The present invention is directed toward dual-sided membrane sheets along with methods for making and using the same.
Dual-sided membrane sheets comprise a planar configuration including two opposing outer surfaces surrounding an inner fluid flow pathway. One known embodiment includes an inner layer of a fibrous support material comprising a web or scrim of non-woven or woven fabric. These type of sheets are commonly referred to as “supported” membranes. Examples are described in U.S. Pat. No. 5,275,725; U.S. Pat. No. 7,048,855; US 2008/0164208; US 2008/0257817; US 2009/0071896 and US 2009/0078644. The inner layer of fibrous material is relatively strong and provides the sheet with support during membrane formation and may further serve as an inner fluid flow pathway. Processes for making continuous, supported, dual-sided membranes are described in US 2007/0286949, U.S. Pat. No. 6,776,940, and U.S. Pat. No. 6,090,441. In a typical embodiment a scrim of fibrous sheet material is pulled from a roll along a production pathway through a series of coating steps wherein layers of semi-permeable membrane are formed within or upon the scrim. Once formed the resulting membrane sheet may be wound up into a roll or otherwise advanced by way of rollers that engage the outer surface(s) of the membrane sheet.
Another type of dual-sided membrane sheet comprises an integral extruded porous sheet including capillary channels which serve as an inner fluid flow pathway. This type of sheet is distinguishable from those previously described in that the sheet is “unsupported.” That is, the membrane does not include a fibrous support material. Examples are described in U.S. Pat. No. 5,046,936; U.S. Pat. No. 5,089,187; U.S. Pat. No. 5,171,493 and US 2009/0011182. Such membrane sheets may be extruded from a variety of polymer mixtures, e.g. polyether sulfone, polysulfone and polyvinylidene fluoride. U.S. Pat. No. 6,787,216; FR 2616812; JP 59-082906 and JP 11-90192 describe the use of such membrane sheets within filtration modules.
U.S. Pat. No. 6,994,789 describes another embodiment of an unsupported multilayer membrane wherein multiple layers of a polymer mixture are coated upon a continuously moving non-porous release surface, e.g. a moving belt or rotating drum. After conducing a phase inversion, the resulting multilayer membrane sheet is removed from the non-porous release surface.
The invention includes a dual-sided membrane sheet along with methods for making and using the same. In one embodiment, the subject method comprises the steps of: a) forming a microporous polymer sheet including a plurality of capillary channels and b) forming a semi-permeable discriminating layer upon at least a portion of the opposing outer surfaces of the sheet, wherein the sheet is advanced along a production pathway during at least a portion of: step a), step b), or while transferring the sheet from step a) to step b), by engaging the sheet along one or more of its edge sections. Many additional embodiments are disclosed. Such dual-sided membrane sheets find utility in a wide variety of fluid separations and may be incorporated into a variety of modules including spiral wound modules such as those described in U.S. Ser. No. 12/858,805 and submerged modules as described in PCT/US10/040,780.
The included figures illustrate several embodiments of the subject dual-sided membrane sheet. The Figures are not to scale and include idealized views to facilitate description. Where possible, like numerals have been used throughout the figures and written description to designate the same or similar features.
The present invention includes a dual-sided membrane sheet as generally shown at 10 in
For many applications the bulk section (24) of the membrane sheet (10) has a relatively uniform average thickness (e.g. thickness various by less than 10% from the average) wherein the average thickness is typically from about 0.1 to 10 mm, but more commonly from about 0.25 to 2.5 mm. For RO and NF applications, the average thickness of the bulk section (24) is preferably less than about 0.6 mm (e.g. about 0.2 to 0.5 mm). The width (W) of the membrane sheet is not particularly limited, but is preferably from about 100 to 1100 mm. The length (L) of the membrane sheet is also not particularly limited and is often determined by the module design used in connection with the sheet.
A plurality of capillary channels (26) extend in a direction along the length (L) of the sheet (10) through the bulk section (24), i.e. between the edges (16, 18) and outer surfaces (12, 14). In a preferred embodiment, the capillary channels (26) are “aligned” with each other, i.e. substantially straight, parallel with each other and spaced apart (not crossed or interconnected). As shown, capillary channels (26) are absent from the edge sections (20, 22); however, in some embodiments capillary channels (26) may be present within the edge sections (20, 22). The diameter and shape of the capillary channels are not particularly limited but are preferably elliptical, e.g. circular cross-section. Depending upon the method used to produce the microporous polymer sheet, polygonal shapes, e.g. rectangular, diamond, and hexagonal are also possible. The diameter of the capillary channels is not particularly limited and is often determined by the limits of the manufacturing technique, materials of construction, sheet thickness and pressure requirements dictated by the end use application of the module. For most applications, diameters of from 0.05 to 5 mm are suitable, with diameters of 0.1 to 0.5 being more preferred. Center-to-center spacing of capillary channels is preferably from 0.1 to 5 mm, but more preferably from 0.2 to 1 mm, depending upon the diameter of the capillary channel.
The membrane sheet (i.e. the edge and bulk sections) preferably comprises a microporous polymer structure. In particular, the bulk section (24) comprises a microporous polymer structure that provides selective fluid communication between the opposing outer surfaces (12, 14) and the capillary channels (26). The microporous polymer structure is not particularly limited and the morphology, density, tensile strength, average pore size and porosity are typically a function of the material and manufacturing technique utilized to produce the sheet. In many embodiments the microporous polymer structure is produced by extruding a polymer mixture into a sheet including capillary channels followed by a phase inversion which creates the desired porosity. Other well known techniques such as stretching and the use of porogens may also be used. The size and distribution of pores throughout the microporous polymer structure can be controlled via known techniques. Depending upon the end use application, the average pore sizes (e.g. as measured by ASTM F316-03) may range from 0.001 to 10 μm, but in many applications the average pore size will range from 0.01 to 1 μm. The microporous structure may be isotropic or anisotropic. The porosity (e.g. “specific surface area” as measured by BET, see S. Brunauer, P. H. Emmett and E. Teller. J. Am. Chem. Soc. 60 (1938), p. 309) of the microporous polymer structure of the bulk section (24) is preferably at least 50%. In some embodiments, the porosity of the sheet is relatively uniform throughout both the edge sections (20, 22) and bulk section (24); however, in other embodiments the microporous polymer structure of the edge sections has a lower porosity than that of the bulk section (24), (e.g. at least 10%, more preferably at least 20% and in some embodiments at least a 50% lower porosity). Similarly, the density of the microporous polymer structure may be relatively uniform throughout both the edge sections and bulk section of the sheet; however, in other embodiments the microporous polymer structure of the edge sections (20, 22) may have a higher density than the polymer structure of the bulk section (24) (e.g. at least 10%, more preferably at least 20% and in some embodiments at least a 50% higher density). The method for measuring density is not particularly limited but geometric gravimetric methods are preferred, (e.g. ASTM D1622-08, particularly sections 6.1-6.2). Sample sizes used to calculate density are not particularly limited (e.g. 80 mm×15 mm×0.5 mm). At least one and preferably both edge sections (20, 22) have a tensile strength at least twice and more preferably four times as great as the bulk section (24) of the membrane sheet (10). As used herein, “tensile strength” refers to the maximum stress on the stress-strain curve, (e.g. as measured by taking a sample (e.g. 80 mm×15 mm×0.5 mm) with a fixed cross-sectional area and pulling it with a controlled, gradually increasing force).
The subject membrane is preferably “dual-sided.” As used herein, the term “dual-sided” means that portions of both outer surfaces (12, 14) are capable of providing fluid separation. For example, in a preferred embodiment a discriminating layer (28, 28′) is present upon at least a portion of both outer surfaces (12, 14) of the membrane sheet (10) and serves as a semi-permeable barrier for separating constituents from a feed liquid contacting either (or both) outer surfaces (12, 14) of the membrane sheet (10). While the discriminating layer may cover the entire outer surfaces (12, 14) of the sheet (10), in a preferred embodiment the discriminating layer (28, 28′) only covers the bulk section (24) and does not cover the edge sections (20, 22). In one set of preferred embodiments, the discriminating layer (28, 28′) serves as a reverse osmosis (RO) or nano-filtration (NF) membrane. In such embodiments the discriminating layer is non-porous or porous with an average pore size of less than about 0.001 μm (e.g. 0.001 to 0.00001 μm). For purposes of this description, RO membranes are relatively impermeable to virtually all dissolved salts and typically reject more than about 95% of salts having monovalent ions such as sodium chloride. RO membranes also typically reject more than about 95% of inorganic molecules as well as organic molecules with molecular weights greater than approximately 100 Daltons. NF membranes are more permeable than RO membranes and typically reject less than about 95% of salts having monovalent ions while rejecting more than about 50% (and often more than 90%) of salts having divalent ions—depending upon the species of divalent ions. NF membrane also typically reject particles in the nanometer range as well as organic molecules having molecular weights greater than approximately 200 to 500 Daltons. In other embodiments, the discriminating layer may serve as an ultra-filtration (UF) membrane having an average pore size smaller than that of the microporous polymer structure of the underlying bulk section, e.g. from 0.001 to 0.01 μm. In most embodiments, the discriminating layer is preferably less than about μm 5 thick and more preferably less than about 1 μm thick, (e.g. from about 0.01 micron to 1 micron but more preferably from about 0.01 to 0.1 micron).
In a preferred embodiment, the membrane sheet (10) is “unsupported” i.e. has an “unsupported structure.” As used herein, the term “unsupported” or “unsupported structure” means a membrane sheet that excludes a fibrous support material such as a web or scrim of non-woven or woven fabric.
The present invention includes a method for preparing a dual-sided membrane sheet which comprises the steps of: a) forming a microporous sheet and b) forming a semi-permeable discriminating layer. The method includes both batch processes and continuous processes wherein the microporous polymer sheet of step a) is continuously advanced along a production pathway to a separate location wherein a semi-permeable discriminating layer is formed upon at least a portion of the opposing outer surfaces of the sheet. In a preferred embodiment, the sheet advances along a production pathway wherein various process steps are performed upon the moving sheet. The term “production pathway” is intended to describe a path in which the sheet travels during at least a portion of its formation.
Once formed the resulting microporous polymer sheet advances to a separate location wherein a discriminating layer (28, 28′) is applied, e.g. via coating (spray coater, contact coater, meniscus coating, etc.). The discriminating layer may be sequentially applied to each outer surface of the sheet, or simultaneous applied to both outer surfaces as illustrated in
The polyfunctional acyl halide is preferably coated from an organic-based solution including a non-polar solvent. Alternatively, the polyfunctional acyl halide may be delivered from a vapor phase (e.g., for polyfunctional acyl halide species having sufficient vapor pressure). The polyfunctional acyl halide is preferably aromatic and contains at least two and preferably three acyl halide groups per molecule. Because of their lower cost and greater availability, chlorides are generally preferred over other halides such as bromides or iodides. One preferred polyfunctional acyl halide is trimesoyl chloride (TMC). The polyfunctional acyl halide may be dissolved in a non-polar solvent in a range from about 0.01 to 10 weight percent, preferably 0.05 to 3 weight percent, and may be delivered as part of a continuous coating operation. Suitable solvents are those which are capable of dissolving the polyfunctional acyl halide and which are immiscible with water, e.g. hexane, cyclohexane, heptane and halogenated hydrocarbons such as the FREON series. Preferred solvents include those which pose little threat to the ozone layer and which are sufficiently safe in terms of flashpoints and flammability to undergo routine processing without taking special precautions. A preferred non-polar solvent is ISOPAR™ available from Exxon Chemical Company. The organic-based solution may also include small quantities of other materials.
Once brought into contact with one another, the polyfunctional acyl halide and the polyfunctional amine monomer react at their surface interface to form a polyamide discriminating layer or film. This layer, often referred to as a polyamide “thin film layer,” provides the membrane sheet with its principal means for separating solute (e.g. salts) from solvent (e.g. aqueous feed stream). Due to its relative thinness, the discriminating layer is often described in terms of its coating coverage or loading upon the microporous polymer sheet, e.g. from about 2 to 5000 mg of polyamide per square meter surface area of microporous sheet and more preferably from about 50 to 500 mg/m2.
The reaction time of the polyfunctional acyl halide and the polyfunctional amine monomer may be less than one second but contact times typically range from about 1 to 60 seconds, after which excess liquid may be optionally removed by way of an air knife, water bath(s), dryer or the like. The removal of the excess water or organic solvent can be achieved by drying at elevated temperatures, e.g. from about 40° C. to about 120° C., although air drying at ambient temperatures may be used. These post-coating steps are symbolized at (42) in
With reference to
The step of engaging the sheet preferably comprises applying a compressive force to the edge sections of the sheet, such as by way of a releasable clamping device, vacuum gripping device, belt, roller or similar means. In the illustrated embodiment, the outer surfaces of edge sections are engaged by a set or multiple sets of opposing rollers (44, 44′). In an alternative embodiment, the edge section of the sheet may be engaged on one surface (as illustrated in
As shown in
Many embodiments of the invention have been described and in some instances certain embodiments, selections, ranges, constituents, or other features have been characterized as being “preferred.” Characterizations of “preferred” features should in no way be interpreted as designated such features as being required, essential or critical to the invention. It will be understood that certain features and sub-combinations are of utility and may be employed without reference to other features and sub-combinations. References to ranges of numerical values expressly include the end points of such ranges.
The entire subject matter of each U.S. patent reference mentioned herein is incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3397790 | Glen et al. | Aug 1968 | A |
3471606 | Corbett et al. | Oct 1969 | A |
4021351 | Bray | May 1977 | A |
4277344 | Cadotte | Jul 1981 | A |
4707265 | Barnes et al. | Nov 1987 | A |
4768410 | Wood | Sep 1988 | A |
4834884 | Bergloff et al. | May 1989 | A |
4944877 | Maples | Jul 1990 | A |
5046936 | Bourdiol et al. | Sep 1991 | A |
5089187 | Aptel et al. | Feb 1992 | A |
5114582 | Sandstrom et al. | May 1992 | A |
5171493 | Aptel et al. | Dec 1992 | A |
5248424 | Cote et al. | Sep 1993 | A |
5275725 | Ishii et al. | Jan 1994 | A |
5340008 | Freermann et al. | Aug 1994 | A |
5482625 | Shimizu et al. | Jan 1996 | A |
5500247 | Hagqvist | Mar 1996 | A |
5538642 | Solie | Jul 1996 | A |
5620605 | Moller | Apr 1997 | A |
5681467 | Solie et al. | Oct 1997 | A |
5768964 | Meschi | Jun 1998 | A |
6066254 | Huschke et al. | May 2000 | A |
6090441 | Vining, Jr. et al. | Jul 2000 | A |
6280626 | Miyashita et al. | Aug 2001 | B1 |
6287467 | Nagano et al. | Sep 2001 | B1 |
6299772 | Huschke et al. | Oct 2001 | B1 |
6381846 | Insley et al. | May 2002 | B2 |
6406626 | Murakami et al. | Jun 2002 | B1 |
6632356 | Hallan et al. | Oct 2003 | B2 |
6776940 | Meyering et al. | Aug 2004 | B2 |
6787216 | Koenhen | Sep 2004 | B1 |
6878278 | Mickols | Apr 2005 | B2 |
6881336 | Johnson | Apr 2005 | B2 |
6994789 | Sale et al. | Feb 2006 | B2 |
7048855 | de la Cruz | May 2006 | B2 |
7279215 | Hester et al. | Oct 2007 | B2 |
7311831 | Bradford et al. | Dec 2007 | B2 |
7459082 | Tung et al. | Dec 2008 | B2 |
7743929 | Kools | Jun 2010 | B2 |
20060053759 | Winters et al. | Mar 2006 | A1 |
20060292044 | Ohno et al. | Dec 2006 | A1 |
20070272628 | Mickols et al. | Nov 2007 | A1 |
20070286949 | Doyen et al. | Dec 2007 | A1 |
20080156730 | Heinen | Jul 2008 | A1 |
20080164208 | Doyen et al. | Jul 2008 | A1 |
20080185332 | Niu et al. | Aug 2008 | A1 |
20080257817 | Kamleiter et al. | Oct 2008 | A1 |
20080290031 | Popa et al. | Nov 2008 | A1 |
20090011182 | Mackley et al. | Jan 2009 | A1 |
20090071896 | Mues et al. | Mar 2009 | A1 |
20090078644 | Mues et al. | Mar 2009 | A1 |
20110049038 | Aerts et al. | Mar 2011 | A1 |
Number | Date | Country |
---|---|---|
2445163 | Jul 1980 | FR |
2616812 | Dec 1988 | FR |
59082906 | May 1984 | JP |
H8-155275 | Jun 1996 | JP |
1190192 | Apr 1999 | JP |
11128692 | May 1999 | JP |
2951189 | Sep 1999 | JP |
2001205054 | Jul 2001 | JP |
1009866 | Feb 2000 | NL |
8102750 | Oct 1981 | WO |
2006043884 | Apr 2006 | WO |
2007036332 | Apr 2007 | WO |
2009127345 | Oct 2009 | WO |