The following relates to the magnetic resonance arts. The following finds illustrative application to magnetic resonance imaging and spectroscopy, and is described with particular reference thereto. However, the following will find application in other magnetic resonance and radio frequency applications.
Multinuclear magnetic resonance imaging and spectroscopy is of interest for diverse applications, such as metabolic monitoring, diagnosis and clinical monitoring, and so forth. In some multinuclear applications, magnetic resonance excitation, magnetic resonance reception, or both are performed at the 1H magnetic resonance frequency and at a magnetic resonance frequency of a second nuclear species such as 13C, 31P, or 23Na.
To enable simultaneous or concurrent operation at both the 1H magnetic resonance frequency and at a second species magnetic resonance frequency, two separate, differently-tuned coils can be used. This enables true simultaneous operation at both magnetic resonance frequencies, but has certain disadvantages. The two different magnetic resonance coils occupy valuable bore space. Additionally, the two coils must be spatially aligned with each other, and within the scanner imaging volume, prior to the multinuclear magnetic resonance session.
Another approach is to use a single coil configured to operate at both the 1H magnetic resonance frequency and the magnetic resonance frequency of a second species (also referred to herein as second species magnetic resonance frequency). A transverse electromagnetic (TEM) volume coil can be dual tuned by using interleaving coil elements (sometimes called coil rungs) for each resonance frequency. A birdcage volume coil can also be double tuned by using interleaving rungs together with radio frequency (RF) traps and a complex end ring arrangement. These approaches can more efficiently utilize the bore space, and by using a single coil there is no need to spatially align two different coils prior to the multinuclear magnetic resonance session. However, some disadvantages arise such as the increased coil complexity and electrical coupling that may occur between the two resonance frequencies.
The following provides new and improved apparatuses and methods which overcome the above-referenced problems and others.
In accordance with one aspect, a magnetic resonance coil is disclosed, comprising parallel elongate conductive elements arranged to define a cylinder, and end rings disposed at opposite ends of the parallel elongate conductive elements and oriented transverse to the parallel elongate conductive elements. The end rings are configured to support a sinusoidal 1H magnetic resonance at a magnetic field strength. The coil is configured to support a second species magnetic resonance at the same magnetic field strength, the second species being different from 1H. Supporting a particular species magnetic resonance indicates the capability to transmit radio-frequency signals and/or receive magnetic resonance signals at the Larmor frequency of the particular nuclear species at the magnetic field strength.
In accordance with another aspect, a magnetic resonance scanner comprises a main magnet configured to generate a static (B0) magnetic field (also called main magnetic field), magnetic field gradient coils configured to superimpose selected magnetic field gradients on the static (B0) magnetic field, and a magnetic resonance coil as set forth in the preceding paragraph.
In accordance with another aspect, a magnetic resonance coil is disclosed, comprising parallel elongate conductive elements arranged to define a cylinder, end rings disposed at opposite ends of the parallel elongate conductive elements and oriented transverse to the parallel elongate conductive elements, and a radio frequency shield proximate at least to the end rings. The end rings, parallel elongate conductive elements, and radio frequency shield are configured to cooperatively support a sinusoidal end ring first species magnetic resonance on the end rings at a magnetic field strength and a second species birdcage magnetic resonance at the same magnetic field strength.
In accordance with another aspect, a magnetic resonance scanner comprises a main magnet configured to generate a static (B0) magnetic field, magnetic field gradient coils configured to superimpose selected magnetic field gradients on the static (B0) magnetic field, and a magnetic resonance coil as set forth in the preceding paragraph.
In accordance with another aspect, a magnetic resonance coil is disclosed, comprising parallel elongate conductive elements arranged to define a cylinder, end rings disposed at opposite ends of the parallel elongate conductive elements and oriented transverse to the parallel elongate conductive elements, and radio frequency traps operatively communicating with the elongate conductive elements and tuned to a 1H magnetic resonance frequency at a magnetic field strength so as to suppress 1H birdcage magnetic resonance on the magnetic resonance coil at the magnetic field strength.
In accordance with another aspect, a magnetic resonance scanner comprises a main magnet configured to generate a static (B0) magnetic field, magnetic field gradient coils configured to superimpose selected magnetic field gradients on the static (B0) magnetic field, and a magnetic resonance coil as set forth in the preceding paragraph.
In accordance with another aspect, a magnetic resonance method is disclosed for concurrently exciting or detecting magnetic resonance of two different species in a common magnetic field using a coil having a pair of end rings and a plurality of transverse elongate conductive elements, the method comprising: operating the end rings in a sinusoidal mode to generate or detect currents flowing at a first species magnetic resonance frequency in the end rings; and concurrently operating the coil in a second mode to generate or detect currents concurrently flowing at a second species magnetic resonance frequency at least in the transverse elongate conductive elements.
One advantage resides in providing a dual-tuned radio frequency coil for multinuclear magnetic resonance operations.
Another advantage resides in more efficient use of bore space.
Another advantage resides in reduced complexity of a dual-tuned radio frequency coil for multinuclear magnetic resonance operations.
Another advantage resides in facilitating simultaneous operation of a dual-tuned coil at 1H and second species magnetic resonance frequencies.
Still further advantages of the present invention will be appreciated to those of ordinary skill in the art upon reading and understand the following detailed description.
These and other aspects will be described in detail hereinafter, by way of example, on the basis of the following embodiments, with reference to the accompanying drawings, wherein:
With reference to
The magnetic resonance scanner 10 also includes magnetic field gradient coils 18 that superimpose selected magnetic field gradients on the static (B0) magnetic field to perform various tasks such as spatially restricting magnetic resonance excitation, spatially encoding magnetic resonance frequency and/or phase, spoiling magnetic resonance, or so forth. Optionally, the magnetic resonance scanner may include other elements not shown in
With continuing reference to
The magnetic resonance coil 30 has a birdcage configuration including a plurality of parallel elongate conductive elements 32 (sometimes called “rungs” 32 herein) arranged to define a cylinder, and end rings 34, 35 disposed at opposite ends of the parallel elongate conductive elements 32 and oriented transverse to the parallel elongate conductive elements 32. A generally cylindrical radio frequency shield 36 surrounds the parallel elongate conductive rungs 32 and generally coaxial with the cylinder defined by the parallel elongate conductive elements 32. The radio frequency shield 36 includes annular flanges 38, 39 disposed parallel with and proximate to respective end rings 34, 35 at opposite ends of the parallel rungs 32. The illustrated magnetic resonance coil 30 is a whole-body coil, sized to fit coaxially into the cylindrical bore of the illustrated horizontal bore scanner 10; however, the magnetic resonance coil can also be sized as a head coil to fit over the head of the subject 16, or sized as a limb coil to fit over an arm or leg of the subject 16, or so forth.
The magnetic resonance coil 30 is a dual-tuned radio frequency coil supporting end ring resonance at a first magnetic resonance frequency of a first nuclear species, and birdcage magnetic resonance at a second magnetic resonance frequency of a second nuclear species different from the first nuclear species. In the following, the end ring resonance is assumed to correspond to the 1H magnetic resonance frequency at a magnetic field strength of a static (B0) magnetic field generated by the main magnet 12, while the birdcage resonance is assumed to correspond to a second species magnetic resonance frequency at the same magnetic field strength, where the second species magnetic resonance frequency is different from the 1H magnetic resonance frequency. However, it is also contemplated for the end ring resonance to correspond to the magnetic resonance frequency of another nuclear species besides 1H at a magnetic field strength.
The birdcage coil 30 resonates as a volume resonator with a birdcage resonance at the second species magnetic resonance frequency. Optionally, the birdcage magnetic resonance frequency is tuned by suitable tuning elements in the elongate conductive elements or rungs, such as illustrated by discrete rung capacitances 40, or by distributed capacitance in the rungs 32, end rings 34, 35, or both, or by discrete or distributed inductances, or so forth. The use of multiple tuning capacitances, or distributed capacitance, can be advantageous in order to reduce high localized electric fields in the vicinity of the tuning capacitors. In some embodiments, geometrical or material aspects of the shielding 36 and annular flanges 38, 39 such as but not limited to material conductance, spacing from the rungs 32, thickness of the mesh or screen material of the shielding, or so forth also affects the birdcage magnetic resonance frequency.
With brief reference to
With continuing reference to
The plot of
With reference back to
With reference to
Other radio frequency trap configurations are also contemplated. With the traps 44, 45 tuned to the 1H magnetic resonance frequency, the traps 44, 45 block current flow at the 1H magnetic resonance frequency but allow current flow at other frequencies such as at the second species magnetic resonance frequency at which the birdcage resonance mode operates.
With reference to
Having described some illustrative coil embodiments 30, 30′, some further illustrative implementations are described by way of further example.
The end rings 34, 35 are suitably tuned to a sinusoidal resonance mode at the 1H magnetic resonance frequency by adjustable ring capacitors (not shown) or other elements affecting the sinusoidal resonance of the end rings 34, 35. In some embodiments in which a desired diameter of the ring is pre-determined, individual inductors in series with ring capacitors can be used to tune the end rings 34, 35 to the sinusoidal resonance mode at the 1H magnetic resonance frequency. At the 1H magnetic resonance frequency, the traps 44, 45 in the coil rungs 32 have high impedance which suppresses the current from flowing to the coil rungs 32. In the illustrated embodiments, the traps 44, 45 are located on or with the rungs 32 near the connections to the respective end rings 34, 35. Thus the two end rings 34, 35 can be fed in quadrature for transmitting and receiving of 1H signal. At the second species (non-1H) frequency, the traps 44, 45 function approximately as a short circuit, which allow the current at the second species magnetic resonance frequency to flow between the end rings 34, 35 and the rungs 32 in accordance with the birdcage resonance mode. The coil 30, 30′ thus defines a shielded band-pass birdcage coil resonant at the second species magnetic resonance frequency. The birdcage resonance can be tuned to the desired second species magnetic resonance frequency by adjusting values of the rung capacitors 40. Optionally, the birdcage resonance frequency can also be adjusted by adjusting the diameters of the end rings 34, 35, adjusting the end ring positions along the rungs 32, by including tuning end ring elements such as capacitors or inductors, or so forth. Where a parameter such as an end ring tuning capacitor value affects both the sinusoidal and birdcage resonance frequencies, the parameter values can be selected by iterative adjustment in conjunction with suitable electromagnetic modeling to tune both the sinusoidal and birdcage resonance frequencies together.
To further illustrate advantages of the dual-tuned volume coils disclosed herein as compared with a TEM multi-nuclear coil, the coil 30 of
The two end rings were modeled as operated in a two-port drive in quadrature at 298 MHz, where one port was fed in one end ring and another port with opposite voltage but 90-degree out of phase is fed in the other end ring. The birdcage coil was two-port driven in quadrature in the middle of two rungs at 120.7 MHz. The comparative TEM coil was also modeled as operated in a two-port drive in quadrature, across capacitors at the ends. The |B1+|-field (radio-frequency transmit field) in three center slices of the sphere phantom were calculated at both resonance frequencies, 298 MHz and 120.7 MHz. The transmit efficiency was calculated as
where |B1+|ave is the average |B1+|-field in the center transverse slice of the sphere phantom and Pabs is the total absorbed power of the phantom. The coil sensitivity was calculated as |B1+|ave per unit current in the coil rungs (or ring in the case of end ring only resonance mode).
The |B1+|-field uniformity at the 1H magnetic resonance frequency was found to be dominated by the dielectric effect of the phantom material, which is comparable to a T/R birdcage or TEM volume coil. The |B1+|-field uniformity at the 31P magnetic resonance frequency was found to be relatively uniform and similar to that of a TEM coil. Table 1 lists the calculated transmit efficiency and maximum local SAR (10 g phantom material averaged SAR) at |B1+|ave=1□ T. The coil sensitivity for the modeled duakuned volume coil and for the comparative 12-element TEM volume coil at 120.7 MHz is also given in Table 1. It is seen that, at 120.7 MHz, the birdcage coil has about the same transmit efficiency as the TEM coil, but has less local SAR and substantially higher coil sensitivity. Furthermore, the birdcage coil has a less complex structure with only twelve rungs, whereas the dual tuned TEM volume coil employed a more complicated structure of twenty-four elements, of which twelve elements provided resonance at the 1H magnetic resonance frequency and another twelve interleaved elements provided resonance at the 31P magnetic resonance frequency.
Another advantage of the dual-tuned volume coil employing sinusoidal end-ring and birdcage resonances is that the coil sensitivity at the birdcage resonance (i.e., second species magnetic resonance) can be enhanced by opening the shield in the middle, as shown in
A modeling example of the modified coil 30′ of
Modeling was also performed to estimate peak electric field distributions for the dual-tuned (sinusoidal end ring/birdcage) coil 30′ of
In the illustrated embodiments, the coil has a birdcage configuration in which the end rings 34, 35 are operatively coupled with the parallel elongate conductive elements 32 to support the second species birdcage magnetic resonance. This allows the option of using either the closed radio frequency shield 36 or the open radio frequency shield 36′. It is also contemplated to operatively connect the parallel elongate conductive elements with the shield, which in such embodiments is a closed shield similar to the radio frequency shield 36, such that the second species resonance is supported in a TEM mode while the end rings support only the sinusoidal first species (e.g., 1H) magnetic resonance. In such embodiments, the radio frequency traps blocking 1H (or other first species) resonance on the parallel elongate conductive elements 32 suppress inductive coupling at the 1H frequency.
The invention has been described with reference to the preferred embodiments. Modifications and alterations may occur to others upon reading and understanding the preceding detailed description. It is intended that the invention be construed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof. In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim. The word “comprising” does not exclude the presence of elements or steps other than those listed in a claim. The word “a” or “an” preceding an element does not exclude the presence of a plurality of such elements. The disclosed method can be implemented by means of hardware comprising several distinct elements, and by means of a suitably programmed computer. In the system claims enumerating several means, several of these means can be embodied by one and the same item of computer readable software or hardware. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB08/55235 | 12/12/2008 | WO | 00 | 5/14/2010 |
Number | Date | Country | |
---|---|---|---|
61013333 | Dec 2007 | US |