The technical field of the invention is endoscopic and laparoscopic medical devices, and in particular, wire guides used in endoscopic and laparoscopic procedures.
Wire guides are used extensively in what is referred to as the “Seldinger technique.” In this technique, a physician guides a slim and flexible wire guide through a body lumen, such as a urethra, until the wire guide enters the body organ or cavity of interest. A wire guide is typically very narrow having a diameter from 0.018″ (about 0.46 mm) to 0.038″ (about 0.93 mm). A narrow wire guide with a lubricious coating, such as a hydrophilic coating, can pass through a body lumen with relative ease and comfort for the patient. Once the wire guide has been placed, the physician may then use the wire guide to pass larger instruments into the patient. For instance, the proximal end of the wire guide may be placed in a lumen of a catheter or an endoscope, and the catheter or endoscope may then also be guided into the patient along the same guide wire that was previously placed. An entire range of additional instruments, used for diagnostic or therapeutic procedures may then be used to help the patient.
Procedures involving a wire guide are certainly beneficial to the patient, because they offer an alternative to traditional open-cavity surgery. The trauma to the patient is greatly reduced, operating time is typically also greatly reduced, and the severity and length of the recovery procedure is likewise greatly reduced. Because of these advantages, wire guides are used extensively and opportunities for their improvement have arisen.
In particular, physicians want wire guides that are relatively stiff, and thus kink-resistant, but the wire guides should also be very flexible so that they may easily be guided to the desired location in the patient. To meet these needs, a variety of schemes have been tried to introduce both stiffness and flexibility in a wire guide. For instance, U.S. Patent Application Publication No. 2001/0021831 teaches the use of two wire guides, one wire guide helically wound within another, and each wire guide preferably multifilar. After the coils are wound, the inner coil is “unwound” so that it forms an interference fit with the outer coil. The resulting wire guide is stiff and kink-resistant, and has a high torque transfer capability. However, it is also relatively stiff and is not very flexible.
Another wire guide that attempts to blend stiffness with flexibility is described in U.S. Pat. No. 6,001,068. This patent describes a relatively stiff proximal wire guide joined to a relatively flexible distal wire guide with a connector. However, as seen in FIG. 5 of the patent, there is a discontinuity of stiffness in the joint or connection between the two. This may lead to stress concentration, difficulty in achieving the desired performance of the wire guide, and could conceivably lead to kinking or failure of the wire guide. What is needed is a wire guide with better continuity between its distal and proximal portions.
One embodiment is a composite wire guide. The composite wire guide includes a flexible distal portion, a stiff proximal portion, and a tapered connector joining the distal and proximal portions. Another embodiment is a composite wire guide. The composite wire guide includes a flexible distal portion made from a shape memory alloy, a stiff proximal portion, and a tapered connector with at least one helical or circumferential slit, the tapered connector adapted for joining the distal and proximal portions in a laser weld.
Another embodiment is a composite wire guide. The composite wire guide includes a central portion, a first flexible distal portion made from a shape memory alloy and connected to the central portion, and a second flexible distal portion connected to the central portion, wherein at least one of the first and second flexible distal portions are connected to the central portion by a tapered connector.
Another embodiment is a method for making a composite wire guide. The method includes furnishing a stiff proximal wire guide, connecting the stiff proximal wire guide to a tapered connector, and connecting the tapered connector to a flexible distal wire guide made from a shape memory alloy. There are many embodiments of the invention, of which the following descriptions and drawings show only a few. These descriptions are meant to be illustrative rather than limiting of the embodiments of the invention.
Wire guides, also known as guide wires, have become indispensable in modern day surgery, especially in laparoscopic or endoscopic procedures. Although each surgeon has his or her own preferences, it is important that the wire guide have just the right “feel” that makes the surgeon comfortable in manipulating and using the wire guide. Accordingly, composite wire guide embodiments are described herein.
Second wire guide 16 may be a looser, more flexible wire guide, such as the Hi-Wire® wire guides available from Cook Urological Incorporated, Spencer, Ind.. Wire guide 16 may also include a lubricious coating 17 to make the guide wire easier to insert. The coating may be a hydrophilic coating, or a plastic coating such as PTFE or other plastic coating, or both. There is preferably a connector 14 that joins the two wire guides at a joint 18.
Connector 14 is tapered and is preferably made from nickel or a nickel alloy. Suitable nickel alloys include almost any alloy with a high nickel content, such as AMS 5806 (38% Ni), AMS 5802 (38% Ni), AMS 546 (53% Ni), or the AMS 5600 series (generally 60%+Ni content). Almost any of the Nichrome, Inconel, Hastelloy, or Waspaloy alloys will also work well. Connectors made from other materials may also be used. However, since the end guide wire is typically made from Nitinol (nickel-titanium) shape memory alloy, connectors made from nickel work particularly well. Connectors made from titanium would probably also work well, but titanium connectors would be much more expensive than those made from a nickel alloy. Stainless steel connectors or connectors made from any medically-acceptable material would also work well, because typically the stiffer wire guide, such as an Amplatz-type, is made from less-expensive stainless steel.
The wire guides are joined to the connected at welds 13, 19. In order to join the wire guides at the connector, only laser welding is needed if the alloys are compatible, as described above. No small ring of solder or wire is needed in these cases. If incompatible alloys are used, a process that uses a small amount of solder, braze material, or even welding rod material may be used. Later, the joint may be ground or polished and is preferably coated with the above-mentioned lubricious coating, such as a plastic coating 14, a hydrophilic coating, or both.
Another embodiment is depicted in cross-section in
In addition to the composite guide wires described above, embodiments may also include guide wires with a stiffer center portion, such as an Amplatz, and a more flexible guide wire on either side of the central portion. One such embodiment is depicted in
Tapered connector 32 may be as described above and the composite wire guide may include a second tapered connector 34. As shown in
The ends of either of the flexible wire guides may be made as flexible as desired. Two embodiments are depicted in
Another embodiment is depicted in
In the embodiment of
The wire guide may also be a Bentson-type wire guide with distal tips as shown in
In the embodiment of
One way to manufacture the curved guide wire embodiments of
The transformation temperature is desirably a low temperature, well below the temperature of a human body, and preferably below room temperature, about 20-25° C. The transformation temperature of the wires is thus selected to be below the operating temperature of the wire, thus keeping the wire in a superelastic state. In this state, the wire advantageously returns to its original, unstressed shape when deforming stresses are removed, such as when the wire guide is removed from a package. The superelastic wire alloy also increasingly resists deformation as the stress load is increased. Thus, when a superelastic wire is deformed by being bent into a circular package for storage, the wire is placed into a state of stress. The straight end is stressed because it is bent into a circular shape with a radial dimension of the package used. The angled end is also placed into a state of stress because the angle may be partially straightened out or the angle may be exaggerated by being placed into the same package. When the wire is removed from the package, the stresses are removed, and the wire returns to its “normal” configuration of one straight end and one angled end.
The wires are formed by shaping the wires into the desired shape at room temperature or below, preferably with a cold mandrel, and then annealing the properly-shaped wire at the proper annealing temperature for a time sufficient for the transformation to a superelastic state. In one example, a wire is formed from 0.010 inch diameter Ni—Ti Nitinol wire and is annealed at 800° F. (about 427° C.) for about 10 minutes. The time and temperature for annealing will vary with the alloy selected and with the diameter (thickness) of the wire. The wires themselves, not merely the annealing oven, must remain at the desired temperature for the proper length of time for the annealing or heat-treatment to be complete. Proper annealing is very important for the wires to return to the desired shape during use by the surgeon or physician using the wire guide.
The heat treat operation may also be used to determine the strength and modulus of the wire. In particular, the relative stiffness or flexibility of the wire may be determined by heat-treat methods that are well known in the art. The tensile or flexural modulus may be used as a measure of the relative stiffness or flexibility of the wire, although most physicians and operating room personnel can easily detect such differences with a quick “feel” or manipulation of the finished wire guide product. A stiff wire requires more force to bend or kink, while a more flexible wire requires less force to bend or kink. The stiffness or flexibility will be most apparent in the shaft or body of the wire guide, by which is meant the intermediate portion, the distal and proximal portions of the wire guide, less the very ends or tips of the wire guide, which should remain flexible and soft out of consideration for the patient.
The “trained” wire may then be coated with a plastic suitable for use in a wire guide, as shown above for the Hi-Wire® type floppy tips. By “plastic,” it is meant that any polymeric material suitable for medical use with the body of a patient. For instance, the wire may be placed into a mold and polyurethane injected, poured, or cast into the mold to cover and protect the wire. Alternatively, the wire may be dipped in a coating, or placed into a tool and injection molded with polyethylene, polypropylene, or polyvinyl chloride (PVC), or other materials. Other materials and manufacturing methods may be used to manufacture wire guides with a solid wire core and a plastic covering.
The wire guides and joining techniques described above are not the only ways to practice the invention. There are many additional embodiments, including, for example, the proximal end of a flexible wire guide may be ground to a joint or a taper for insertion into a connector. Several embodiments using this technique are disclosed in
The wire guide interfaces are depicted above as tapered, ground surfaces. Other interfaces may also be used, such as a plain butt joint, or as depicted in
As is well-known to those with skill in the art, first wire guide 151 is generally known as a floppy wire guide, while second wire guide 152 is generally described as a Bentson floppy. The central portion of wire guide 150 includes an outer stiff portion 160 made from coiled flat wire. The central portion is the stiffest portion of wire guide 150, and has Amplatz-type stiffness. The central outer stiff portion 160 is soldered or otherwise bonded to the central connector 159 and to wire guides 151, 152. In a preferred configuration, the central Amplatz portion 160 does not extend as far left as the left end of central connector 159, as shown in
Shape-memory alloy wire guide 151 may include the central core 153 and an outer jacket 155 of polyurethane or other medically-acceptable elastomer, such as silicone. Stainless steel wire guide 152 may include a central core 154a and an outer stainless steel coil 154b which is securely affixed to a highly-polished end cap 156. Wire guide 152 also includes an outer coating 161, preferably polyethylenetetrafluoride (PTFE) or other fluoropolymer, over coiled portion 154b and end cap 156. The entire wire guide 150 also preferably includes an outer hydrophilic coating 157.
The embodiment depicted in
In other embodiments shown in
The connection portion 330 may be a cannula with a cylindrical external profile and a lumen 330a formed therewithin. The connection portion 330 may be made from Nitinol, or another suitable material with shape memory characteristics. The connection portion 330 may be sized with an internal diameter D1 of the lumen 330a slightly smaller than an outer diameter D2, D3 of the proximal ends of the first and second end portions 310, 320, respectively. The connection portion 330 may be made to be sufficiently flexible to operate similarly to an Amplatz wire guide portion.
When assembling the wire guide 300, the connection portion 330 is cooled to a temperature below the Austentite Finish (Af) temperature where the material exhibits martinsitic properties. The connection portion 330 is mechanically expanded to an inner diameter D4 (
As the connection portion 330 warms above the Af, the connection portion 330 contracts to contact and apply compressive forces upon the proximal end portions of the first and second ends 310, 320 inserted therewithin. The compressive forces form a press fit joint between the connection portion 330 and each of the first and second end portions 310, 320. For extra strength, the first and second end portions 310, 320 may each be fixed to the connection portion 330 with a weld joint (either laser or plasma), solder joint, or with another known fixing technique. The external surfaces of the wire guide 300 may be covered with a low-friction covering, similar to the embodiments discussed above.
It is therefore intended that the foregoing detailed description be regarded as illustrative rather than limiting, and that it be understood that it is the following claims, including all equivalents, that are intended to define the spirit and scope of this invention.
This application claims priority from U.S. Provisional Application No. 60/901,408, filed on Feb. 15, 2007, and titled “Dual Stiffness Wire Guide,” the entirety of which is fully incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
60901408 | Feb 2007 | US |