1. Technical Field
The present invention relates to a hybrid photovoltaic system which features both power grid tied operation and battery charging operation.
2. Description of Related Art
Utility networks provide an electrical power system to utility customers. The distribution of electric power from utility companies to customers utilizes a network of utility lines connected in a grid-like fashion, referred to as an power grid. The power grid may consist of many independent energy sources energizing the grid in addition to utility companies energizing the grid, with each independent energy source being referred to as a distributed power (DP) generation system. The modern utility network includes the utility power source, consumer loads, and the distributed power generation systems which also supply electrical power to the network. The number and types of distributed power generation systems is growing rapidly and can include photovoltaics, wind, hydro, fuel cells, storage systems such as battery, super-conducting flywheel, and capacitor types, and mechanical devices including conventional and variable speed diesel engines, Stirling engines, gas turbines, and micro-turbines. These distributed power generation systems are typically connected to the utility network such that they operate in parallel with the utility power sources.
The term “DC source” as used herein refers to and includes DC available from photovoltaics cells, wind powered DC generators, hydro powered turbines, fuel cells, storage systems such as battery, super-conducting flywheel, and capacitor types, and mechanical devices including conventional and variable speed diesel engines, stirling engines, gas turbines, and micro-turbines.
According to an embodiment of the present invention there is provided a system for providing power from a direct current (DC) source to the power grid. The system includes a first inverter with an input and an output. The input is adapted to connect to the DC source. A first switch is disposed between the output and the power grid. A second inverter has a DC terminal and an alternating current (AC) terminal. The AC terminal is adapted to connect in parallel with the output of the first inverter. A battery is adapted to connect to the DC terminal of the second inverter. A second switch connects between the DC terminal of the second inverter and the input of the first inverter. The second switch also connects the DC source to the battery. The system may further include a charging circuit adapted to be disposed between the input and the DC terminal. A load connects to the output.
According to an embodiment of the present invention there is provided a method featuring both grid tied operation and battery charging operation, the method using a hybrid photovoltaic system. Two inverters are used during off grid operation of the hybrid photovoltaic system. The hybrid photovoltaic system includes the first inverter with an input and an output. A direct current (DC) source is connected to the input. A first switch is disposed between the output and the power grid. A second inverter has a DC terminal and an AC terminal. The AC terminal is connected in parallel with the output of the first inverter. A battery connects to the DC terminal. A second switch is disposed between the DC terminal and the input. The method senses absence of the power grid. Upon sensing the absence of the power grid, the power grid is disconnected from the output and the AC terminal with the first switch. The DC source is connected to the DC terminal with the second switch, thereby shunting the input of the first inverter with the DC terminal of the second inverter. Power on the DC terminal of the second inverter may typically be converted to an output power on the AC terminal of the second inverter. The output power typically provides a local grid to the load and the output of the first inverter. Voltage of the input of the first inverter may be controlled to a voltage value based on the local grid and/or the output power provided by the second inverter. Connection to the DC terminal with the second switch may be disconnected when a difference between voltage of the input and the voltage value exceeds a predetermined value. Connection to the DC terminal with the second switch typically allows the DC source to charge the battery. The control of voltage of the input of the first inverter may be performed by the first inverter. The control of voltage of the input of the first inverter may be by adjusting a parameter of the local grid. The local grid parameter may be adjusted by the backup inverter. The parameter may be a frequency, a phase angle, a voltage or a current. The control of voltage of the input of the first inverter may alternatively be performed by a circuit connected in series between the second switch and the DC terminal of the second inverter.
During on grid operation the method senses presence of the power grid. Based on the presence of the grid the DC source is disconnected from the DC terminal of the second inverter with the second switch, when the power grid is present. The output and the AC terminal are connected to the power grid with the first switch. Power on the input of the first inverter is typically converted to an output power on the output of the first inverter. The output power preferably supplies the power grid and/or a load. Power on the AC terminal of the second inverter is typically converted to a power on the DC terminal of the second inverter. The power on the DC terminal preferably charges the battery.
According to an embodiment of the present invention there is provided a power system which includes a power inverter, a backup inverter and a direct current (DC) source. The power inverter and the backup inverter are interconnected at respective outputs. A switch may be adapted to interconnect the inputs of the power inverter and the backup inverter and to connect the inputs to the DC source when a power grid is not available. When the power grid is available the switch may be adapted to disconnect the input of the backup inverter from the DC source.
The power system may further include a second switch adapted to connect the outputs of the power inverter and the backup inverter to the power grid when the power grid is available. When the power grid is not available the second switch adapted to disconnect the outputs of the backup inverter and the power inverter from the power grid. A charging circuit is typically adapted to be disposed between the DC source and the input of the backup inverter. A battery may be connected in parallel at the input of the backup inverter.
These, additional, and/or other aspects and/or advantages of the present invention are set forth in the detailed description which follows; possibly inferable from the detailed description; and/or learnable by practice of the present invention.
The invention is herein described, by way of example only, with reference to the accompanying drawings, wherein:
a shows a hybrid photovoltaic system according to an embodiment of the present invention;
b shows further details of a DC supply according to an exemplary embodiment of the present invention;
a shows a method for performing off grid or on grid operation of the hybrid photovoltaic system shown in
b shows more detailed method steps for off grid operation shown in
c more detailed method steps for on grid operation shown in
The foregoing and/or other aspects will become apparent from the following detailed description when considered in conjunction with the accompanying drawing figures.
Reference will now be made in detail to aspects of the present invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout. The aspects are described below to explain the present invention by referring to the figures.
Before explaining embodiments of the invention in detail, it is to be understood that the invention is not limited in its application to the details of design and the arrangement of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.
By way of introduction, aspects of the present invention are directed primarily towards off grid operation of a hybrid photovoltaic system and possible benefits of using a lower power rated and cheaper standard backup inverter to provide a local grid. The local grid may additionally be used to derive additional circuit control function benefits from an offline main grid tied inverter which is typically higher power rated, more expensive and provides more functionality.
The term “hybrid” as used herein refers off-grid and/or on grid operation of a photovoltaic system. Equivalently, the term “hybrid” as used herein may refer to a photovoltaic system which is both/either grid connected or battery connected. Operation of a “hybrid photovoltaic system” may typically include supplying AC power to a power grid and/or load and/or DC power to the battery. AC power present on the power grid, leads to an “on grid” operation of the hybrid photovoltaic system. Otherwise the absence of AC power on the power grid leads to an “off grid” operation of the hybrid photovoltaic system. Another operating factor may include nighttime or daytime operation of the hybrid photovoltaic system in either off grid or on grid operation. Also consideration of whether or not the photovoltaic array is illuminated or not or illuminated to a sufficient level leads to the load and/or power grid being supplied by a number of combinations. The number of combinations for example may be to supply the load solely from the photovoltaic array, the photovoltaic array and power grid, the power grid alone, solely from the battery, the photovoltaic array and the battery or the photovoltaic array and the battery and the power grid.
Referring now to the drawings, reference is now made to
Output of inverter 150 at nodes C and D is connected to the input of grid switch controller 126, load 120 and the alternating current (AC) side of backup inverter 152. Backup inverter 152 is typically rated at 1000 watts. Load 120 typically is an AC supply to a domestic residence. The domestic supply receives the AC supply from power grid 140 and/or AC voltage (V2) provided by inverter 150. Grid switch controller 126 typically senses the presence or absence of power grid 140 to to provide a status of grid 140. The status of grid 140 is typically conveyed to grid tied inverter 150 using bi-directional control line CTRL3. Grid switch controller 126 typically connects and reconnects grid 140 to nodes C and D. Grid switch controller 126 typically includes a double pole switch which connects and reconnects grid 140 to nodes C and D.
An input to backup switch 122 connects at nodes A and B. The output of switch 122 connects to the input of charging circuit 124. Backup switch 122 typically connects and reconnects the output of DC supply 104 to the input of charging circuit 124. Charging circuit 124 typically may be a DC to DC converter or a typically charge circuit which uses a linear regulator. According to one aspect of the present invention, charging circuit 124 may not be required and backup switch 122 typically connects and reconnects the output of DC supply 104 to the input of backup inverter 152. Placed in parallel across the input of backup inverter 152 is a battery 128. Backup inverter 152 typically operates in a bi-directional mode of power conversion. The bi-directional mode of inverter 152 converts AC power to DC power and vice versa. When grid 140 is not present (i.e. off grid operation), DC power from DC source 104 and/or battery 128 is converted to AC power on nodes C and D. When grid 140 is present (i.e. on grid operation), backup inverter 152 converts AC power from grid 140 and/or AC power from grid tied inverter 150 to a DC power which charges battery 128. The DC power which charges battery 128 in on grid mode, is typically applied with the input of charging circuit isolated from DC source 104 via backup switch 122. The direction of power conversion of backup inverter 152 is from a control signal applied to control line CTRL2 from inverter 150. The operation of backup switch 122 is from a control signal applied to control line CTRL3 from inverter 150. Control signals between grid switch controller 126, grid tied inverter 150, backup switch 122 and backup inverter 152 may be wireless or by power line communications.
Reference is now made to
Reference is now made to
Typically grid switch controller 126 senses the presence or absence of power grid 140 in step 203. In decision 205, if power grid 140 absent, connection to grid 140 to nodes C and D is disconnected using switch controller 126 (step 207). Grid switch controller 126 typically isolates both live and neutral of power grid 140 from nodes C and D using a double pole single throw switch. Once grid 140 is disconnected in step 207, off grid operation of system 10 continues by use of method 221 applied to system 10.
In decision 205, if power grid 140 is present, connection to grid 140 at nodes C and D using switch controller 126 typically disconnects DC source 104 from the input of backup inverter 152 and/or charge circuit 124 (step 209). With DC source 104 disconnected from the input of backup inverter 152 and/or charge circuit 124 on grid operation of system 10 continues by use of method 251 applied to system 10.
Reference is now made to
Reference is now made to
By way of numerical example a DC-DC module 102 has a typical maximum output current of 16.4 A. Assuming minimum charger 124 voltage will be 120V, the total power on one string 120 is limited to 16.4 A*120V≈2000 W. If more than 2000 Watts are installed on one string 120, system 10 will still work. Module 102 will be current limited and the total number of strings will not supply more than 2000 Watts during off-grid/charge mode.
By way of another numerical example, a 3240 Kilowatt PV system 10 which has 2 strings 120 of 9 modules 102, where each module 102 is rated at 180 watts. Each string 120 power will be 9*180 W=1620 W. In on grid mode, V1=250-500V, total string current=6.48-12.96 A and each string 120 current=3.24-6.48 A. In on grid mode, V1=120-140V, total string current=23.1-27 A and each string 120 current=11.5-13.5 A.
The term “DC source” as used herein refers to and includes DC available from photovoltaics cells, wind powered DC generators, hydro powered turbines, fuel cells, storage systems such as battery, super-conducting flywheel, and capacitor types, and mechanical devices including conventional and variable speed diesel engines, Stirling engines, gas turbines, and micro-turbines.
The term “comprising” as used herein, refers to an open group of elements for example, comprising an element A and an element B means including one or more of element A and one or more of element B and other elements other than element A and element B may be included.
The terms “sensing” and “measuring” are used herein interchangeably.
The definite articles “a”, “an” is used herein, such as “an inverter”, “a switch” have the meaning of “one or more” that is “one or more inverters or “one or more switches”.
Examples of various features/aspects/components/operations have been provided to facilitate understanding of the disclosed embodiments of the present invention. In addition, various preferences have been discussed to facilitate understanding of the disclosed embodiments of the present invention. It is to be understood that all examples and preferences disclosed herein are intended to be non-limiting.
Although selected embodiments of the present invention have been shown and described individually, it is to be understood that at least aspects of the described embodiments may be combined. Also although selected embodiments of the present invention have been shown and described, it is to be understood the present invention is not limited to the described embodiments. Instead, it is to be appreciated that changes may be made to these embodiments without departing from the principles and spirit of the invention, the scope of which is defined by the claims and the equivalents thereof.
The present application claims the benefit of priority from U.S. Provisional Patent Application No. 61/265,734, which was filed on Dec. 1, 2009, the disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3369210 | Manickella | Feb 1968 | A |
3596229 | Hohorst | Jul 1971 | A |
4060757 | McMurray | Nov 1977 | A |
4101816 | Shepter | Jul 1978 | A |
4171861 | Hohorst | Oct 1979 | A |
4452867 | Conforti | Jun 1984 | A |
4460232 | Sotolongo | Jul 1984 | A |
4481654 | Daniels et al. | Nov 1984 | A |
4554515 | Burson et al. | Nov 1985 | A |
4598330 | Woodworth | Jul 1986 | A |
4623753 | Feldman et al. | Nov 1986 | A |
4637677 | Barkus | Jan 1987 | A |
4641042 | Miyazawa | Feb 1987 | A |
4641079 | Kato et al. | Feb 1987 | A |
4644458 | Harafuji et al. | Feb 1987 | A |
4652770 | Kumano | Mar 1987 | A |
4783728 | Hoffman | Nov 1988 | A |
RE33057 | Clegg et al. | Sep 1989 | E |
4868379 | West | Sep 1989 | A |
4888063 | Powell | Dec 1989 | A |
4888702 | Gerken et al. | Dec 1989 | A |
4899269 | Rouzies | Feb 1990 | A |
4903851 | Slough | Feb 1990 | A |
4987360 | Thompson | Jan 1991 | A |
5045988 | Gritter et al. | Sep 1991 | A |
5081558 | Mahler | Jan 1992 | A |
5191519 | Kawakami | Mar 1993 | A |
5280232 | Kohl et al. | Jan 1994 | A |
5327071 | Frederick et al. | Jul 1994 | A |
5345375 | Mohan | Sep 1994 | A |
5402060 | Erisman | Mar 1995 | A |
5446645 | Shirahama et al. | Aug 1995 | A |
5460546 | Kunishi et al. | Oct 1995 | A |
5493154 | Smith et al. | Feb 1996 | A |
5497289 | Sugishima et al. | Mar 1996 | A |
5517378 | Asplund et al. | May 1996 | A |
5530335 | Decker et al. | Jun 1996 | A |
5548504 | Takehara | Aug 1996 | A |
5604430 | Decker et al. | Feb 1997 | A |
5616913 | Litterst | Apr 1997 | A |
5644219 | Kurokawa | Jul 1997 | A |
5646501 | Fishman et al. | Jul 1997 | A |
5659465 | Flack et al. | Aug 1997 | A |
5686766 | Tamechika | Nov 1997 | A |
5773963 | Blanc et al. | Jun 1998 | A |
5777515 | Kimura | Jul 1998 | A |
5780092 | Agbo et al. | Jul 1998 | A |
5798631 | Spee et al. | Aug 1998 | A |
5801519 | Midya et al. | Sep 1998 | A |
5804894 | Leeson et al. | Sep 1998 | A |
5821734 | Faulk | Oct 1998 | A |
5822186 | Bull et al. | Oct 1998 | A |
5838148 | Kurokami et al. | Nov 1998 | A |
5869956 | Nagao et al. | Feb 1999 | A |
5873738 | Shimada et al. | Feb 1999 | A |
5886890 | Ishida et al. | Mar 1999 | A |
5892354 | Nagao et al. | Apr 1999 | A |
5905645 | Cross | May 1999 | A |
5919314 | Kim | Jul 1999 | A |
5923158 | Kurokami et al. | Jul 1999 | A |
5932994 | Jo et al. | Aug 1999 | A |
5933327 | Leighton et al. | Aug 1999 | A |
5945806 | Faulk | Aug 1999 | A |
5949668 | Schweighofer | Sep 1999 | A |
5963010 | Hayashi et al. | Oct 1999 | A |
5990659 | Frannhagen | Nov 1999 | A |
6031736 | Takehara et al. | Feb 2000 | A |
6038148 | Farrington et al. | Mar 2000 | A |
6046919 | Madenokouji et al. | Apr 2000 | A |
6050779 | Nagao et al. | Apr 2000 | A |
6078511 | Fasullo et al. | Jun 2000 | A |
6081104 | Kern | Jun 2000 | A |
6082122 | Madenokouji et al. | Jul 2000 | A |
6105317 | Tomiuchi et al. | Aug 2000 | A |
6111188 | Kurokami et al. | Aug 2000 | A |
6111391 | Cullen | Aug 2000 | A |
6111767 | Handleman | Aug 2000 | A |
6163086 | Choo | Dec 2000 | A |
6166455 | Li | Dec 2000 | A |
6166527 | Dwelley et al. | Dec 2000 | A |
6169678 | Kondo et al. | Jan 2001 | B1 |
6219623 | Wills | Apr 2001 | B1 |
6255360 | Domschke et al. | Jul 2001 | B1 |
6256234 | Keeth et al. | Jul 2001 | B1 |
6259234 | Perol | Jul 2001 | B1 |
6262558 | Weinberg | Jul 2001 | B1 |
6285572 | Onizuka et al. | Sep 2001 | B1 |
6301128 | Jang et al. | Oct 2001 | B1 |
6304065 | Wittenbreder | Oct 2001 | B1 |
6320769 | Kurokami et al. | Nov 2001 | B2 |
6339538 | Handleman | Jan 2002 | B1 |
6351130 | Preiser et al. | Feb 2002 | B1 |
6369462 | Siri | Apr 2002 | B1 |
6380719 | Underwood et al. | Apr 2002 | B2 |
6396170 | Laufenberg et al. | May 2002 | B1 |
6433522 | Siri | Aug 2002 | B1 |
6448489 | Kimura et al. | Sep 2002 | B2 |
6452814 | Wittenbreder | Sep 2002 | B1 |
6493246 | Suzui et al. | Dec 2002 | B2 |
6507176 | Wittenbreder, Jr. | Jan 2003 | B2 |
6531848 | Chitsazan et al. | Mar 2003 | B1 |
6545211 | Mimura | Apr 2003 | B1 |
6548205 | Leung et al. | Apr 2003 | B2 |
6590793 | Nagao et al. | Jul 2003 | B1 |
6593521 | Kobayashi | Jul 2003 | B2 |
6608468 | Nagase | Aug 2003 | B2 |
6611441 | Kurokami et al. | Aug 2003 | B2 |
6628011 | Droppo et al. | Sep 2003 | B2 |
6650031 | Goldack | Nov 2003 | B1 |
6650560 | MacDonald et al. | Nov 2003 | B2 |
6653549 | Matsushita et al. | Nov 2003 | B2 |
6672018 | Shingleton | Jan 2004 | B2 |
6678174 | Suzui et al. | Jan 2004 | B2 |
6690590 | Stamenic et al. | Feb 2004 | B2 |
6731136 | Knee | May 2004 | B2 |
6738692 | Schienbein et al. | May 2004 | B2 |
6765315 | Hammerstrom et al. | Jul 2004 | B2 |
6768047 | Chang et al. | Jul 2004 | B2 |
6788033 | Vinciarelli | Sep 2004 | B2 |
6795318 | Haas et al. | Sep 2004 | B2 |
6801442 | Suzui et al. | Oct 2004 | B2 |
6810339 | Wills | Oct 2004 | B2 |
6850074 | Adams et al. | Feb 2005 | B2 |
6882131 | Takada et al. | Apr 2005 | B1 |
6914418 | Sung | Jul 2005 | B2 |
6919714 | Delepaut | Jul 2005 | B2 |
6927955 | Suzui et al. | Aug 2005 | B2 |
6933627 | Wilhelm | Aug 2005 | B2 |
6936995 | Kapsokavathis et al. | Aug 2005 | B2 |
6950323 | Achleitner et al. | Sep 2005 | B2 |
6963147 | Kurokami et al. | Nov 2005 | B2 |
6984967 | Notman | Jan 2006 | B2 |
6984970 | Capel | Jan 2006 | B2 |
7030597 | Bruno et al. | Apr 2006 | B2 |
7031176 | Kotsopoulos et al. | Apr 2006 | B2 |
7042195 | Tsunetsugu et al. | May 2006 | B2 |
7046531 | Zocchi et al. | May 2006 | B2 |
7053506 | Alonso et al. | May 2006 | B2 |
7072194 | Nayar et al. | Jul 2006 | B2 |
7079406 | Kurokami et al. | Jul 2006 | B2 |
7087332 | Harris | Aug 2006 | B2 |
7090509 | Gilliland et al. | Aug 2006 | B1 |
7091707 | Cutler | Aug 2006 | B2 |
7097516 | Werner et al. | Aug 2006 | B2 |
7126053 | Kurokami et al. | Oct 2006 | B2 |
7126294 | Minami et al. | Oct 2006 | B2 |
7138786 | Ishigaki et al. | Nov 2006 | B2 |
7148669 | Maksimovic et al. | Dec 2006 | B2 |
7158359 | Bertele et al. | Jan 2007 | B2 |
7158395 | Deng et al. | Jan 2007 | B2 |
7174973 | Lysaght | Feb 2007 | B1 |
7193872 | Siri | Mar 2007 | B2 |
7218541 | Price et al. | May 2007 | B2 |
7248946 | Bashaw et al. | Jul 2007 | B2 |
7256566 | Bhavaraju et al. | Aug 2007 | B2 |
7277304 | Stancu et al. | Oct 2007 | B2 |
7282814 | Jacobs | Oct 2007 | B2 |
7291036 | Daily et al. | Nov 2007 | B1 |
RE39976 | Schiff et al. | Jan 2008 | E |
7336056 | Dening et al. | Feb 2008 | B1 |
7348802 | Kasanyal et al. | Mar 2008 | B2 |
7352154 | Cook | Apr 2008 | B2 |
7371963 | Suenaga et al. | May 2008 | B2 |
7372712 | Stancu et al. | May 2008 | B2 |
7385380 | Ishigaki et al. | Jun 2008 | B2 |
7385833 | Keung | Jun 2008 | B2 |
7394237 | Chou et al. | Jul 2008 | B2 |
7420815 | Love | Sep 2008 | B2 |
7435134 | Lenox | Oct 2008 | B2 |
7435897 | Russell | Oct 2008 | B2 |
7443052 | Wendt et al. | Oct 2008 | B2 |
7456523 | Kobayashi | Nov 2008 | B2 |
7471014 | Lum et al. | Dec 2008 | B2 |
7504811 | Watanabe et al. | Mar 2009 | B2 |
7589437 | Henne et al. | Sep 2009 | B2 |
7600349 | Liebendorfer | Oct 2009 | B2 |
7602080 | Hadar et al. | Oct 2009 | B1 |
7605498 | Ledenev et al. | Oct 2009 | B2 |
7612283 | Toyomura et al. | Nov 2009 | B2 |
7646116 | Batarseh et al. | Jan 2010 | B2 |
7709727 | Roehrig et al. | May 2010 | B2 |
7719140 | Ledenev et al. | May 2010 | B2 |
7748175 | Liebendorfer | Jul 2010 | B2 |
7759575 | Jones et al. | Jul 2010 | B2 |
7763807 | Richter | Jul 2010 | B2 |
7780472 | Lenox | Aug 2010 | B2 |
7782031 | Qiu et al. | Aug 2010 | B2 |
7787273 | Lu et al. | Aug 2010 | B2 |
7804282 | Bertele | Sep 2010 | B2 |
7812701 | Lee et al. | Oct 2010 | B2 |
7839022 | Wolfs | Nov 2010 | B2 |
7843085 | Ledenev et al. | Nov 2010 | B2 |
7868599 | Rahman et al. | Jan 2011 | B2 |
7880334 | Evans et al. | Feb 2011 | B2 |
7893346 | Nachamkin et al. | Feb 2011 | B2 |
7900361 | Adest et al. | Mar 2011 | B2 |
7919952 | Fahrenbruch | Apr 2011 | B1 |
7919953 | Porter et al. | Apr 2011 | B2 |
7925552 | Tarbell et al. | Apr 2011 | B2 |
7945413 | Krein | May 2011 | B2 |
7948221 | Watanabe et al. | May 2011 | B2 |
7952897 | Nocentini et al. | May 2011 | B2 |
7960650 | Richter et al. | Jun 2011 | B2 |
7960950 | Glovinsky | Jun 2011 | B2 |
8003885 | Richter et al. | Aug 2011 | B2 |
8004116 | Ledenev et al. | Aug 2011 | B2 |
8004117 | Adest et al. | Aug 2011 | B2 |
8013472 | Adest et al. | Sep 2011 | B2 |
8058747 | Avrutsky et al. | Nov 2011 | B2 |
8067855 | Mumtaz et al. | Nov 2011 | B2 |
8077437 | Mumtaz et al. | Dec 2011 | B2 |
8093756 | Porter et al. | Jan 2012 | B2 |
8093757 | Wolfs | Jan 2012 | B2 |
8111052 | Glovinsky | Feb 2012 | B2 |
8138914 | Wong et al. | Mar 2012 | B2 |
8204709 | Presher, Jr. et al. | Jun 2012 | B2 |
8289742 | Adest et al. | Oct 2012 | B2 |
20010023703 | Kondo et al. | Sep 2001 | A1 |
20010034982 | Nagao et al. | Nov 2001 | A1 |
20020044473 | Toyomura et al. | Apr 2002 | A1 |
20020056089 | Houston | May 2002 | A1 |
20030058593 | Bertele et al. | Mar 2003 | A1 |
20030066076 | Minahan | Apr 2003 | A1 |
20030075211 | Makita et al. | Apr 2003 | A1 |
20030080741 | LeRow et al. | May 2003 | A1 |
20030214274 | Lethellier | Nov 2003 | A1 |
20040041548 | Perry | Mar 2004 | A1 |
20040061527 | Knee | Apr 2004 | A1 |
20040125618 | De Rooij et al. | Jul 2004 | A1 |
20040140719 | Vulih et al. | Jul 2004 | A1 |
20040169499 | Huang et al. | Sep 2004 | A1 |
20040201279 | Templeton | Oct 2004 | A1 |
20040201933 | Blanc | Oct 2004 | A1 |
20040246226 | Moon | Dec 2004 | A1 |
20050002214 | Deng et al. | Jan 2005 | A1 |
20050005785 | Poss et al. | Jan 2005 | A1 |
20050017697 | Capel | Jan 2005 | A1 |
20050057214 | Matan | Mar 2005 | A1 |
20050057215 | Matan | Mar 2005 | A1 |
20050068820 | Radosevich et al. | Mar 2005 | A1 |
20050099138 | Wilhelm | May 2005 | A1 |
20050103376 | Matsushita et al. | May 2005 | A1 |
20050105224 | Nishi | May 2005 | A1 |
20050162018 | Realmuto et al. | Jul 2005 | A1 |
20050172995 | Rohrig et al. | Aug 2005 | A1 |
20050226017 | Kotsopoulos et al. | Oct 2005 | A1 |
20060001406 | Matan | Jan 2006 | A1 |
20060017327 | Siri et al. | Jan 2006 | A1 |
20060034106 | Johnson | Feb 2006 | A1 |
20060038692 | Schnetker | Feb 2006 | A1 |
20060053447 | Krzyzanowski et al. | Mar 2006 | A1 |
20060066349 | Murakami | Mar 2006 | A1 |
20060068239 | Norimatsu et al. | Mar 2006 | A1 |
20060108979 | Daniel et al. | May 2006 | A1 |
20060113843 | Beveridge | Jun 2006 | A1 |
20060113979 | Ishigaki et al. | Jun 2006 | A1 |
20060118162 | Saelzer et al. | Jun 2006 | A1 |
20060132102 | Harvey | Jun 2006 | A1 |
20060149396 | Templeton | Jul 2006 | A1 |
20060162772 | Presher et al. | Jul 2006 | A1 |
20060163946 | Henne et al. | Jul 2006 | A1 |
20060171182 | Siri et al. | Aug 2006 | A1 |
20060174939 | Matan | Aug 2006 | A1 |
20060185727 | Matan | Aug 2006 | A1 |
20060192540 | Balakrishnan et al. | Aug 2006 | A1 |
20060208660 | Shinmura et al. | Sep 2006 | A1 |
20060227578 | Datta et al. | Oct 2006 | A1 |
20060237058 | McClintock et al. | Oct 2006 | A1 |
20070044837 | Simburger et al. | Mar 2007 | A1 |
20070075711 | Blanc et al. | Apr 2007 | A1 |
20070081364 | Andreycak | Apr 2007 | A1 |
20070133241 | Mumtaz et al. | Jun 2007 | A1 |
20070147075 | Bang | Jun 2007 | A1 |
20070159866 | Siri | Jul 2007 | A1 |
20070164612 | Wendt et al. | Jul 2007 | A1 |
20070164750 | Chen et al. | Jul 2007 | A1 |
20070165347 | Wendt et al. | Jul 2007 | A1 |
20070205778 | Fabbro et al. | Sep 2007 | A1 |
20070227574 | Cart | Oct 2007 | A1 |
20070236187 | Wai et al. | Oct 2007 | A1 |
20070273342 | Kataoka et al. | Nov 2007 | A1 |
20070290636 | Beck et al. | Dec 2007 | A1 |
20080024098 | Hojo | Jan 2008 | A1 |
20080080177 | Chang | Apr 2008 | A1 |
20080088184 | Tung et al. | Apr 2008 | A1 |
20080097655 | Hadar et al. | Apr 2008 | A1 |
20080106250 | Prior et al. | May 2008 | A1 |
20080115823 | Kinsey | May 2008 | A1 |
20080136367 | Adest et al. | Jun 2008 | A1 |
20080143188 | Adest et al. | Jun 2008 | A1 |
20080143462 | Belisle et al. | Jun 2008 | A1 |
20080144294 | Adest et al. | Jun 2008 | A1 |
20080147335 | Adest et al. | Jun 2008 | A1 |
20080150366 | Adest et al. | Jun 2008 | A1 |
20080164766 | Adest et al. | Jul 2008 | A1 |
20080179949 | Besser et al. | Jul 2008 | A1 |
20080236647 | Gibson et al. | Oct 2008 | A1 |
20080236648 | Klein et al. | Oct 2008 | A1 |
20080238195 | Shaver et al. | Oct 2008 | A1 |
20080246460 | Smith | Oct 2008 | A1 |
20080246463 | Sinton et al. | Oct 2008 | A1 |
20090039852 | Fishelov et al. | Feb 2009 | A1 |
20090066399 | Chen et al. | Mar 2009 | A1 |
20090073726 | Babcock | Mar 2009 | A1 |
20090084570 | Gherardini et al. | Apr 2009 | A1 |
20090097172 | Bremicker et al. | Apr 2009 | A1 |
20090102440 | Coles | Apr 2009 | A1 |
20090140715 | Adest et al. | Jun 2009 | A1 |
20090141522 | Adest et al. | Jun 2009 | A1 |
20090145480 | Adest et al. | Jun 2009 | A1 |
20090146667 | Adest et al. | Jun 2009 | A1 |
20090146671 | Gazit | Jun 2009 | A1 |
20090147554 | Adest et al. | Jun 2009 | A1 |
20090190275 | Gilmore et al. | Jul 2009 | A1 |
20090206666 | Sella et al. | Aug 2009 | A1 |
20090224817 | Nakamura et al. | Sep 2009 | A1 |
20090237042 | Glovinski | Sep 2009 | A1 |
20090237043 | Glovinsky | Sep 2009 | A1 |
20090242011 | Proisy et al. | Oct 2009 | A1 |
20090273241 | Gazit et al. | Nov 2009 | A1 |
20090282755 | Abbott et al. | Nov 2009 | A1 |
20090284998 | Zhang et al. | Nov 2009 | A1 |
20090322494 | Lee | Dec 2009 | A1 |
20100052735 | Burkland et al. | Mar 2010 | A1 |
20100085670 | Palaniswami et al. | Apr 2010 | A1 |
20100124027 | Handelsman et al. | May 2010 | A1 |
20100139743 | Hadar et al. | Jun 2010 | A1 |
20100214808 | Rodriguez | Aug 2010 | A1 |
20100244575 | Coccia et al. | Sep 2010 | A1 |
20100269430 | Haddock | Oct 2010 | A1 |
20100277001 | Wagoner | Nov 2010 | A1 |
20100282290 | Schwarze et al. | Nov 2010 | A1 |
20100294528 | Sella et al. | Nov 2010 | A1 |
20100294903 | Shmukler et al. | Nov 2010 | A1 |
20100297860 | Shmukler et al. | Nov 2010 | A1 |
20100301991 | Sella et al. | Dec 2010 | A1 |
20100308662 | Schatz et al. | Dec 2010 | A1 |
20110006743 | Fabbro | Jan 2011 | A1 |
20110037600 | Takehara et al. | Feb 2011 | A1 |
20110043172 | Dearn | Feb 2011 | A1 |
20110084553 | Adest et al. | Apr 2011 | A1 |
20110114154 | Lichy et al. | May 2011 | A1 |
20110115295 | Moon et al. | May 2011 | A1 |
20110121652 | Sella et al. | May 2011 | A1 |
20110125431 | Adest et al. | May 2011 | A1 |
20110140536 | Adest et al. | Jun 2011 | A1 |
20110181251 | Porter et al. | Jul 2011 | A1 |
20110181340 | Gazit | Jul 2011 | A1 |
20110210611 | Ledenev et al. | Sep 2011 | A1 |
20110254372 | Haines et al. | Oct 2011 | A1 |
20110260866 | Avrutsky et al. | Oct 2011 | A1 |
20110267859 | Chapman | Nov 2011 | A1 |
20110271611 | Maracci et al. | Nov 2011 | A1 |
20110273015 | Adest et al. | Nov 2011 | A1 |
20110273016 | Adest et al. | Nov 2011 | A1 |
20110285205 | Ledenev et al. | Nov 2011 | A1 |
20110290317 | Naumovitz et al. | Dec 2011 | A1 |
20110291486 | Adest et al. | Dec 2011 | A1 |
20110316346 | Porter et al. | Dec 2011 | A1 |
20120007613 | Gazit | Jan 2012 | A1 |
20120019966 | DeBoer | Jan 2012 | A1 |
20120032515 | Ledenev et al. | Feb 2012 | A1 |
20120091810 | Aiello et al. | Apr 2012 | A1 |
Number | Date | Country |
---|---|---|
1309451 | Aug 2001 | CN |
1122905 | Oct 2003 | CN |
19737286 | Mar 1999 | DE |
102005030907 | Jan 2007 | DE |
102008057874 | May 2010 | DE |
419093 | Mar 1991 | EP |
420295 | Apr 1991 | EP |
604777 | Jul 1994 | EP |
756178 | Jan 1997 | EP |
827254 | Mar 1998 | EP |
1047179 | Oct 2000 | EP |
1330009 | Jul 2003 | EP |
1503490 | Feb 2005 | EP |
1531545 | May 2005 | EP |
1657557 | May 2006 | EP |
1657797 | May 2006 | EP |
1887675 | Feb 2008 | EP |
2048679 | Apr 2009 | EP |
2315328 | Apr 2011 | EP |
2393178 | Dec 2011 | EP |
2249147 | Mar 2006 | ES |
2249149 | Mar 2006 | ES |
2476508 | Jun 2011 | GB |
59185396 | Oct 1984 | JP |
61065320 | Apr 1986 | JP |
11041832 | Feb 1999 | JP |
11103538 | Apr 1999 | JP |
11206038 | Jul 1999 | JP |
11289891 | Oct 1999 | JP |
11318042 | Nov 1999 | JP |
2000174307 | Jun 2000 | JP |
2001189476 | Jul 2001 | JP |
2002300735 | Oct 2002 | JP |
2003124492 | Apr 2003 | JP |
2003134667 | May 2003 | JP |
2004194500 | Jul 2004 | JP |
2004260944 | Sep 2004 | JP |
2007058845 | Mar 2007 | JP |
9313587 | Jul 1993 | WO |
9613093 | May 1996 | WO |
9823021 | May 1998 | WO |
0000839 | Jan 2000 | WO |
0021178 | Apr 2000 | WO |
0075947 | Dec 2000 | WO |
0231517 | Apr 2002 | WO |
03050938 | Jun 2003 | WO |
03071655 | Aug 2003 | WO |
2004023278 | Mar 2004 | WO |
2004090993 | Oct 2004 | WO |
2004098261 | Nov 2004 | WO |
2004107543 | Dec 2004 | WO |
2005076444 | Aug 2005 | WO |
2005076445 | Aug 2005 | WO |
2006005125 | Jan 2006 | WO |
2006007198 | Jan 2006 | WO |
2006078685 | Jul 2006 | WO |
2007006564 | Jan 2007 | WO |
2007048421 | May 2007 | WO |
2007073951 | Jul 2007 | WO |
2007084196 | Jul 2007 | WO |
2007090476 | Aug 2007 | WO |
2007113358 | Oct 2007 | WO |
2008125915 | Oct 2008 | WO |
2008132551 | Nov 2008 | WO |
2008132553 | Nov 2008 | WO |
2008142480 | Nov 2008 | WO |
2009007782 | Jan 2009 | WO |
2009051853 | Apr 2009 | WO |
2009118682 | Oct 2009 | WO |
2009118683 | Oct 2009 | WO |
2009073868 | Nov 2009 | WO |
2009136358 | Nov 2009 | WO |
2010065043 | Jun 2010 | WO |
2010065388 | Jun 2010 | WO |
2010072717 | Jul 2010 | WO |
2010078303 | Jul 2010 | WO |
2010134057 | Nov 2010 | WO |
2011011711 | Jan 2011 | WO |
2011017721 | Feb 2011 | WO |
2011023732 | Mar 2011 | WO |
2011059067 | May 2011 | WO |
2011074025 | Jun 2011 | WO |
Entry |
---|
Lijun Gao et al., Parallel-Connected Solar PV System to Address Partial and Rapidly Fluctuating Shadow Conditions, IEEE Transactions on industrial Electronics, vol. 56, No. 5, May 2009. |
IPRP PCT/IB2007/004610—date of issue Jun. 10, 2009. |
QT Technical Application Papers, “ABB Circuit-Breakers for Direct current Applications”, ABB SACE S.p. A., An ABB Group Coupany, L.V. Breakers, Via Baioni, 35, 24123 Bergamo-Italy, Tel.: +39 035.395.111—Telefax: +39 035.395.306-433, Sep. 2007. |
Woyte, et al., “Mains Monitoring and Protection in a European Context”, 17th European Photovoltaic Solar Energy Conference and Exhibition, Munich, Germany, Oct. 22-26, 2001, ACHIM, Woyte, et al., pp. 1-4. |
“Implementation and testing of Anti-Islanding Algorithms for IEEE 929-2000 Compliance of Single Phase Photovoltaic Inverters”, Raymond M. Hudson, Photovoltaic Specialists Conference, 2002. Conference Record of the Twenty-Ninth IEEE, May 19-24, 2002. |
Fairchild Semiconductor, Application Note 9016, IGBT Basics 1, by K.S. OH Feb. 1, 2001. |
“Disconnect Switches in Photovoltaic Applications”, ABB, Inc., Low Voltage Control Products & Systems, 1206 Hatton Road, Wichita Falls, TX 86302, Phone 888-385-1221, 940-397-7000, Fax: 940-397-7085, 1SXU301197B0201, Nov. 2009. |
Walker, “A DC Circuit Breaker for an Electric Vehicle Battery Pack”, Australasian Universities Power Engineering Conference and IEAust Electric Energy Conference, Sep. 26-29, 1999. |
Combined Search and Examination Report for GB1018872.0 dated Apr. 15, 2011, 2 pages. |
International Search Report and Opinion of International Patent Application PCT/2009/051221, dated Oct. 19, 2009. |
International Search Report and Opinion of International Patent Application PCT/2009/051222, dated Oct. 7, 2009. |
Communication in EP07874025.5 dated Aug. 17, 2011. |
IPRP for PCT/IB2008/055095 dated Jun. 8, 2010, with Written Opinion. |
ISR for PCT/IB2008/055095 dated Apr. 30, 2009. |
ISR for PCT/IL07/01064 dated Mar. 25, 2008. |
IPRP for PCT/IB2007/004584 dated Jun. 10, 2009, with Written Opinion. |
IPRP for PCT/IB2007/004591 dated Jul. 13, 2010, with Written Opinion. |
IPRP for PCT/IB2007/004643 dated Jun. 10, 2009, with Written Opinion. |
Written Opinion for PCT/IB2008/055092 submitted with IPRP dated Jun. 8, 2010. |
IPRP for PCT/US2008/085754 dated Jun. 8, 2010, with Written Opinion dated Jan. 21, 2009. |
IPRP for PCT/US2008/085755 dated Jun. 8, 2010, with Written Opinion dated Jan. 20, 2009. |
IPRP for PCT/IB2009/051221 dated Sep. 28, 2010, with Written Opinion. |
IPRP for PCT/IB2009/051222 dated Sep. 28, 2010, with Written Opinion. |
IPRP for PCT/IB2009/051831 dated Nov. 9, 2010, with Written Opinion. |
IPRP for PCT/US2008/085736 dated Jun. 7, 2011, with Written Opinion. |
IPRP for PCT/IB2010/052287 dated Nov. 22, 2011, with Written Opinion. |
ISR for PCT/IB2010/052413 dated Sep. 7, 2010. |
UK Intellectual Property Office, Application No. GB1109618.7, Patents Act 1977, Examination Report Under Section 18(3), Sep. 16, 2011. |
UK Intellectual Property Office, Patents Act 1977: Patents Rules Notification of Grant: Patent Serial No. GB2480015, Nov. 29, 2011. |
Walker, et al. “PV String Per-Module Maximim Power Point Enabling Converters”, School of Information Technology and Electrical Engineering the Univiversity of Queensland, Sep. 28, 2003. |
Walker, “Cascaded DC-DC Converter Connection of Photovoltaic Modules”, 33rd Annual IEEE Power Electronics Specialists Conference. PESC 2002. Conference Proceedings. CAIRNS, Queensland, Australia, Jun. 23-27, 2002; [Annual Power Electronics Specialists Conference], New York, NY: IEEE US, vol. 1, Jun. 23, 2002, pp. 24-29, XP010596060 ISBN: 978-0-7803-7262-7, figure 1. |
Baggio, “Quasi-ZVS Activity Auxiliary Commutation Circuit for Two Switches Forward Converter”, 32nd Annual IEEE Power Electronics Specialists Conference. PESC 2001. Conference Proceedings. Vancouver, Canada, Jun. 17-21, 2001; [Annual Power Electronics Specialists Conference] New York, NY: IEEE, US. |
Ilic, “Interleaved Zero-Current-Transition Buck Converter”, IEEE Transactions on Industry Applications, IEEE Service Center, Piscataway, NJ, US, vol. 43, No. 6, Nov. 1, 2007, pp. 1619-1627, XP011197477 ISSN: 0093-9994, pp. 1619-1922. |
Lee: “Novel Zero-Voltage-Transition and Zero-Current-Transition Pulse-Width-Modulation Converters”, Power Electronics Specialists Conference, 1997, PESC '97, Record, 28th Annual IEEE St. Louis, MO, USA, Jun. 22-27, 1997, New York, NY, USA IEEE, US, vol. 1, Jun. 22, 1997, pp. 233-239, XP010241553, ISBN: 978-0-7803-3840-1, pp. 233-236. |
Sakamoto, “Switched Snubber for High-Frequency Switching Converters”, Electronics & Communications in Japan, Part 1—Communications, Wiley, Hoboken, NJ, US, vol. 76, No. 2, Feb. 1, 1993, pp. 30-38, XP000403018 ISSN: 8756-6621, pp. 30-35. |
Duarte, “A Family of ZVX-PWM Active-Clamping DC-to-DC Converters: Synthesis, Analysis and Experimentation”, Telecommunications Energy Conference, 1995, INTELEC '95, 17th International the Hague, Netherlands, Oct. 29-Nov. 1, 1995, New York, NY, US, IEEE, US, Oct. 29, 1995, pp. 502-509, XP010161283 ISBN: 978-0-7803-2750-4 p. 503-504. |
IPRP for PCT/IL2007/001064 dated Mar. 17, 2009, with Written Opinion dated Mar. 25, 2008. |
IPRP for PCT/IB2007/004586 dated Jun. 10, 2009, with Written Opinion. |
Extended European Search Report—EP12176089.6—Mailing date: Nov. 8, 2012. |
Gwon-Jong Yu et al: “Maximum power point tracking with temperature compensation of photovoltaic for air conditioning system with fuzzy controller”, 19960513; 19960513-9960517, May 13, 1996, pp. 1429-1432, XP010208423. |
Extended European Search Report—EP12177067.1—Mailing Date: Dec. 7, 2012. |
GB Combined Search and Examination Report—GB1200423.0—Mailing date: Apr. 30, 2012. |
GB Combined Search and Examination Report—GB1201499.9—Mailing date: May 28, 2012. |
GB Combined Search and Examination Report—GB1201506.1—Mailing date: May 22, 2012. |
Ciobotaru, et al., Control of single-stage single-phase PV inverter, Aug. 7, 2006. |
International Search Report and Written Opinion for PCT/IB2007/004591 dated Jul. 5, 2010. |
European Communication for EP07873361.5 dated Jul. 12, 2010. |
European Communication for EP07874022.2 dated Oct. 18, 2010. |
European Communication for EP07875148.4 dated Oct. 18, 2010. |
Chen, et al., “A New Low-Stress Buck-Boost Converter for Universal-Input PFC Applications”, IEEE Applied Power Electronics Converence, Feb. 2001, Colorado Power Electronics Center Publications. |
Chen, et al., “Buck-Boost PVM Converters Having Two Independently Controlled Switches”, IEEE Power Electronics Specialists Converence, Jun. 2001, Colorado Power Electronics Center Publications. |
Esram, et al., “Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques”, IEEE Transactions on Energy Conversion, vol. 22, No. 2, Jun. 2007, pp. 439-449. |
Walker, et al., “PhotoVoltaic DC-DC Module Integrated Converter for Novel Cascaded and Bypass Grid Connection Topologies-Design and Optimisation”, 37th IEEE Power Electronics Specialists Converence, Jun. 18-22, 2006, Jeju, Korea. |
Geoffrey R. Walker Affidavit re: U.S. Appl. No. 11/950,307, submitted in an IDS for U.S. Appl. No. 11/950,271 on Mar. 9, 2010. |
Geoffrey R. Walker Affidavit re: U.S. Appl. No. 11/950,271, submitted in an IDS for U.S. Appl. No. 11/950,271 on Mar. 9, 2010. |
International Search Report for PCT/IB2007/004610 dated Feb. 23, 2009. |
International Search Report for PCT/IB2007/004584 dated Jan. 28, 2009. |
International Search Report for PCT/IB2007/004586 dated Mar. 5, 2009. |
International Search Report for PCT/IB2007/004643 dated Jan. 30, 2009. |
International Search Report for PCT/US2008/085736 dated Jan. 28, 2009. |
International Search Report for PCT/US2008/085754 dated Feb. 9, 2009. |
International Search Report for PCT/US2008/085755 dated Feb. 3, 2009. |
Kajihara, et al., “Model of Photovoltaic Cell Circuits Under Partial Shading”, 2005 IEEE, pp. 866-870. |
Knaupp, et al., “Operation of a 10 KW PV Façade with 100 W AC Photovoltaic Modules”, 1996 IEEE, 25th PVSC, May 13-17, 1996, pp. 1235-1238, Washington, DC. |
Alonso, et al., “Cascaded H-Bridge Multilevel Converter for Grid Connected Photovoltaic Generators with Independent Maximum Power Point Tracking of Each Solor Array”, 2003 IEEE 34th, Annual Power Electronics Specialists Conference, Acapulco, Mexico, Jun. 15-19, 2003, pp. 731-735, vol. 2. |
Myrzik, et al., “String and Module Integrated Inverters for Single-Phase Grid Connected Photovoltaic Systems—A Review”, Power Tech Conference Proceedings, 2003 IEEE Bologna, Jun. 23-26, 2003, p. 8, vol. 2. |
Chen, et al., “Predictive Digital Current Programmed Control”, IEEE Transactions on Power Electronics, vol. 18, Issue 1, Jan. 2003. |
Wallace, et al., “DSP Controlled Buck/Boost Power Factor Correction for Telephony Rectifiers”, Telecommunications Energy Conference 2001, INTELEC 2001, Twenty-Third International, Oct. 18, 2001, pp. 132-138. |
Alonso, “A New Distributed Converter Interface for PV Panels”, 20th European Photovoltaic Solar Energy Conference, Jun. 6-10, 2005, Barcelona, Spain, pp. 2288-2291. |
Alonso, “Experimental Results of Intelligent PV Module for Grid-Connected PV Systems”, 21st European Photovoltaic Solar Energy Conference, Sep. 4-8, 2006, Dresden, Germany, pp. 2297-2300. |
Enslin, “Integrated Photovoltaic Maximum Power Point Tracking Converter”, IEEE Transactions on Industrial Electronics, vol. 44, No. 6, Dec. 1997, pp. 769-773. |
Lindgren, “Topology for Decentralised Solar Energy Inverters with a Low Voltage AC-Bus”, Chalmers University of Technology, Department of Electrical Power Engineering, EPE '99—Lausanne. |
Nikraz, “Digital Control of a Voltage Source Inverter in a Photovoltaic Applications”, 2004 35th Annual IEEE Power Electronics Specialists Conference, Aachen, Germany, 2004, pp. 3266-3271. |
Orduz, “Evaluation Test Results of a New Distributed MPPT Converter”, 22nd European Photovoltaic Solar Energy Conference, Sep. 3-7, 2007, Milan, Italy. |
Palma, “A Modular Fuel Cell, Modular DC-DC Converter Concept for High Performance and Enhanced Reliability”, IEEE 2007, pp. 2633-2638. |
Quaschning, “Cost Effectiveness of Shadow Tolerant Photovoltaic Systems”, Berlin University of Technology, Institute of Electrical Energy Technology, Renewable Energy Section. EuroSun '96, pp. 819-824. |
Roman, “Intelligent PV Module for Grid-Connected PV Systems”, IEEE Transactions on Industrial Electronics, vol. 52, No. 4, Aug. 2006, pp. 1066-1073. |
Roman, “Power Line Communications in Modular PV Systems”, 20th European Photovoltaic Solar Energy Conference, Jun. 6-10, 2005, Barcelona, Spain, pp. 2249-2252. |
Uriarte, “Energy Integrated Management System for PV Applications”, 20th European Photovoltaic Solar Energy Conference, Jun. 6-10, 2005, Barcelona, Spain, pp. 2292-2295. |
Walker, “Cascaded DC-DC Converter Connection of Photovoltaic Modules”, IEEE Transactions on Power Electronics, vol. 19, No. 4, Jul. 2004, pp. 1130-1139. |
Matsui, et al. “A New Maximum Photovoltaic Power Tracking Control Scheme Based on Power Equilibrium at DC Link”, IEEE, 1999, pp. 804-809. |
Hou, et al., Application of Adaptive Algorithm of Solar Cell Battery Charger, Apr. 2004. |
Stamenic, et al., “Maximum Power Point Tracking for Building Integrated Photovoltaic Ventilation Systems”, 2000. |
International Preliminary Report on Patentability for PCT/IB2008/055092 dated Jun. 8, 2010. |
International Search Report for PCT/IB2008/055092 dated Sep. 8, 2009. |
International Search Report and Opinion of International Patent Application WO2009136358 (PCT/IB2009/051831), dated Sep. 16, 2009. |
Informal Comments to the International Search Report dated Dec. 3, 2009. |
PCT/IB2010/052287 International Search Report and Written Opinion dated Sep. 2, 2010. |
UK Intellectual Property office, Combined Search and Examination Report for GB1100450.4 under Sections 17 and 18 (3), Jul. 14, 2011. |
Jain, et al., “A Single-Stage Grid Connected Inverter Topology for Solar PV Systems with Maximum Power Point Tracking”, IEEE Transactions on Power Electronics, vol. 22, No. 5, Sep. 2007, pp. 1928-1940. |
Lynch, et al., “Flexible DER Utility Interface System: Final Report”, Sep. 2004-May 2006, Northern Power Systems, Inc., Waitsfield, Vermont B. Kroposki, et al., National Renewable Energy Laboratory Golden, Colorado Technical Report NREL/TP-560-39876, Aug. 2006. |
Schimpf, et al., “Grid Connected Converters for Photovoltaic, State of the Art, Ideas for improvement of Transformerless Inverters”, NORPIE/2008, Nordic Workshop on Power and Industrial Electronics, Jun. 9-11, 2008. |
Sandia Report SAND96-2797 I UC-1290 Unlimited Release, Printed Dec. 1996, “Photovoltaic Power Systems and the National Electrical Code: Suggested Practices”, by John Wiles, Southwest Technology Development Instutte New Mexico State University Las Cruces, NM. |
United Kingdom Intellectual Property Office, Combined Search and Examination Report Under Sections 17 and 18(3), GB1020862.7, dated Jun. 16, 2011. |
Supplementary European Search Report—EP08857456—Mailing Date Dec. 6, 2013. |
Number | Date | Country | |
---|---|---|---|
20110133552 A1 | Jun 2011 | US |
Number | Date | Country | |
---|---|---|---|
61265734 | Dec 2009 | US |