Connectors often includes coaxial contacts to carry high frequency signals (e.g. over 1 MHz). One design uses long pin-and-socket contacts to assure good electrical engagement between the mating contacts. This kind of contact arrangement requires that one contact be inserted deeply within the other, which is a disadvantage in many applications. Also, the insertion of one contact deeply into another can alter the characteristic impedance along the contacts and result in losses.
A contact arrangement for connector that include at least one set of coaxial contacts, which enabled mating with only a short distance of movement of one contact into the other one, and which enabled close control of the characteristic impedance along the connector, would be of value.
In accordance with one embodiment of the invention, a coaxial connector system is provided which enables first and second connectors with coaxial contacts to mate with only a short insertion distance of one connector into the other, and which enables the close control of connector characteristic impedance along the connector length to minimize losses. A first connector has center and outer movable contacts, and the second connector has stationary center and outer contacts in the form of contact pads. First and second helical compression springs are provided, one for each movable contact. The compression springs bias the movable contacts forwardly so they firmly engage the contact pads, with only a small distance of movement of one connector into the other.
The first connector includes a tubular insulator that surrounds the movable center contact. The first connector also has a sheet metal shield that surrounds the tubular insulator and that lies within the movable outer contact. The movable outer contact has a front end that includes an internal flange that lies forward of the tubular insulator. The sheet metal shield has an internal flange at its front end that lies against the front end of the tubular insulator and behind the internal flange of the outer contact. The sheet metal shield provides a more constant impedance to reduce losses.
The novel features of the invention are set forth with particularity in the appended claims. The invention will be best understood from the following description when read in conjunction with the accompanying drawings.
Coaxial contacts have characteristic impedances, with a 50 ohm impedance being the most common. Losses are minimized by constructing all sections of the connectors with characteristic impedances that are close to 50 ohms.
As shown in
The movable outer contact 22 has a sleeve portion 25 with a front end with an internal flange 80, that is, with a flange that extends radially inwardly towards the axis 16 from the front cylindrical portion 82 of the outer movable contact. The internal flange extends by a majority of a full circle (i.e. over 180°) about the axis and preferably extends by a full circle (360°) about the axis. The internal flange 80 has an aperture 84 through which the movable inner contact 20 can readily pass without engaging the outer contact, so the movable inner contact can engage the center contact pad 34 of the second or mating connector 14.
The first and second connectors 12, 14 are usually parts of a larger connector arrangement that may include additional connectors of the coaxial or noncoaxial type, such as shown in applicants' U.S. Pat. No. 7,597,588. However, it is also possible for the first and second connectors to be the only connectors, and to be held together by bayonet threads, a latch, etc. In either case, the use of movable contacts that engage contacts pads of a mateable connector enables mating to occur with one connector moving a minimal distance into the other to fully mate thereto. The present invention uses a single movable outer contact to increase reliability and maintain a more constant characteristic impedance for lower losses.
The internal flange 80 at the front end of the movable outer contact 22 is provided with a pair of forward-projecting ridges 90. The ridges engage the stationary outer pad over an area not more than 10% of the area of the inner flange. The ridges concentrate forces applied by the movable outer contact to the outer contact pad 36 to produce a low resistance engagement. Actually, applicant prefers to interrupt the ridges with small slots.
The first connector includes a tubular insulator 100 that has walls forming a central passage 101 that surrounds the moveable inner contact 20 and that lies within a passage 103 of the movable outer contact 22. A stationary conductive shield 102 that is preferably formed from deep drawn sheet metal, surrounds the tubular insulator 100. The use of a thin (e.g. 0.01 inch or 0.25 mm) shield of sheet metal minimizes cost and size. The shield is electrically connected to the movable outer contact 22 in a number of ways, with one being a solder connection at 62 between the outer shell 64 and the shield and another one being the connection between the clip 70 and the shell. The shield 102 maintains a constant characteristic impedance, which is usually preferred to be 50 ohms. At the front end of the first connector there is an air gap 110 where the movable center contact projects forward of the insulator. Air has a lower permittivity than the insulative material of the tubular insulator. The shield is constructed with a tubular portion 111 and with an internal flange 112 forming an aperture 114, and that results in a smaller radial distance between the movable center and outer contacts at the air gap to counter the lower permittivity at the air gap. The internal flange 80 of the movable outer contact also helps to maintain a 50 ohm characteristic impedance along the air gap 110.
Thus, the invention provides a connector system that includes first and second coaxial connectors wherein one connector has movable inner and outer contacts and the other connector has stationary inner and outer contact pads, and where the first connector is constructed to maintain a largely constant characteristic impedance throughout its length for minimum losses. The movable inner and outer contacts are preferably each formed by a single contact that is biased forward by a separate helical spring that is centered on the connector axis. The first connector has a tubular insulator lying between the movable inner and outer contacts, and has a grounded sheet metal shield around the tubular insulator. The shield has an internal flange at its front end that lies against the front end of the insulator. The movable outer contact has an internal flange at its front end, the internal flanges of the shield and movable contact having apertures through which the movable center contacts can pass without touching the shield or outer contact flange.
Although particular embodiments of the invention have been described and illustrated herein, it is recognized that modifications and variations may readily occur to those skilled in the art, and consequently, it is intended that the claims be interpreted to cover such modifications and equivalents.
Number | Name | Date | Kind |
---|---|---|---|
3275970 | Johanson et al. | Sep 1966 | A |
3416125 | Theve | Dec 1968 | A |
3609637 | Cole | Sep 1971 | A |
4734050 | Negre et al. | Mar 1988 | A |
4740746 | Pollock et al. | Apr 1988 | A |
5329262 | Fisher, Jr. | Jul 1994 | A |
6053777 | Boyle | Apr 2000 | A |
6758680 | Duquerroy et al. | Jul 2004 | B2 |
6776668 | Scyoc et al. | Aug 2004 | B1 |
7189113 | Sattele et al. | Mar 2007 | B2 |
7238047 | Saettele et al. | Jul 2007 | B2 |
7399208 | Schmidt | Jul 2008 | B2 |
7416418 | Berthet et al. | Aug 2008 | B2 |
7597588 | Hyzin et al. | Oct 2009 | B1 |
Number | Date | Country |
---|---|---|
44 39 852 | May 1996 | DE |
WO 2007062845 | Jun 2007 | WO |