This invention relates to chuck assemblies for tool-bits, and more particularly, to a quick release chuck adapted to receive and retain a plurality of tool-bits having varying shank cross-sectional sizes.
Tool-bits include tools used for drilling and driving fastener devices such as screws, nuts and bolts, and other work elements requiring rotational motion. The traditional or “incremental” design typically consists of a mechanism that houses three adjustable jaws which protrude at an angle into a bore. An external sleeve is coupled to the jaws via internal gear teeth. When a tool shank is inserted into the bore, the sleeve is rotated by a user. As the sleeve is rotated in one direction, the jaws are forced towards the center of the bore to clamp a tool-bit and tighten the sleeve into place (e.g. using a chuck key). When the sleeve is rotated in the opposite direction, the jaws are opened. This chuck style is able to accommodate a variety of tool shank sizes and shapes. However, changing a tool-bit takes time and extensive operator involvement.
Tools having an alternate approach to chuck design allow for toot-bits to be exchanged in a “quick-change” manner. The American National Standards Institute has a specification for such tools known as ANSI B 107.41982, which refers to driving and spindle ends for portable powered and handheld machines which use tool-bits. Tool-bits in accordance with the standard have a hexagonally configured shank. The standard reflects an alternate and pervasive use of such tool-bits and the large inventory of tools available.
One type of quick-change or quick-release chuck uses a spring biased sleeve disposed on a spindle or hub, as described in U.S. Pat. Nos. 4,900,202 and 5,013,194. Quick-release chucks of this type require the use of tools that have shanks of a consistent size (typically, ¼″ hex shank), usually having hexagonal cross sections. A spring biased sleeve is used to retain the tool-bit in the chuck. The sleeve urges a detent ball into contact with the shank of the tool-bit and maintains the ball in position by a shoulder (or cam surface) mounted on the sleeve. The ball is urged into contact with the shank and maintained in position by a compression spring disposed between the spindle and the sleeve. A ring secured to the hub limits movement of the sleeve in one direction, and the compression spring limits movement of the sleeve in the opposite direction.
The tool-bit is prevented from being axially extracted from the chuck by the ball. The spring biased shoulder is urged against the detent ball which locks it against a retaining face on the tool-bit. Attempting to extract the tool-bit from the bore without release of the ball pulls the ball against the retaining face. The resulting force prevents extraction of the tool-bit from the shank receiving bore. To release the tool-bit from the receiving bore, the user must retract the sleeve. The retracted sleeve acts to compress the spring, which removes the shoulder from engagement with the ball and thereby allows the ball to move out of contact with the tool-bit. Thus, quick-release chucks allow for an operator to easily and quickly insert and remove tool-bits from the chuck without requiring the use of a chuck key or requiring the loosening or tightening of jaws onto the shank of the tool-bit.
Previous quick-release systems are only able to accommodate a single cross-sectional size tool-bit shank. Thus, in order to provide sufficient rotational torque, the cross-sectional size of the receiving bore of the quick release chuck must be substantially the same as the cross-sectional size of the tool-bit shank in order for the quick-release chuck to rotate the tool-bit as the chuck rotates. A quick-release chuck assembly is needed in the art which quickly and efficiently exchanges tool-bits having different cross-sectional sizes.
A tool-bit holder for varying tool-bit shank profiles, the tool-bit holder comprising a hub having a longitudinal bore adapted for receiving a tool-bit shank. The longitudinal bore comprises a first section having a first profile and a first length, and a smaller second section having a second profile and second length. The hub has a plurality of radial slots communicating with the longitudinal bore. A collar is fixedly attached to the hub and disposed annularly about the hub and forms a channel over each radial slot. A sleeve is axially slidably mounted along the hub. The sleeve has a plurality of radial bores corresponding to the slots of the hub with a detent ball is disposed within each of the radial bores. The tool-bit holder also comprises at least one inner ramp face for engaging each detent ball. A spring is provided for biasing the sleeve along the hub between a locking position and a retracting position.
The above summary is not intended to describe each disclosed embodiment or every implementation of the present invention. The figures and the detailed description which follow more particularly exemplify illustrative embodiments.
The present invention will be further explained with reference to the attached figures, wherein like structure is referred to by like numerals throughout the several views.
While the above-identified drawing figures set forth one embodiment of the invention, other embodiments are also contemplated, as noted in the discussion. In all cases, this disclosure presents the present invention byway of representation and not limitation. It should be understood that numerous other modifications and embodiments can be devised by those skilled in the art which fail within the scope and spirit of the principles of this invention.
The present invention is a tool-bit holder for capturing and retaining a tool-bit that has a quick release mechanism. A first embodiment of an automatic tool-bit holder is shown in
The hub 12 has a forward distal end 22, ending in a forward face 26, and a rear proximal end 24. Preferably, the proximal end 24 of the hub 12 is shaped to provide a connection to a chuck for a power tool. Alternatively, the proximal end 24 is a spindle that provides a connection to other devices such as tools used for drilling and driving. The proximal end 24 typically has a hexagonally-shaped cross-section.
A longitudinal bore 28 extends perpendicularly into the forward face 26 and axially toward the proximal end 24 of the hub 12. The longitudinal bore comprises a first bore section 30, which has an open end 29. The first bore section 30 is of a first profile 31, preferably hexagonally-shaped (See
The longitudinal bore 28 is substantially aligned along the 30 longitudinal axis of the hub 12 and is shaped to admit the shank of different sized quick release tool-bits, such as ¼″ and ⅜″ commonly used in the industry. The terminating face 37 and limiting face 39 extend substantially perpendicular to the longitudinal axis of the hub 12, although a person skilled in the art would realize that said faces 37 and 39 may have a concavity due to the boring process. The third bore section 34 is made to receive a tool end on a dual sided tool-bit, such as a twist drill bit. In a second embodiment (not illustrated), the longitudinal bore contains only a first bore section 30 and second bore section 32.
The hub 12 has a radial slots 38 located along the longitudinal axis of the hub 12 and the radial slots 38 are preferably aligned to extend substantially perpendicular to the longitudinal axis of the hub 12. The radial slots 38 extend completely through the hub 12 such that the radial slots 38 communicate with the longitudinal bore 28.
The collar 14 is fixedly attached to the hub 12 forward of the radial slots 38 adjacent the open end 29 of the longitudinal bore 28 and is disposed annularly about the hub 12. The collar 14 has a forward face 40 at the distal end 22 of hub 12 extending radially outwardly from the longitudinal axis of the hub 12 and, in one embodiment, forms one continuous plane with the forward face 26 of the hub 12. The collar 14 also has a proximal end 42. As shown in
The sleeve 16 is slidably mounted along the hub 12. The sleeve 16 is disposed annularly about the hub 12. The sleeve 16 also has a forward end 50 and rearward end 52. The sleeve 16 has a ramped outer surface 47 (extending radially away and rearwardly) corresponding to the inner ramp surface 46 of the collar 14. The sleeve 16 lies at least partially within the channel 45 created by the inner ramp surface 46 of the collar 16 such that the sleeve 16 axially slides along the hub 12 and within the channel 45. The sleeve 16 has radial bores 48 in communication with the radial slots 38 of the hub 12. With no tool-bit inserted into the tool-bit holder 10, the sleeve 16 assumes a first position as shown in
The detent balls 18 are disposed within the radial bores 48 of the sleeve 16 and the radial slots 38 of the hub 12, which are circumferentially. 10 aligned. The inner ramp surface 46 of the collar 14 prevents the detent balls 18 from leaving their respective positions and completely falling radially out of the tool-bit holder 10. The diameter of the detent balls 18 is greater than the widths of the radial slots 38 of the hub 12 (at its radially inner end), thereby preventing the detent balls 18 from completely falling radially into the longitudinal bore 28. The diameter of the detent balls 18 is such that when the tool holder 10 is in the unloaded position, the balls extend into the area of the second profile 33 of the second bore section 32 (See
The spring 20 is disposed between a shoulder 58 of the sleeve 16 and a washer 60 which is fixed relative to the hub 12. The spring 20 is of 20 the compression spring type, such that the spring 20 biases the sleeve 16 axially toward the open end 29 of the longitudinal bore 28. A retaining clip 62 is received in a circumferential groove in the hub 12 outer wall, and thus prevents the washer 60 from moving toward the distal end 24 of the hub 12. When the sleeve 16 is urged towards the open end 29 of the longitudinal bore 2528, the detent balls 18 in the radial bores 48 of the sleeve 16 oppose the bias of the spring 20 and engage the inner ramp face 46. The inner ramp face 46 extends radially outwardly and toward the terminating face 37 of the longitudinal bore 28. The sleeve 16 is slidably positionable along the hub 12 between a locking position and a retracting position (or a tool-bit loading position and 30 unloading position). When the sleeve 16 is in the loaded position, the spring 20 is less compressed than when the sleeve 16 is in the unloading position.
The shank 66 comes in contact with the detent balls 18 and urges, the detent balls 18 radially outwardly against the inner ramp face 46. This in turn forces the sleeve 16 to slide axially rearward towards the proximal end 24 of the hub 12 (into a second position as shown in
To remove any of the tool-bits 64, 72, or 82 from the tool-bit holder 10, the sleeve 16 is moved axially rearwardly along the hub 12 toward 20 the proximal end 24 of the hub 12 and against the bias force of the spring 20, thereby compressing the spring 20. Movement of the sleeve 16 is generally performed by the tool operator. As the sleeve 16 is moved axially rearwardly along the hub 12, the detent balls 18 riding in the radial bores 48 of the sleeve 16 can move radially outwardly along the inner ramp face 46, removing the 25 detent balls 18 from applicable profile of the applicable bore section 30 or 32. Once the detent ball 18 is removed from the bore section 30 or 32, the shank of the tool-bit is free to be released from the longitudinal bore 28. The tool-bit is removed by pulling the shank longitudinally toward the distal end 22 of the hub 12, thereby releasing the tool-bit from the tool-bit holder 10.
The present invention enables a user to quickly change a plurality of tool-bits having varying shank cross-sectional sizes in the same chuck assembly. A first tool-bit having a first profile which is locked within the hub of the present invention can be quickly and easily exchanged for a second tool-bit having a smaller second profile. Alternatively, the second tool-bit can be quickly and easily exchanged for the first tool-bit. The present invention chuck assembly offers a convenient and efficient way to change tool-bits with different cross-sectional profiles within the same chuck assembly. Additionally, the present inventive chuck also allows a user to quickly change a reversible tool-bit containing two different working tools on opposite ends with a shaft that has different sizes.
With the above described tool-bit holder, a method of quickly changing the size of tool-bits is provided. A first tool-bit of a first cross-sectional profile is inserted into a first section of a longitudinal bore of a tool-bit holder. The tool-bit is retained in the tool-bit holder with a plurality of detent balls engaged by a spring biased sleeve in a first position, and the detent balls are in communication with the first bore section. The spring biased sleeve is moved to a position that disengages the detent balls from the first position to remove the first tool bit. Next, a second tool-bit of a second profile is inserted into a second section of the longitudinal bore of the tool-bit holder. The second tool-bit occupies a portion of the first section of the longitudinal bore. The second tool-bit is retained within the tool-bit holder with the plurality of detent balls engaged by the spring in a second position. The first tool-bit is retained in the tool-bit holder at a different depth than the second tool bit. To remove the second tool bit, the spring biased sleeve is moved to a position that disengages the detent balls from the second position. In addition, a second end of the first tool bit within the tool-bit holder can be protected by providing a third section of the longitudinal bore.
Although the present invention has been described with reference to several embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and 30 scope of the invention.
The present application is a continuation of and claims priority of U.S. patent application Ser. No. 13/022,158, filed Feb. 7, 2011, which is a continuation of U.S. patent application Ser. No. 10/592,868, filed Sep. 14, 2006, which is a 371 of international application PCT/US2005/008720, filed Mar. 15, 2005, and which is a non-provisional of 60/553,581, filed Mar. 15, 2004, the contents of which are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
423386 | Miller | Mar 1890 | A |
656357 | Kramer | Aug 1900 | A |
967837 | Schade | Aug 1910 | A |
1184758 | Leland | May 1916 | A |
2135861 | Thompson | Nov 1938 | A |
2448817 | McArthur | Sep 1948 | A |
3240520 | Dailey et al. | Mar 1966 | A |
3599996 | Holt | Aug 1971 | A |
3767217 | Jensen | Oct 1973 | A |
4032163 | Holt | Jun 1977 | A |
4577875 | Miyakawa | Mar 1986 | A |
4900202 | Wienhold | Feb 1990 | A |
5013194 | Wienhold | May 1991 | A |
5062749 | Sheets | Nov 1991 | A |
5417527 | Wienhold | May 1995 | A |
5466101 | Meyen | Nov 1995 | A |
5470180 | Jore | Nov 1995 | A |
5722805 | Giffin | Mar 1998 | A |
5779404 | Jore | Jul 1998 | A |
6176654 | Jore | Jan 2001 | B1 |
6270085 | Chen et al. | Aug 2001 | B1 |
6302408 | Zierpka | Oct 2001 | B1 |
6325393 | Chen et al. | Dec 2001 | B1 |
6347914 | Boyle et al. | Feb 2002 | B1 |
6394715 | Boyle et al. | May 2002 | B1 |
6457916 | Wienhold | Oct 2002 | B2 |
6561523 | Wienhold | May 2003 | B1 |
6616149 | Pjevach et al. | Sep 2003 | B1 |
6722667 | Cantlon | Apr 2004 | B2 |
6874791 | Chen et al. | Apr 2005 | B2 |
6966562 | Wienhold | Nov 2005 | B1 |
20010042964 | Bedi | Nov 2001 | A1 |
20040013485 | Zierpka | Jan 2004 | A1 |
20040111804 | Fan-Chiang | Jun 2004 | A1 |
Number | Date | Country |
---|---|---|
02064295 | Aug 2002 | WO |
Entry |
---|
European Communication from EP Application No. 05 725 716.4 dated May 18, 2010, 4 pages. |
Supplementary European Search Report from correspondence European Patent Application No. 05 72 5716, dated Jun. 12, 2009, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20140027987 A1 | Jan 2014 | US |
Number | Date | Country | |
---|---|---|---|
60553581 | Mar 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13022158 | Feb 2011 | US |
Child | 13657183 | US | |
Parent | 10592868 | US | |
Child | 13022158 | US |