the surface of the media over the range of maximum capacity to minimum capacity of a media tray to be shallower than can be obtained with a single transmission shift. This in turn means that the change in normal force directed to the pick tires is less and thus the normal force applied to the media is more consistent as the media sheets are picked from the media tray and the media stack height decreases. Thus a better pick performance is achieved over the range of stack height with a given media tray design with media picking mechanism 40 than compared to prior art picking mechanism 10.
It will be apparent to those skilled in the art that various modifications and variations can be made to the present invention without departing from the spirit and scope of the invention. Thus it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
1244512 | Ledbetter | Oct 1917 | A |
6318715 | Froechte et al. | Nov 2001 | B1 |
7731176 | Bato-on et al. | Jun 2010 | B2 |
Number | Date | Country |
---|---|---|
55089156 | Jul 1980 | JP |
Number | Date | Country | |
---|---|---|---|
20110156343 A1 | Jun 2011 | US |