The disclosure relates to the field of pump heads, in particular to a dual-spring all-plastic vacuum pump.
In daily life, paste materials are usually stored by a hose. The hose includes a pump head and a bottle body made of plastic. Although the pump body is also basically made of plastic, because a spring in the pump head is made of metal, the pump head and the bottle body need to be respectively recycled when recycled, and cannot be treated together, which causes great trouble to recycling of the hose, and therefore a technical means capable of solving the problem is urgently needed.
The objective of the disclosure is to provide a dual-spring all-plastic vacuum pump to solve the problem that an existing pump head is inconvenient to directly recycle.
In order to solve the above technical problem, the disclosure provides a dual-spring all-plastic vacuum pump including a base and a pressing head. A feeding hole is formed in a bottom of the base, and an accommodating cavity is defined by assembly of the pressing head and the base. The feeding hole is in communication with the accommodating cavity, and a limiting cover, a plastic one-way spring, a discharging member and a plastic reset spring are disposed in the accommodating cavity. The limiting cover surrounds the feeding hole, a top of the limiting cover is provided with a guide hole, and the guide hole is in communication with an interior of the limiting cover. The plastic one-way spring is clamped between the base and the limiting cover. Two opposite ends of the plastic one-way spring are a fixed end and a stressed end respectively. The fixed end and the stressed end are in communication with each other, the fixed end is in connection and communication with the feeding hole, and the stressed end is in communication with the guide hole. The discharging member is disposed between the pressing head and the limiting cover, the discharging member penetrates through the guide hole and is in communication with the stressed end, and the discharging member is configured to receive materials to the pressing head for output. The plastic reset spring is clamped between the discharging member and the limiting cover. Pressing of the pressing head is configured to push the discharging member to compress the plastic one-way spring.
In one embodiment, the discharging member includes a discharging tube and a positioning cover. The discharging tube penetrates through the guide hole to be inserted into the plastic one-way spring. The discharging tube is hollow internally to form a discharging channel, and the discharging channel is in communication with an interior of the plastic one-way spring. The positioning cover surrounds a periphery of an end of the discharging tube. An annular groove is defined by the positioning cover and an outer wall of the discharging tube, and one end of the plastic reset spring is embedded into the annular groove.
In one embodiment, a top face of the limiting cover is provided with a circle of convex ring. The convex ring surrounds the guide hole, and one end of the plastic reset spring surrounds the convex ring.
In one embodiment, a connector is further disposed in the accommodating cavity, and the connector includes a cover body portion and a tube body portion connected to each other. The cover body portion is disposed in the limiting cover. The stressed end is disposed in the cover body portion, and the stressed end abuts against the cover body portion. The tube body portion penetrates through the guide hole to sleeve the discharging tube.
In one embodiment, a position, connected to an interior of the cover body portion, of the tube body portion is provided with a limiting wall narrowed inwards. A space defined by the limiting wall is in communication with the plastic one-way spring and the discharging channel, and a smallest diameter of the limiting wall is smaller than an outer diameter of the discharging tube.
In one embodiment, the discharging tube includes a feeding section and a discharging section connected to each other. An outer wall of a port of the discharging section is provided with the positioning cover, and an outer tube diameter of the discharging section is larger than an inner tube diameter of the tube body portion.
In one embodiment, a bearing ring is disposed inside the cover body portion. The bearing ring is embedded into the stressed end, and the stressed end is clamped between a space defined by the bearing ring and the cover body portion.
In one embodiment, a first annular positioning groove is disposed in an inner surface of a bottom of the base. The first annular positioning groove surrounds the feeding hole, and the fixed end is embedded into the first annular positioning groove.
In one embodiment, a second annular positioning groove is further disposed in the inner surface of the bottom of the base. The second annular positioning groove surrounds the first annular positioning groove, and a lower portion of the limiting cover is embedded into the second annular positioning groove.
In one embodiment, the dual-spring all-plastic vacuum pump further includes an outer cover, and the outer cover detachably sleeves the pressing head.
The disclosure has the following beneficial effects:
Because the limiting cover, the plastic one-way spring, the discharging member and the plastic reset spring are disposed in the accommodating cavity, a metal spring is replaced with the plastic one-way spring and the plastic reset spring according to this solution. A pump head can be subjected to unified treatment when recycled, and therefore the problem that an existing pump head is inconvenient to directly recycle is practically solved.
To describe the technical solutions of the disclosure more clearly, the following briefly describes accompanying drawings required for describing the embodiments. Apparently, the following described accompanying drawings are only some of the embodiments of the disclosure, and those of ordinary skill in the art may still derive other drawings from these accompanying drawings without creative efforts.
Reference numerals are as follows:
The following clearly and completely describes the technical solutions in the implementations of the disclosure with reference to the accompanying drawings in the implementations of the disclosure.
The disclosure provides a dual-spring all-plastic vacuum pump, and an embodiment thereof is shown in
During application, the dual-spring all-plastic vacuum pump and the bottle body 70 are assembled for use. At the moment, the bottle body 70 is fixedly connected to the base 10, and the interior of the bottle body 70 is used to store materials. If a user presses the pressing head 20, the discharging member 50 will press the plastic one-way spring 40 and the plastic reset spring 60, so that the plastic one-way spring 40 and the plastic reset spring 60 are in a contracted state, and materials in the plastic one-way spring 40 will be conveyed to the pressing head 20 through the discharging member 50 for discharge. After the user no longer presses the pressing head 20, the plastic one-way spring 40 will automatically restore an original shape, and due to the change of air pressure, the plastic one-way spring 40 also will automatically extract materials from the bottle body 70 until the materials fill the interior of the plastic one-way spring 40 fully, and the plastic reset spring 60 also will automatically restore an original shape. Therefore, the pressing head 20 is pushed back to an original position.
Therefore, with this solution, a metal spring is replaced with the plastic one-way spring 40 and the plastic reset spring 60. When recycled, a pump head can be subjected to unified treatment, and therefore the problem that an existing pump head is inconvenient to directly recycle is solved.
As shown in
After the structure is adopted, the materials in the plastic one-way spring 40 can be conveyed to the pressing head 20 through the discharging channel 53 for discharge, and the annular groove 54 also realizes fixing at an upper mounting position of the plastic reset spring 60, so that working stability of the plastic reset spring 60 is guaranteed.
As shown in
After the structure is adopted, the convex ring 32 realizes fixing at a lower mounting position of the plastic reset spring 60, so that working stability of the plastic reset spring 60 is further improved.
As shown in
That is, after the user presses the pressing head 20, the discharging member 50 can drive the connector 80 to move downwards together, whereby downward pressure is applied to the plastic one-way spring 40 through the connector 80, such that compression control over the plastic one-way spring 40 is realized. After the user no longer presses the pressing head 20, the plastic one-way spring 40 will drive the connector 80 to reset together.
As shown in
At the moment, the limiting wall 83 substantially defines an inverted cone shape, so that when the discharging pipe 51 moves downward, the discharging pipe 51 will abut against the limiting wall 83 to push the connector 80 to move downwards.
As shown in
That is, with downward movement of the discharging tube 51, the discharging section 512 will abut against the tube body portion 82, so that the discharging tube 51 is limited from continuing to move downwards, and the phenomenon that the discharging tube cannot be reset due to excessive downward movement is avoided.
As shown in
Because the space defined by the bearing ring 90 and the cover body portion 81 is small, the two can stably clamp the plastic one-way spring 40 to prevent the plastic one-way spring 40 from producing unstable deformation, and therefore stable compression and reset of the plastic one-way spring 40 is guaranteed.
As shown in
As shown in
The above mentioned are preferred implementations of the disclosure. It should be noted that several improvements and refinements may be made by those of ordinary skill in the art without departing from the principles of the disclosure, and these improvements and refinements are also to be considered within the scope of the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
202011145195.0 | Oct 2020 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2020/124891 | 10/29/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2022/082844 | 4/28/2022 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4079865 | Kutik | Mar 1978 | A |
4245967 | Busselet | Jan 1981 | A |
5038965 | Cater | Aug 1991 | A |
5217148 | Cater | Jun 1993 | A |
5638996 | Montaner | Jun 1997 | A |
5655688 | Moore | Aug 1997 | A |
6036059 | VanBrocklin | Mar 2000 | A |
7735693 | Pares | Jun 2010 | B2 |
10434531 | Goettke | Oct 2019 | B2 |
10661938 | Elmeguenni | May 2020 | B2 |
10753485 | Kang | Aug 2020 | B2 |
11097292 | Chevalier | Aug 2021 | B2 |
11154888 | Lee | Oct 2021 | B2 |
20040000567 | Greiner-Perth | Jan 2004 | A1 |
20210187530 | Lee | Jun 2021 | A1 |
Number | Date | Country |
---|---|---|
1136526 | Nov 1996 | CN |
2527528 | Dec 2002 | CN |
202987798 | Jun 2013 | CN |
104071437 | Oct 2014 | CN |
105173425 | Dec 2015 | CN |
105947389 | Sep 2016 | CN |
207985641 | Oct 2018 | CN |
211663799 | Oct 2020 | CN |
2954293 | Jun 2011 | FR |
2018015685 | Feb 2018 | JP |
Number | Date | Country | |
---|---|---|---|
20230264218 A1 | Aug 2023 | US |