Dual use photovoltaic system

Information

  • Patent Grant
  • 10270255
  • Patent Number
    10,270,255
  • Date Filed
    Wednesday, February 3, 2016
    8 years ago
  • Date Issued
    Tuesday, April 23, 2019
    5 years ago
Abstract
A system for providing power from a direct current (DC) source to the power grid. The system includes a first inverter with an input and an output. The input is adapted to connect to the DC source. A first switch disposed between the output and the power grid. A second inverter with a DC terminal and an AC terminal, the AC terminal is adapted to connect in parallel with the output of the first inverter. A battery adapted to connect to the DC terminal of the second inverter. A second switch connected between the DC terminal of the second inverter and the input of the first inverter. The second switch also operatively connects the DC source to the battery. The system may further include a charging circuit adapted to be disposed between the input and the DC terminal and a load adapted to connect to the output.
Description
BACKGROUND

1. Technical Field


The present invention relates to a hybrid photovoltaic system which features both power grid tied operation and battery charging operation.


2. Description of Related Art


Utility networks provide an electrical power system to utility customers. The distribution of electric power from utility companies to customers utilizes a network of utility lines connected in a grid-like fashion, referred to as an power grid. The power grid may consist of many independent energy sources energizing the grid in addition to utility companies energizing the grid, with each independent energy source being referred to as a distributed power (DP) generation system. The modern utility network includes the utility power source, consumer loads, and the distributed power generation systems which also supply electrical power to the network. The number and types of distributed power generation systems is growing rapidly and can include photovoltaics, wind, hydro, fuel cells, storage systems such as battery, super-conducting flywheel, and capacitor types, and mechanical devices including conventional and variable speed diesel engines, Stirling engines, gas turbines, and micro-turbines. These distributed power generation systems are typically connected to the utility network such that they operate in parallel with the utility power sources.


The term “DC source” as used herein refers to and includes DC available from photovoltaics cells, wind powered DC generators, hydro powered turbines, fuel cells, storage systems such as battery, super-conducting flywheel, and capacitor types, and mechanical devices including conventional and variable speed diesel engines, stirling engines, gas turbines, and micro-turbines.


BRIEF SUMMARY

According to an embodiment of the present invention there is provided a system for providing power from a direct current (DC) source to the power grid. The system includes a first inverter with an input and an output. The input is adapted to connect to the DC source. A first switch is disposed between the output and the power grid. A second inverter has a DC terminal and an alternating current (AC) terminal. The AC terminal is adapted to connect in parallel with the output of the first inverter. A battery is adapted to connect to the DC terminal of the second inverter. A second switch connects between the DC terminal of the second inverter and the input of the first inverter. The second switch also connects the DC source to the battery. The system may further include a charging circuit adapted to be disposed between the input and the DC terminal. A load connects to the output.


According to an embodiment of the present invention there is provided a method featuring both grid tied operation and battery charging operation, the method using a hybrid photovoltaic system. Two inverters are used during off grid operation of the hybrid photovoltaic system. The hybrid photovoltaic system includes the first inverter with an input and an output. A direct current (DC) source is connected to the input. A first switch is disposed between the output and the power grid. A second inverter has a DC terminal and an AC terminal. The AC terminal is connected in parallel with the output of the first inverter. A battery connects to the DC terminal. A second switch is disposed between the DC terminal and the input. The method senses absence of the power grid. Upon sensing the absence of the power grid, the power grid is disconnected from the output and the AC terminal with the first switch. The DC source is connected to the DC terminal with the second switch, thereby shunting the input of the first inverter with the DC terminal of the second inverter. Power on the DC terminal of the second inverter may typically be converted to an output power on the AC terminal of the second inverter. The output power typically provides a local grid to the load and the output of the first inverter. Voltage of the input of the first inverter may be controlled to a voltage value based on the local grid and/or the output power provided by the second inverter. Connection to the DC terminal with the second switch may be disconnected when a difference between voltage of the input and the voltage value exceeds a predetermined value. Connection to the DC terminal with the second switch typically allows the DC source to charge the battery. The control of voltage of the input of the first inverter may be performed by the first inverter. The control of voltage of the input of the first inverter may be by adjusting a parameter of the local grid. The local grid parameter may be adjusted by the backup inverter. The parameter may be a frequency, a phase angle, a voltage or a current. The control of voltage of the input of the first inverter may alternatively be performed by a circuit connected in series between the second switch and the DC terminal of the second inverter.


During on grid operation the method senses presence of the power grid. Based on the presence of the grid the DC source is disconnected from the DC terminal of the second inverter with the second switch, when the power grid is present. The output and the AC terminal are connected to the power grid with the first switch. Power on the input of the first inverter is typically converted to an output power on the output of the first inverter. The output power preferably supplies the power grid and/or a load. Power on the AC terminal of the second inverter is typically converted to a power on the DC terminal of the second inverter. The power on the DC terminal preferably charges the battery.


According to an embodiment of the present invention there is provided a power system which includes a power inverter, a backup inverter and a direct current (DC) source. The power inverter and the backup inverter are interconnected at respective outputs. A switch may be adapted to interconnect the inputs of the power inverter and the backup inverter and to connect the inputs to the DC source when a power grid is not available. When the power grid is available the switch may be adapted to disconnect the input of the backup inverter from the DC source.


The power system may further include a second switch adapted to connect the outputs of the power inverter and the backup inverter to the power grid when the power grid is available. When the power grid is not available the second switch adapted to disconnect the outputs of the backup inverter and the power inverter from the power grid. A charging circuit is typically adapted to be disposed between the DC source and the input of the backup inverter. A battery may be connected in parallel at the input of the backup inverter.


These, additional, and/or other aspects and/or advantages of the present invention are set forth in the detailed description which follows; possibly inferable from the detailed description; and/or learnable by practice of the present invention.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention is herein described, by way of example only, with reference to the accompanying drawings, wherein:



FIG. 1a shows a hybrid photovoltaic system according to an embodiment of the present invention;



FIG. 1b shows further details of a DC supply according to an exemplary embodiment of the present invention;



FIG. 2a shows a method for performing off grid or on grid operation of the hybrid photovoltaic system shown in FIGS. 1a and 1b, according to an embodiment of the present invention;



FIG. 2b shows more detailed method steps for off grid operation shown in FIG. 2a, according to an embodiment of the present invention; and



FIG. 2c more detailed method steps for on grid operation shown in FIG. 2a, according to an embodiment of the present invention.





The foregoing and/or other aspects will become apparent from the following detailed description when considered in conjunction with the accompanying drawing figures.


DETAILED DESCRIPTION

Reference will now be made in detail to aspects of the present invention, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout. The aspects are described below to explain the present invention by referring to the figures.


Before explaining embodiments of the invention in detail, it is to be understood that the invention is not limited in its application to the details of design and the arrangement of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.


By way of introduction, aspects of the present invention are directed primarily towards off grid operation of a hybrid photovoltaic system and possible benefits of using a lower power rated and cheaper standard backup inverter to provide a local grid. The local grid may additionally be used to derive additional circuit control function benefits from an offline main grid tied inverter which is typically higher power rated, more expensive and provides more functionality.


The term “hybrid” as used herein refers off-grid and/or on grid operation of a photovoltaic system. Equivalently, the term “hybrid” as used herein may refer to a photovoltaic system which is both/either grid connected or battery connected. Operation of a “hybrid photovoltaic system” may typically include supplying AC power to a power grid and/or load and/or DC power to the battery. AC power present on the power grid, leads to an “on grid” operation of the hybrid photovoltaic system. Otherwise the absence of AC power on the power grid leads to an “off grid” operation of the hybrid photovoltaic system. Another operating factor may include nighttime or daytime operation of the hybrid photovoltaic system in either off grid or on grid operation. Also consideration of whether or not the photovoltaic array is illuminated or not or illuminated to a sufficient level leads to the load and/or power grid being supplied by a number of combinations. The number of combinations for example may be to supply the load solely from the photovoltaic array, the photovoltaic array and power grid, the power grid alone, solely from the battery, the photovoltaic array and the battery or the photovoltaic array and the battery and the power grid.


Referring now to the drawings, reference is now made to FIG. 1a which shows a hybrid photovoltaic system 10 according to an embodiment of the present invention. System 10 typically includes a direct current (DC) source 104, grid tied inverter 150, load 120, grid switch controller 126, backup switch 122, charger 124, battery 128 and backup inverter 152. DC source 104 may typically be a bank of interconnected batteries, photovoltaic arrays, DC generator or DC producing fuel cells. DC source is connected at nodes A and B to an input of grid tied inverter 150. Grid tied inverter 150 typically may be rated to perform a conversion of 10000 watts of DC power provided by DC source 104 to substantially 10000 watts of alternating current (AC) power on the output of inverter 150 at nodes C and D. The conversion typically involves a maximum power point tracking (MPPT) algorithm utilized by inverter 150 such that inverter 150 sets the input voltage (V1) to inverter 150.


Output of inverter 150 at nodes C and D is connected to the input of grid switch controller 126, load 120 and the alternating current (AC) side of backup inverter 152. Backup inverter 152 is typically rated at 1000 watts. Load 120 typically is an AC supply to a domestic residence. The domestic supply receives the AC supply from power grid 140 and/or AC voltage (V2) provided by inverter 150. Grid switch controller 126 typically senses the presence or absence of power grid 140 to provide a status of grid 140. The status of grid 140 is typically conveyed to grid tied inverter 150 using bi-directional control line CTRL3. Grid switch controller 126 typically connects and reconnects grid 140 to nodes C and D. Grid switch controller 126 typically includes a double pole switch which connects and reconnects grid 140 to nodes C and D.


An input to backup switch 122 connects at nodes A and B. The output of switch 122 connects to the input of charging circuit 124. Backup switch 122 typically connects and reconnects the output of DC supply 104 to the input of charging circuit 124. Charging circuit 124 typically may be a DC to DC converter or a typically charge circuit which uses a linear regulator. According to one aspect of the present invention, charging circuit 124 may not be required and backup switch 122 typically connects and reconnects the output of DC supply 104 to the input of backup inverter 152. Placed in parallel across the input of backup inverter 152 is a battery 128. Backup inverter 152 typically operates in a bi-directional mode of power conversion. The bi-directional mode of inverter 152 converts AC power to DC power and vice versa. When grid 140 is not present (i.e. off grid operation), DC power from DC source 104 and/or battery 128 is converted to AC power on nodes C and D. When grid 140 is present (i.e. on grid operation), backup inverter 152 converts AC power from grid 140 and/or AC power from grid tied inverter 150 to a DC power which charges battery 128. The DC power which charges battery 128 in on grid mode, is typically applied with the input of charging circuit isolated from DC source 104 via backup switch 122. The direction of power conversion of backup inverter 152 is from a control signal applied to control line CTRL2 from inverter 150. The operation of backup switch 122 is from a control signal applied to control line CTRL3 from inverter 150. Control signals between grid switch controller 126, grid tied inverter 150, backup switch 122 and backup inverter 152 may be wireless or by power line communications.


Reference is now made to FIG. 1b which shows further details of DC supply 140 according to an exemplary embodiment of the present invention. DC power is supplied by DC source 140 at positive and negative nodes A and B respectively, by parallel connected photovoltaic strings 120. Details of only one of strings 120 are shown explicitly. In each of strings 120, direct current power sources 116 are serially connected. Each direct current power source 116 includes a photovoltaic panel 101 connected to an electronic module or photovoltaic module 102. Outputs of photovoltaic modules 102 are connected in series to form serial string 120. Photovoltaic modules 102 may be direct current (DC) to DC converters such as a buck circuit, boost circuit or buck-boost circuit. Attached to photovoltaic modules 102 is a processor 132 which accesses a memory 130. A transceiver 108 is attached to the output of electronic module 102 and to processor 132. According to a feature of the present invention, one of photovoltaic modules 102 referenced 102a is a master electronic module 102a of string 120 and controls and communicates with the other modules, i.e. slave modules 102 via power line communications or wireless link. According to this exemplary use of DC source 140, control of input voltage V1 may be an independent control such that inverter 150 sets the input voltage (V1) to inverter 150 and/or that inverter 150 instructs (via power line communication) DC-DC converters 102 to set the input voltage (V1) to inverter 150.


Reference is now made to FIG. 2a which shows a method 201 according to an embodiment of the present invention. Method 201 performs off grid or on grid operation of hybrid photovoltaic system 10 shown in FIGS. 1a and 1b. During off grid operation, DC source 104 typically supplies battery 128 and/or load 120 using backup inverter 152. During on grid operation, DC source 104 typically supplies power grid 140 and/or load 120 using grid tied inverter 150 and with battery 128 being charged using backup inverter 152.


Typically grid switch controller 126 senses the presence or absence of power grid 140 in step 203. In decision 205, if power grid 140 absent, connection to grid 140 to nodes C and D is disconnected using switch controller 126 (step 207). Grid switch controller 126 typically isolates both live and neutral of power grid 140 from nodes C and D using a double pole single throw switch. Once grid 140 is disconnected in step 207, off grid operation of system 10 continues by use of method 221 applied to system 10.


In decision 205, if power grid 140 is present, connection to grid 140 at nodes C and D using switch controller 126 typically disconnects DC source 104 from the input of backup inverter 152 and/or charge circuit 124 (step 209). With DC source 104 disconnected from the input of backup inverter 152 and/or charge circuit 124 on grid operation of system 10 continues by use of method 251 applied to system 10.


Reference is now made to FIG. 2b which shows method 221 in greater detail, according to an embodiment of the present invention. With connection to grid 140 disconnected using switch controller 126 in step 207, DC source 104 is connected (step 225) to the input of charger circuit 124. According to one aspect of the present invention, charging circuit 124 may not be required and backup switch 122 typically connects the output of DC supply 104 to the input or DC terminal of backup inverter 152. DC power from the output of charger circuit 124 or DC source 104 on the input of backup inverter 152, is then converted to an AC voltage (V2) power on the output or AC terminal of backup inverter 152 (step 227). The AC voltage (V2) power now serves as a local grid. The local grid may be sensed by grid tied inverter 150 on the AC side of grid tied inverter 150. Typically, the frequency of the local grid may be made to vary by backup inverter 152 as an indication to grid tied inverter 150 of loading on backup inverter 152. The frequency of the local grid may be made to vary in a range from 49 hertz to 51 hertz in increments of 0.1 hertz. Alternatively the phase angle, current or voltage of the local grid may be made to vary by backup inverter 152 as an indication to grid tied inverter 150 of loading on backup inverter 152. Loading on backup inverter 152 may be dependent on the state of charge/discharge of battery 128, power demand by load 120 and the amount of power supplied by DC source 104. The indication is typically used by grid tied inverter 150 to control a maximum level of input voltage (V1) on the input of inverter 150 and the input of charger circuit 124. The level of input voltage (V1) on the input of inverter 150 typically ranges from 120 volts to an upper maximum of 140 volts. In decision 235 if voltage level (V1) exceeds the upper maximum of 140 volts, DC source 104 is disconnected from the input of charger 124 (step 237) using backup switch 122. Otherwise sensing presence of power grid 140 continues with step 203.


Reference is now made to FIG. 2c which shows method 251 in greater detail according to an aspect of the present invention. With DC source 104 disconnected from the input of backup inverter 152 and/or charge circuit 124 in step 209, the output of grid tied inverter 150 at nodes C and D is connected to power grid 140 via switch controller 126. DC power on the input of grid tied inverter 150 is converted to an output AC power on nodes C and D (step 255). The output AC power supplies power 140 and/or load 120. The output AC power is additionally converted by backup inverter 152 to a DC power on the DC side of backup inverter 152 (step 257). The DC power charges battery 128 is typically controlled by back up inverter 152 and/or grid tied inverter 150. Sensing of power grid 140 continues with step 203.


By way of numerical example a DC-DC module 102 has a typical maximum output current of 16.4 A. Assuming minimum charger 124 voltage will be 120V, the total power on one string 120 is limited to 16.4 A*120V≈2000 W. If more than 2000 Watts are installed on one string 120, system 10 will still work. Module 102 will be current limited and the total number of strings will not supply more than 2000 Watts during off-grid/charge mode.


By way of another numerical example, a 3240 Kilowatt PV system 10 which has 2 strings 120 of 9 modules 102, where each module 102 is rated at 180 watts. Each string 120 power will be 9*180 W=1620 W. In on grid mode, V1=250-500 V, total string current=6.48-12.96 A and each string 120 current=3.24-6.48 A. In on grid mode, V1=120-140V, total string current=23.1-27 A and each string 120 current=11.5-13.5 A.


The term “DC source” as used herein refers to and includes DC available from photovoltaics cells, wind powered DC generators, hydro powered turbines, fuel cells, storage systems such as battery, super-conducting flywheel, and capacitor types, and mechanical devices including conventional and variable speed diesel engines, Stirling engines, gas turbines, and micro-turbines.


The term “comprising” as used herein, refers to an open group of elements for example, comprising an element A and an element B means including one or more of element A and one or more of element B and other elements other than element A and element B may be included.


The terms “sensing” and “measuring” are used herein interchangeably.


The definite articles “a”, “an” is used herein, such as “an inverter”, “a switch” have the meaning of “one or more” that is “one or more inverters or “one or more switches”.


Examples of various features/aspects/components/operations have been provided to facilitate understanding of the disclosed embodiments of the present invention. In addition, various preferences have been discussed to facilitate understanding of the disclosed embodiments of the present invention. It is to be understood that all examples and preferences disclosed herein are intended to be non-limiting.


Although selected embodiments of the present invention have been shown and described individually, it is to be understood that at least aspects of the described embodiments may be combined. Also although selected embodiments of the present invention have been shown and described, it is to be understood the present invention is not limited to the described embodiments. Instead, it is to be appreciated that changes may be made to these embodiments without departing from the principles and spirit of the invention, the scope of which is defined by the claims and the equivalents thereof.

Claims
  • 1. A system comprising: an alternating-current (AC) power source, a first inverter, a second inverter, and a first switch;direct-current (DC) nodes;a second switch connected to the DC nodes, to DC terminals of the first inverter, and to DC terminals of the second inverter;a battery connected to DC terminals of the second inverter;a charging circuit connected between the battery and the DC nodes via the second switch; andwherein the first switch is connected to the AC power source, to AC terminals of the first inverter, and to AC terminals of the second inverter.
  • 2. The system of claim 1, further comprising a controller configured to operate the first switch to disconnect the AC power source from the first inverter responsive to a first energization state associated with the AC power source.
  • 3. The system of claim 2, wherein the controller is further configured to operate the first switch to connect the AC power source to the first inverter responsive to a second energization state associated with the AC power source.
  • 4. The system of claim 1, further comprising a controller configured to communicate to the first inverter an energization state associated with the AC power source.
  • 5. The system of claim 1, further comprising a controller configured to operate the second switch to disconnect the second switch from the DC nodes responsive to a first energization state associated with the AC power source.
  • 6. The system of claim 5, wherein the controller is further configured to operate the second switch to connect the second switch to the DC nodes responsive to a second energization state associated with the AC power source.
  • 7. The system of claim 1, wherein the second inverter is configured to: convert AC power on the AC terminals of the second inverter to DC power on the DC terminals of the second inverter responsive to a first energization state associated with the AC power source; andconvert DC power on the DC terminals of the second inverter to AC power on the AC terminals of the second inverter responsive to a second energization state associated with the AC power source.
  • 8. The system of claim 1, further comprising a load connected to the AC terminals of the first inverter and to the AC terminals of the second inverter.
  • 9. The system of claim 1, wherein the system is configured to operate in a plurality of modes when a load is connected to the AC terminals of the first inverter and to the AC terminals of the second inverter, a DC power source is connected to DC terminals of the first inverter, and the AC power source is connected to the AC terminals of the first inverter and to the AC terminals of the second inverter, the plurality of modes including at least one of: the system being configured to supply power to the load solely from the DC power source;the system being configured to supply power to the load solely from the AC power source;the system being configured to supply power to the load solely from the battery;the system being configured to supply power to the load solely from the DC power source and the AC power source;the system being configured to supply power to the load solely from the DC power source and the battery; orthe system being configured to supply power to the load solely from the DC power source, the battery, and the AC power source.
CROSS REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. patent application Ser. No. 14/187,756, filed Feb. 24, 2014, which is a continuation of U.S. patent application Ser. No. 12/957,490, filed Dec. 1, 2010, now U.S. Pat. No. 8,710,699, which claims the benefit of priority from U.S. Provisional Patent Application No. 61/265,734, which was filed on Dec. 1, 2009, the disclosures of which are incorporated herein by reference.

US Referenced Citations (452)
Number Name Date Kind
2758219 Miller Aug 1956 A
3369210 Manickella Feb 1968 A
3596229 Hohorst Jul 1971 A
3958136 Schroeder May 1976 A
4060757 McMurray Nov 1977 A
4101816 Shepter Jul 1978 A
4146785 Neale Mar 1979 A
4161771 Bates Jul 1979 A
4171861 Hohorst Oct 1979 A
4257087 Cuk Mar 1981 A
4296461 Mallory et al. Oct 1981 A
4346341 Blackburn et al. Aug 1982 A
4452867 Conforti Jun 1984 A
4460232 Sotolongo Jul 1984 A
4481654 Daniels et al. Nov 1984 A
4549254 Kissel Oct 1985 A
4554515 Burson et al. Nov 1985 A
4598330 Woodworth Jul 1986 A
4602322 Merrick Jul 1986 A
4623753 Feldman et al. Nov 1986 A
4637677 Barkus Jan 1987 A
4639844 Gallios et al. Jan 1987 A
4641042 Miyazawa Feb 1987 A
4641079 Kato et al. Feb 1987 A
4644458 Harafuji et al. Feb 1987 A
4652770 Kumano Mar 1987 A
4685040 Steigerwald et al. Aug 1987 A
4686617 Colton Aug 1987 A
4706181 Mercer Nov 1987 A
4720667 Lee et al. Jan 1988 A
4720668 Lee et al. Jan 1988 A
4783728 Hoffman Nov 1988 A
RE33057 Clegg et al. Sep 1989 E
4864213 Kido Sep 1989 A
4868379 West Sep 1989 A
4888063 Powell Dec 1989 A
4888702 Gerken et al. Dec 1989 A
4899269 Rouzies Feb 1990 A
4903851 Slough Feb 1990 A
4906859 Kobayashi et al. Mar 1990 A
4910518 Kim et al. Mar 1990 A
4978870 Chen et al. Dec 1990 A
4987360 Thompson Jan 1991 A
5045988 Gritter et al. Sep 1991 A
5081558 Mahler Jan 1992 A
5191519 Kawakami Mar 1993 A
5280232 Kohl et al. Jan 1994 A
5287261 Ehsani Feb 1994 A
5289361 Vinciarelli Feb 1994 A
5327071 Frederick et al. Jul 1994 A
5345375 Mohan Sep 1994 A
5402060 Erisman Mar 1995 A
5446645 Shirahama et al. Aug 1995 A
5460546 Kunishi et al. Oct 1995 A
5493154 Smith et al. Feb 1996 A
5497289 Sugishima et al. Mar 1996 A
5517378 Asplund et al. May 1996 A
5530335 Decker et al. Jun 1996 A
5548504 Takehara Aug 1996 A
5563780 Goad Oct 1996 A
5604430 Decker et al. Feb 1997 A
5616913 Litterst Apr 1997 A
5644219 Kurokawa Jul 1997 A
5646501 Fishman et al. Jul 1997 A
5659465 Flack et al. Aug 1997 A
5686766 Tamechika Nov 1997 A
5773963 Blanc et al. Jun 1998 A
5777515 Kimura Jul 1998 A
5777858 Rodulfo Jul 1998 A
5780092 Agbo et al. Jul 1998 A
5798631 Spee et al. Aug 1998 A
5801519 Midya et al. Sep 1998 A
5804894 Leeson et al. Sep 1998 A
5821734 Faulk Oct 1998 A
5822186 Bull et al. Oct 1998 A
5838148 Kurokami et al. Nov 1998 A
5869956 Nagao et al. Feb 1999 A
5873738 Shimada et al. Feb 1999 A
5886882 Rodulfo Mar 1999 A
5886890 Ishida et al. Mar 1999 A
5892354 Nagao et al. Apr 1999 A
5905645 Cross May 1999 A
5917722 Singh Jun 1999 A
5919314 Kim Jul 1999 A
5923158 Kurokami et al. Jul 1999 A
5930128 Dent Jul 1999 A
5932994 Jo et al. Aug 1999 A
5933327 Leighton et al. Aug 1999 A
5945806 Faulk Aug 1999 A
5949668 Schweighofer Sep 1999 A
5961739 Osborne Oct 1999 A
5963010 Hayashi et al. Oct 1999 A
5990659 Frannhagen Nov 1999 A
6002290 Avery et al. Dec 1999 A
6031736 Takehara et al. Feb 2000 A
6037720 Wong et al. Mar 2000 A
6038148 Farrington et al. Mar 2000 A
6046919 Madenokouji et al. Apr 2000 A
6050779 Nagao et al. Apr 2000 A
6078511 Fasullo et al. Jun 2000 A
6081104 Kern Jun 2000 A
6082122 Madenokouji et al. Jul 2000 A
6087738 Hammond Jul 2000 A
6105317 Tomiuchi et al. Aug 2000 A
6111188 Kurokami et al. Aug 2000 A
6111391 Cullen Aug 2000 A
6111767 Handleman Aug 2000 A
6163086 Choo Dec 2000 A
6166455 Li Dec 2000 A
6166527 Dwelley et al. Dec 2000 A
6169678 Kondo et al. Jan 2001 B1
6219623 Wills Apr 2001 B1
6255360 Domschke et al. Jul 2001 B1
6256234 Keeth et al. Jul 2001 B1
6259234 Perol Jul 2001 B1
6262558 Weinberg Jul 2001 B1
6285572 Onizuka et al. Sep 2001 B1
6292379 Edevold et al. Sep 2001 B1
6301128 Jang et al. Oct 2001 B1
6304065 Wittenbreder Oct 2001 B1
6320769 Kurokami et al. Nov 2001 B2
6339538 Handleman Jan 2002 B1
6351130 Preiser et al. Feb 2002 B1
6369462 Siri Apr 2002 B1
6380719 Underwood et al. Apr 2002 B2
6396170 Laufenberg et al. May 2002 B1
6433522 Siri Aug 2002 B1
6441597 Lethellier Aug 2002 B1
6448489 Kimura et al. Sep 2002 B2
6452814 Wittenbreder Sep 2002 B1
6469919 Bennett Oct 2002 B1
6483203 McCormack Nov 2002 B1
6493246 Suzui et al. Dec 2002 B2
6507176 Wittenbreder, Jr. Jan 2003 B2
6531848 Chitsazan et al. Mar 2003 B1
6545211 Mimura Apr 2003 B1
6548205 Leung et al. Apr 2003 B2
6587051 Takehara et al. Jul 2003 B2
6590793 Nagao et al. Jul 2003 B1
6593521 Kobayashi Jul 2003 B2
6608468 Nagase Aug 2003 B2
6611130 Chang Aug 2003 B2
6611441 Kurokami et al. Aug 2003 B2
6628011 Droppo et al. Sep 2003 B2
6633824 Dollar, II Oct 2003 B2
6650031 Goldack Nov 2003 B1
6650560 MacDonald et al. Nov 2003 B2
6653549 Matsushita et al. Nov 2003 B2
6672018 Shingleton Jan 2004 B2
6678174 Suzui et al. Jan 2004 B2
6690590 Stamenic et al. Feb 2004 B2
6693781 Kroker Feb 2004 B1
6731136 Knee May 2004 B2
6738692 Schienbein et al. May 2004 B2
6744643 Luo et al. Jun 2004 B2
6765315 Hammerstrom et al. Jul 2004 B2
6768047 Chang et al. Jul 2004 B2
6788033 Vinciarelli Sep 2004 B2
6788146 Forejt et al. Sep 2004 B2
6795318 Haas et al. Sep 2004 B2
6801442 Suzui et al. Oct 2004 B2
6810339 Wills Oct 2004 B2
6850074 Adams et al. Feb 2005 B2
6882131 Takada et al. Apr 2005 B1
6914418 Sung Jul 2005 B2
6919714 Delepaut Jul 2005 B2
6927955 Suzui et al. Aug 2005 B2
6933627 Wilhelm Aug 2005 B2
6936995 Kapsokavathis et al. Aug 2005 B2
6950323 Achleitner et al. Sep 2005 B2
6963147 Kurokami et al. Nov 2005 B2
6984967 Notman Jan 2006 B2
6984970 Capel Jan 2006 B2
7030597 Bruno et al. Apr 2006 B2
7031176 Kotsopoulos et al. Apr 2006 B2
7038430 Itabashi et al. May 2006 B2
7042195 Tsunetsugu et al. May 2006 B2
7046531 Zocchi et al. May 2006 B2
7053506 Alonso et al. May 2006 B2
7072194 Nayar et al. Jul 2006 B2
7079406 Kurokami et al. Jul 2006 B2
7087332 Harris Aug 2006 B2
7090509 Gilliland et al. Aug 2006 B1
7091707 Cutler Aug 2006 B2
7097516 Werner et al. Aug 2006 B2
7099169 West et al. Aug 2006 B2
7126053 Kurokami et al. Oct 2006 B2
7126294 Minami et al. Oct 2006 B2
7138786 Ishigaki et al. Nov 2006 B2
7148669 Maksimovic et al. Dec 2006 B2
7158359 Bertele et al. Jan 2007 B2
7158395 Deng et al. Jan 2007 B2
7174973 Lysaght Feb 2007 B1
7193872 Siri Mar 2007 B2
7218541 Price et al. May 2007 B2
7248946 Bashaw et al. Jul 2007 B2
7256566 Bhavaraju et al. Aug 2007 B2
7277304 Stancu et al. Oct 2007 B2
7281141 Elkayam et al. Oct 2007 B2
7282814 Jacobs Oct 2007 B2
7291036 Daily et al. Nov 2007 B1
RE39976 Schiff et al. Jan 2008 E
7336056 Dening Feb 2008 B1
7348802 Kasanyal et al. Mar 2008 B2
7352154 Cook Apr 2008 B2
7371963 Suenaga et al. May 2008 B2
7372712 Stancu et al. May 2008 B2
7385380 Ishigaki et al. Jun 2008 B2
7385833 Keung Jun 2008 B2
7394237 Chou et al. Jul 2008 B2
7420815 Love Sep 2008 B2
7435134 Lenox Oct 2008 B2
7435897 Russell Oct 2008 B2
7443052 Wendt et al. Oct 2008 B2
7456523 Kobayashi Nov 2008 B2
7471014 Lum et al. Dec 2008 B2
7495419 Ju Feb 2009 B1
7504811 Watanabe et al. Mar 2009 B2
7589437 Henne et al. Sep 2009 B2
7600349 Liebendorfer Oct 2009 B2
7602080 Hadar et al. Oct 2009 B1
7605498 Ledenev et al. Oct 2009 B2
7612283 Toyomura et al. Nov 2009 B2
7646116 Batarseh et al. Jan 2010 B2
7709727 Roehrig et al. May 2010 B2
7719140 Ledenev et al. May 2010 B2
7748175 Liebendorfer Jul 2010 B2
7759575 Jones et al. Jul 2010 B2
7763807 Richter Jul 2010 B2
7780472 Lenox Aug 2010 B2
7782031 Qiu et al. Aug 2010 B2
7783389 Yamada et al. Aug 2010 B2
7787273 Lu et al. Aug 2010 B2
7804282 Bertele Sep 2010 B2
7812701 Lee et al. Oct 2010 B2
7839022 Wolfs Nov 2010 B2
7843085 Ledenev et al. Nov 2010 B2
7864497 Quardt et al. Jan 2011 B2
7868599 Rahman et al. Jan 2011 B2
7880334 Evans et al. Feb 2011 B2
7893346 Nachamkin et al. Feb 2011 B2
7900361 Adest et al. Mar 2011 B2
7919952 Fahrenbruch Apr 2011 B1
7919953 Porter et al. Apr 2011 B2
7925552 Tarbell et al. Apr 2011 B2
7944191 Xu May 2011 B2
7945413 Krein May 2011 B2
7948221 Watanabe et al. May 2011 B2
7952897 Nocentini et al. May 2011 B2
7960650 Richter et al. Jun 2011 B2
7960950 Glovinsky Jun 2011 B2
8003885 Richter et al. Aug 2011 B2
8004116 Ledenev et al. Aug 2011 B2
8004117 Adest et al. Aug 2011 B2
8013472 Adest et al. Sep 2011 B2
8018748 Leonard Sep 2011 B2
8058747 Avrutsky et al. Nov 2011 B2
8058752 Erickson, Jr. et al. Nov 2011 B2
8067855 Mumtaz et al. Nov 2011 B2
8077437 Mumtaz et al. Dec 2011 B2
8093756 Porter et al. Jan 2012 B2
8093757 Wolfs Jan 2012 B2
8098055 Avrutsky et al. Jan 2012 B2
8102144 Capp et al. Jan 2012 B2
8111052 Glovinsky Feb 2012 B2
8116103 Zacharias et al. Feb 2012 B2
8138914 Wong et al. Mar 2012 B2
8184460 O'Brien et al. May 2012 B2
8204709 Presher, Jr. et al. Jun 2012 B2
8289742 Adest et al. Oct 2012 B2
8415937 Hester Apr 2013 B2
8436592 Saitoh May 2013 B2
8570017 Perichon et al. Oct 2013 B2
8670255 Gong et al. Mar 2014 B2
20010023703 Kondo et al. Sep 2001 A1
20010034982 Nagao et al. Nov 2001 A1
20020044473 Toyomura et al. Apr 2002 A1
20020056089 Houston May 2002 A1
20030058593 Bertele et al. Mar 2003 A1
20030058662 Baudelot et al. Mar 2003 A1
20030066076 Minahan Apr 2003 A1
20030075211 Makita et al. Apr 2003 A1
20030080741 LeRow et al. May 2003 A1
20030214274 Lethellier Nov 2003 A1
20040004402 Kippley Jan 2004 A1
20040041548 Perry Mar 2004 A1
20040061527 Knee Apr 2004 A1
20040125618 De Rooij et al. Jul 2004 A1
20040140719 Vulih et al. Jul 2004 A1
20040169499 Huang et al. Sep 2004 A1
20040201279 Templeton Oct 2004 A1
20040201933 Blanc Oct 2004 A1
20040246226 Moon Dec 2004 A1
20050002214 Deng et al. Jan 2005 A1
20050005785 Poss et al. Jan 2005 A1
20050017697 Capel Jan 2005 A1
20050057214 Matan Mar 2005 A1
20050057215 Matan Mar 2005 A1
20050068820 Radosevich et al. Mar 2005 A1
20050099138 Wilhelm May 2005 A1
20050103376 Matsushita et al. May 2005 A1
20050105224 Nishi May 2005 A1
20050121067 Toyomura et al. Jun 2005 A1
20050162018 Realmuto et al. Jul 2005 A1
20050172995 Rohrig et al. Aug 2005 A1
20050184594 Fredette Aug 2005 A1
20050194937 Jacobs Sep 2005 A1
20050226017 Kotsopoulos et al. Oct 2005 A1
20050281064 Olsen et al. Dec 2005 A1
20060001406 Matan Jan 2006 A1
20060017327 Siri et al. Jan 2006 A1
20060034106 Johnson Feb 2006 A1
20060038692 Schnetker Feb 2006 A1
20060053447 Krzyzanowski et al. Mar 2006 A1
20060066349 Murakami Mar 2006 A1
20060068239 Norimatsu et al. Mar 2006 A1
20060108979 Daniel et al. May 2006 A1
20060113843 Beveridge Jun 2006 A1
20060113979 Ishigaki et al. Jun 2006 A1
20060118162 Saelzer et al. Jun 2006 A1
20060132102 Harvey Jun 2006 A1
20060149396 Templeton Jul 2006 A1
20060162772 Presher et al. Jul 2006 A1
20060163946 Henne et al. Jul 2006 A1
20060171182 Siri et al. Aug 2006 A1
20060174939 Matan Aug 2006 A1
20060176716 Balakrishnan et al. Aug 2006 A1
20060185727 Matan Aug 2006 A1
20060192540 Balakrishnan et al. Aug 2006 A1
20060208660 Shinmura et al. Sep 2006 A1
20060227578 Datta et al. Oct 2006 A1
20060237058 McClintock et al. Oct 2006 A1
20070013349 Bassett Jan 2007 A1
20070030068 Motonobu et al. Feb 2007 A1
20070044837 Simburger et al. Mar 2007 A1
20070075689 Kinder et al. Apr 2007 A1
20070075711 Blanc et al. Apr 2007 A1
20070081364 Andreycak Apr 2007 A1
20070133241 Mumtaz et al. Jun 2007 A1
20070147075 Bang Jun 2007 A1
20070159866 Siri Jul 2007 A1
20070164612 Wendt et al. Jul 2007 A1
20070164750 Chen et al. Jul 2007 A1
20070165347 Wendt et al. Jul 2007 A1
20070205778 Fabbro et al. Sep 2007 A1
20070227574 Cart Oct 2007 A1
20070236187 Wai et al. Oct 2007 A1
20070247877 Kwon et al. Oct 2007 A1
20070273342 Kataoka et al. Nov 2007 A1
20070290636 Beck et al. Dec 2007 A1
20080024098 Hojo Jan 2008 A1
20080080177 Chang Apr 2008 A1
20080088184 Tung et al. Apr 2008 A1
20080097655 Hadar et al. Apr 2008 A1
20080106250 Prior et al. May 2008 A1
20080115823 Kinsey May 2008 A1
20080136367 Adest et al. Jun 2008 A1
20080143188 Adest et al. Jun 2008 A1
20080143462 Belisle et al. Jun 2008 A1
20080144294 Adest et al. Jun 2008 A1
20080147335 Adest et al. Jun 2008 A1
20080150366 Adest Jun 2008 A1
20080164766 Adest et al. Jul 2008 A1
20080179949 Besser et al. Jul 2008 A1
20080218152 Bo Sep 2008 A1
20080236647 Gibson et al. Oct 2008 A1
20080236648 Klein et al. Oct 2008 A1
20080238195 Shaver et al. Oct 2008 A1
20080246460 Smith Oct 2008 A1
20080246463 Sinton et al. Oct 2008 A1
20080252273 Woo et al. Oct 2008 A1
20080303503 Wolfs Dec 2008 A1
20090039852 Fishelov et al. Feb 2009 A1
20090066399 Chen et al. Mar 2009 A1
20090073726 Babcock Mar 2009 A1
20090084570 Gherardini et al. Apr 2009 A1
20090097172 Bremicker et al. Apr 2009 A1
20090102440 Coles Apr 2009 A1
20090121549 Leonard May 2009 A1
20090140715 Adest et al. Jun 2009 A1
20090141522 Adest et al. Jun 2009 A1
20090145480 Adest et al. Jun 2009 A1
20090146667 Adest et al. Jun 2009 A1
20090146671 Gazit Jun 2009 A1
20090147554 Adest et al. Jun 2009 A1
20090184746 Fahrenbruch Jul 2009 A1
20090190275 Gilmore et al. Jul 2009 A1
20090206666 Sella et al. Aug 2009 A1
20090217965 Dougal et al. Sep 2009 A1
20090224817 Nakamura et al. Sep 2009 A1
20090237042 Glovinski Sep 2009 A1
20090237043 Glovinsky Sep 2009 A1
20090242011 Proisy et al. Oct 2009 A1
20090273241 Gazit et al. Nov 2009 A1
20090282755 Abbott et al. Nov 2009 A1
20090284998 Zhang et al. Nov 2009 A1
20090322494 Lee Dec 2009 A1
20100001587 Casey et al. Jan 2010 A1
20100052735 Burkland et al. Mar 2010 A1
20100085670 Palaniswami et al. Apr 2010 A1
20100124027 Handelsman et al. May 2010 A1
20100127571 Hadar et al. May 2010 A1
20100139743 Hadar et al. Jun 2010 A1
20100176773 Capel Jul 2010 A1
20100181957 Goeltner Jul 2010 A1
20100214808 Rodriguez Aug 2010 A1
20100244575 Coccia et al. Sep 2010 A1
20100269430 Haddock Oct 2010 A1
20100277001 Wagoner Nov 2010 A1
20100282290 Schwarze et al. Nov 2010 A1
20100286836 Shaver, II et al. Nov 2010 A1
20100294528 Sella et al. Nov 2010 A1
20100294903 Shmukler et al. Nov 2010 A1
20100297860 Shmukler et al. Nov 2010 A1
20100301991 Sella et al. Dec 2010 A1
20100308662 Schatz et al. Dec 2010 A1
20110006743 Fabbro Jan 2011 A1
20110037600 Takehara et al. Feb 2011 A1
20110043172 Dearn Feb 2011 A1
20110061705 Croft et al. Mar 2011 A1
20110079263 Avrutsky Apr 2011 A1
20110084553 Adest et al. Apr 2011 A1
20110114154 Lichy et al. May 2011 A1
20110115295 Moon et al. May 2011 A1
20110121652 Sella et al. May 2011 A1
20110125431 Adest et al. May 2011 A1
20110133552 Binder et al. Jun 2011 A1
20110139213 Lee Jun 2011 A1
20110140536 Adest et al. Jun 2011 A1
20110181251 Porter et al. Jul 2011 A1
20110181340 Gazit Jul 2011 A1
20110210611 Ledenev et al. Sep 2011 A1
20110227411 Arditi Sep 2011 A1
20110254372 Haines et al. Oct 2011 A1
20110260866 Avrutsky et al. Oct 2011 A1
20110267859 Chapman Nov 2011 A1
20110271611 Maracci et al. Nov 2011 A1
20110273015 Adest et al. Nov 2011 A1
20110273016 Adest et al. Nov 2011 A1
20110285205 Ledenev et al. Nov 2011 A1
20110290317 Naumovitz et al. Dec 2011 A1
20110291486 Adest et al. Dec 2011 A1
20110316346 Porter et al. Dec 2011 A1
20120007613 Gazit Jan 2012 A1
20120019966 DeBoer Jan 2012 A1
20120032515 Ledenev et al. Feb 2012 A1
20120048325 Matsuo et al. Mar 2012 A1
20120081009 Shteynberg et al. Apr 2012 A1
20120091810 Aiello et al. Apr 2012 A1
20120113554 Paoletti et al. May 2012 A1
20140097808 Clark et al. Apr 2014 A1
20140167715 Wu et al. Jun 2014 A1
Foreign Referenced Citations (96)
Number Date Country
1309451 Aug 2001 CN
1122905 Oct 2003 CN
101136129 Mar 2008 CN
101488271 Jul 2009 CN
101523230 Sep 2009 CN
19737286 Mar 1999 DE
102005030907 Jan 2007 DE
102008057874 May 2010 DE
419093 Mar 1991 EP
420295 Apr 1991 EP
604777 Jul 1994 EP
756178 Jan 1997 EP
827254 Mar 1998 EP
1039621 Sep 2000 EP
1047179 Oct 2000 EP
1330009 Jul 2003 EP
1503490 Feb 2005 EP
1531542 May 2005 EP
1531545 May 2005 EP
1657557 May 2006 EP
1657797 May 2006 EP
1887675 Feb 2008 EP
2048679 Apr 2009 EP
2315328 Apr 2011 EP
2393178 Dec 2011 EP
2249147 Mar 2006 ES
2249149 Mar 2006 ES
2476508 Jun 2011 GB
2480015 Nov 2011 GB
2480015 Nov 2011 GB
31065320 Apr 1986 JP
8009557 Jan 1996 JP
11041832 Feb 1999 JP
11103538 Apr 1999 JP
11206038 Jul 1999 JP
11289891 Oct 1999 JP
11318042 Nov 1999 JP
2000174307 Jun 2000 JP
2000339044 Dec 2000 JP
2001189476 Jul 2001 JP
2002300735 Oct 2002 JP
2003124492 Apr 2003 JP
2003134667 May 2003 JP
2004194500 Jul 2004 JP
2004260944 Sep 2004 JP
2004334704 Nov 2004 JP
2005192314 Jul 2005 JP
2007058845 Mar 2007 JP
1993013587 Jul 1993 WO
1996013093 May 1996 WO
1998023021 May 1998 WO
0000839 Jan 2000 WO
0021178 Apr 2000 WO
0075947 Dec 2000 WO
0231517 Apr 2002 WO
2003050938 Jun 2003 WO
2003071655 Aug 2003 WO
2004023278 Mar 2004 WO
2004090993 Oct 2004 WO
2004098261 Nov 2004 WO
2004107543 Dec 2004 WO
2005076444 Aug 2005 WO
2005076445 Aug 2005 WO
2006005125 Jan 2006 WO
2006007198 Jan 2006 WO
2006078685 Jul 2006 WO
2007006564 Jan 2007 WO
2007048421 May 2007 WO
2007073951 Jul 2007 WO
2007084196 Jul 2007 WO
2007090476 Aug 2007 WO
2007113358 Oct 2007 WO
2008008528 Jan 2008 WO
2008125915 Oct 2008 WO
2008132551 Nov 2008 WO
2008132553 Nov 2008 WO
2008142480 Nov 2008 WO
2009007782 Jan 2009 WO
2009046533 Apr 2009 WO
2009051853 Apr 2009 WO
2009118682 Oct 2009 WO
2009118683 Oct 2009 WO
2009073868 Nov 2009 WO
2009136358 Nov 2009 WO
2010002960 Jan 2010 WO
2010065043 Jun 2010 WO
2010065388 Jun 2010 WO
2010072717 Jul 2010 WO
2010078303 Jul 2010 WO
2010094012 Aug 2010 WO
20100134057 Nov 2010 WO
2011011711 Jan 2011 WO
2011017721 Feb 2011 WO
2011023732 Mar 2011 WO
2011059067 May 2011 WO
2011074025 Jun 2011 WO
Non-Patent Literature Citations (128)
Entry
QT Technical Application Papers, “ABB Circuit-Breakers for Direct current Applications”, ABB SACE S.p.A., An ABB Group Company, L.V. Breakers, Via Baioni, 35, 24123 Bergamo-Italy, Tel.: +39 035.395.111—Telefax: +39 035.395.306-433, Sep. 2007.
Woyte, et al., “Mains Monitoring and Protection in a European Context”, 17th European Photovoltaic Solar Energy Conference and Exhibition, Munich, Germany, Oct. 22-26, 2001, ACHIM, Woyte, et al., pp. 1-4.
“Implementation and testing of Anti-Islanding Algorithms for IEEE 929-2000 Compliance of Single Phase Photovoltaic Inverters”, Raymond M. Hudson, Photovoltaic Specialists Conference, 2002. Conference Record of the Twenty-Ninth IEEE, May 19-24, 2002.
Fairchild Semiconductor, Application Note 9016, IGBT Basics 1, by K.S. OH Feb. 1, 2001.
“Disconnect Switches in Photovoltaic Applications”, ABB, Inc., Low Voltage Control Products & Systems, 1206 Hatton Road, Wichita Falls, TX 86302, Phone 888-385-1221, 940-397-7000, Fax: 940-397-7085, 1SXU301197130201, Nov. 2009.
Walker, “A DC Circuit Breaker for an Electric Vehicle Battery Pack”, Australasian Universities Power Engineering Conference and IEAust Electric Energy Conference, Sep. 26-29, 1999.
Combined Search and Examination Report for GB1018872.0 dated Apr. 15, 2011, 2 pages.
International Search Report and Opinion of International Patent Application PCT/2009/051221, dated Oct. 19, 2009.
International Search Report and Opinion of International Patent Application PCT/2009/051222, dated Oct. 7, 2009.
Communication in EP07874025.5 dated Aug. 17, 2011.
IPRP for PCT/IB2008/055095 dated Jun. 8, 2010, with Written Opinion.
ISR for PCT/IB2008/055095 dated Apr. 30, 2009.
ISR for PCT/IL07/01064 dated Mar. 25, 2008.
IPRP for PCT/IB2007/004584 dated Jun. 10, 2009, with Written Opinion.
IPRP for PCT/IB2007/004591 dated Jul. 13, 2010, with Written Opinion.
IPRP for PCT/IB2007/004643 dated Jun. 10, 2009, with Written Opinion.
Written Opinion for PCT/IB2008/055092 submitted with IPRP dated Jun. 8, 2010.
IPRP for PCT/US2008/085754 dated Jun. 8, 2010, with Written Opinion dated Jan. 21, 2009.
IPRP for PCT/US2008/085755 dated Jun. 8, 2010, with Written Opinion dated Jan. 20, 2009.
IPRP for PCT/IB2009/051221 dated Sep. 28, 2010, with Written Opinion.
IPRP for PCT/IB2009/051222 dated Sep. 28, 2010, with Written Opinion.
IPRP for PCT/IB2009/051831 dated Nov. 9, 2010, with Written Opinion.
IPRP for PCT/US2008/085736 dated Jun. 7, 2011, with Written Opinion.
IPRP for PCT/IB2010/052287 dated Nov. 22, 2011, with Written Opinion.
ISR for PCT/IB2010/052413 dated Sep. 7, 2010.
UK Intellectual Property Office, Application No. GB1109618.7, Patents Act 1977, Examination Report Under Section 18(3), Sep. 16, 2011.
UK Intellectual Property Office, Patents Act 1977: Patents Rules Notification of Grant: Patent Serial No. GB2480015, Nov. 29, 2011.
Walker, et al. “PV String Per-Module Maximum Power Point Enabling Converters”, School of Information Technology and Electrical Engineering The University of Queensland, Sep. 28, 2003.
Walker, “Cascaded DC-DC Converter Connection of Photovoltaic Modules”, 33rd Annual IEEE Power Electronics Specialists Conference. PESC 2002. Conference Proceedings. CAIRNS, Queensland, Australia, Jun. 23-27, 2002; [Annual Power Electronics Specialists Conference], New York, NY: IEEE US, vol. 1, Jun. 23, 2002, pp. 24-29, XP010596060 ISBN: 978-0-7803-7262-7, figure 1.
Baggio, “Quasi-ZVS Activity Auxiliary Commutation Circuit for Two Switches Forward Converter”, 32nd Annual IEEE Power Electronics Specialists Conference. PESC 2001 . Conference Proceedings. Vancouver, Canada, Jun. 17-21, 2001; [Annual Power Electronics Specialists Conference] New York, NY: IEEE, US.
Ilic, “Interleaved Zero-Current-Transition Buck Converter”, IEEE Transactions on Industry Applications, IEEE Service Center, Piscataway, NJ, US, vol. 43, No. 6, Nov. 1, 2007, pp. 1619-1627, XP011197477 ISSN: 0093-9994, pp. 1619-1922.
Lee: “Novel Zero-Voltage-Transition and Zero-Current-Transition Pulse-Width-Modulation Converters”, Power Electronics Specialists Conference, 1997, PESC '97, Record, 28th Annual IEEE St. Louis, MO, USA, Jun. 22-27, 1997, New York, NY, USA IEEE, US, vol. 1, Jun. 22, 1997, pp. 233-239, XP010241553, ISBN: 978-0-7803-3840-1, pp. 233-236.
Sakamoto, “Switched Snubber for High-Frequency Switching Converters”, Electronics & Communications in Japan, Part 1—Communications, Wiley, Hoboken, NJ, US, vol. 76, No. 2, Feb. 1, 1993, pp. 30-38, XP000403018 ISSN: 8756-6621, pp. 30-35.
Duarte, “A Family of ZVX-PWM Active-Clamping DC-to-DC Converters: Synthesis, Analysis and Experimentation”, Telecommunications Energy Conference, 1995, INTELEC '95, 17th International The Hague, Netherlands, Oct. 29-Nov. 1, 1995, New York, NY, US, IEEE, US, Oct. 29, 1995, pp. 502-509, XP010161283 ISBN: 978-0-7803-2750-4 p. 503-504.
IPRP for PCT/IL2007/001064 dated Mar. 17, 2009, with Written Opinion dated Mar. 25, 2008.
IPRP for PCT/IB2007/004586 dated Jun. 10, 2009, with Written Opinion.
Gao, et al., “Parallel-Connected Solar PV System to Address Partial and Rapidly Fluctuating Shadow Conditions”, IEEE Transactions on Industrial Electronics, vol. 56, No. 5, May 2009, pp. 1548-1556.
IPRP PCT/IB2007/004610—dated Jun. 10, 2009.
Extended European Search Report—EP12176089.6—dated Nov. 8, 2012.
Gwon-Jong Yu et al: “Maximum power point tracking with temperature compensation of photovoltaic for air conditioning system with fuzzy controller”, 19960513; 19960513-19960517, May 13, 1996 (May 13, 1996), pp. 1429-1432, XP010208423.
Extended European Search Report—EP12177067.1—dated Dec. 7, 2012.
GB Combined Search and Examination Report—GB1200423.0—dated Apr. 30, 2012.
GB Combined Search and Examination Report—GB1201499.9—dated May 28, 2012.
GB Combined Search and Examination Report—GB1201506.1—dated May 22, 2012.
“Study of Energy Storage Capacitor Reduction for Single Phase PWM Rectifier”, Ruxi Wang et al., Virginia Polytechnic Institute and State University, Feb. 2009.
“Multilevel Inverters: A Survey of Topologies, Controls, and Applications”, Jose Rodriguez et al., IEEE Transactions on Industrial Electronics, vol. 49, No. 4, Aug. 2002.
Extended European Search Report—EP 08878650.4—dated Mar. 28, 2013.
Satcon Solstice—Satcon Solstice 100 kW System Solution Sheet—2010.
John Xue, “PV Module Series String Balancing Converters”, University of Queensland—School of Information Technology & Electrical Engineering, Nov. 6, 2002.
Robert W. Erickson, “Future of Power Electronics for Photovoltaics”, IEEE Applied Power Electronics Conference, Feb. 2009.
Ciobotaru, et al., Control of single-stage single-phase PV inverter, Aug. 7, 2006.
International Search Report and Written Opinion for PCT/IB2007/004591 dated Jul. 5, 2010.
European Communication for EP07873361.5 dated Jul. 12, 2010.
European Communication for EP07874022.2 dated Oct. 18, 2010.
European Communication for EP07875148.4 dated Oct. 18, 2010.
Chen, et al., “A New Low-Stress Buck-Boost Converter for Universal-Input PFC Applications”, IEEE Applied Power Electronics Conference, Feb. 2001, Colorado Power Electronics Center Publications.
Chen, et al., “Buck-Boost PWM Converters Having Two Independently Controlled Switches”, IEEE Power Electronics Specialists Conference, Jun. 2001, Colorado Power Electronics Center Publications.
Esram, et al., “Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques”, IEEE Transactions on Energy Conversion, vol. 22, No. 2, Jun. 2007, pp. 439-449.
Walker, et al., “Photovoltaic DC-DC Module Integrated Converter for Novel Cascaded and Bypass Grid Connection Topologies-Design and Optimisation”, 37th IEEE Power Electronics Specialists Conference, Jun. 18-22, 2006, Jeju, Korea.
Geoffrey R. Walker Affidavit re: U.S. Appl. No. 11/950,307, submitted in an IDS for U.S. Appl. No. 11/950,271 on Mar. 9, 2010.
Geoffrey R. Walker Affidavit re: U.S. Appl. No. 11/950,271, submitted in an IDS for U.S. Appl. No. 11/950,271 on Mar. 9, 2010.
International Search Report for PCT/IB2007/004610 dated Feb. 23, 2009.
International Search Report for PCT/IB2007/004584 dated Jan. 28, 2009.
International Search Report for PCT/IB2007/004586 dated Mar. 5, 2009.
International Search Report for PCT/IB2007/004643 dated Jan. 30, 2009.
International Search Report for PCT/US2008/085736 dated Jan. 28, 2009.
International Search Report for PCT/US2008/085754 dated Feb. 9, 2009.
International Search Report for PCT/US2008/085755 dated Feb. 3, 2009.
Kajihara, et al., “Model of Photovoltaic Cell Circuits Under Partial Shading”, Dec. 14-17, 2005 IEEE, pp. 866-870.
Knaupp, et al., “Operation of a 10 KW PV Façade with 100 W AC Photovoltaic Modules”, 1996 IEEE, 25th PVSC, May 13-17, 1996, pp. 1235-1238, Washington, DC.
Alonso, et al., “Cascaded H-Bridge Multilevel Converter for Grid Connected Photovoltaic Generators with Independent Maximum Power Point Tracking of Each Solor Array”, 2003 IEEE 34th, Annual Power Electronics Specialists Conference, Acapulco, Mexico, Jun. 15-19, 2003, pp. 731-735, vol. 2.
Myrzik, et al., “String and Module Integrated Inverters for Single-Phase Grid Connected Photovoltaic Systems—A Review”, Power Tech Conference Proceedings, 2003 IEEE Bologna, Jun. 23-26, 2003, p. 8, vol. 2.
Chen, et al., “Predictive Digital Current Programmed Control”, IEEE Transactions on Power Electronics, vol. 18, Issue 1, Jan. 2003.
Wallace, et al., “DSP Controlled Buck/Boost Power Factor Correction for Telephony Rectifiers”, Telecommunications Energy Conference 2001, INTELEC 2001, Twenty-Third International, Oct. 18, 2001, pp. 132-138.
Alonso, “A New Distributed Converter Interface for PV Panels”, 20th European Photovoltaic Solar Energy Conference, Jun. 6-10, 2005, Barcelona, Spain, pp. 2288-2291.
Alonso, “Experimental Results of Intelligent PV Module for Grid-Connected PV Systems”, 21st European Photovoltaic Solar Energy Conference, Sep. 4-8, 2006, Dresden, Germany, pp. 2297-2300.
Enslin, “Integrated Photovoltaic Maximum Power Point Tracking Converter”, IEEE Transactions on Industrial Electronics, vol. 44, No. 6, Dec. 1997, pp. 769-773.
Lindgren, “Topology for Decentralised Solar Energy Inverters with a Low Voltage AC-Bus”, Chalmers University of Technology, Department of Electrical Power Engineering, EPE '99—Lausanne, Sep. 1999.
Nikraz, “Digital Control of a Voltage Source Inverter in a Photovoltaic Applications”, 2004 35th Annual IEEE Power Electronics Specialists Conference, Aachen, Germany, Jun. 20-25, 2004, pp. 3266-3271.
Orduz, “Evaluation Test Results of a New Distributed MPPT Converter”, 22nd European Photovoltaic Solar Energy Conference, Sep. 3-7, 2007, Milan, Italy.
Palma, “A Modular Fuel Cell, Modular DC-DC Converter Concept for High Performance and Enhanced Reliability”, IEEE 2007, pp. 2633-2638, Jun. 17-21, 2007.
Quaschning, “Cost Effectiveness of Shadow Tolerant Photovoltaic Systems”, Berlin University of Technology, Institute of Electrical Energy Technology, Renewable Energy Section. EuroSun '96, pp. 819-824, Sep. 16-19, 1996.
Roman, “Intelligent PV Module for Grid-Connected PV Systems”, IEEE Transactions on Industrial Electronics, vol. 52, No. 4, Aug. 2006, pp. 1066-1073.
Roman, “Power Line Communications in Modular PV Systems”, 20th European Photovoltaic Solar Energy Conference, Jun. 6-10, 2005, Barcelona, Spain, pp. 2249-2252.
Uriarte, “Energy Integrated Management System for PV Applications”, 20th European Photovoltaic Solar Energy Conference, Jun. 6-10, 2005, Barcelona, Spain, pp. 2292-2295.
Walker, “Cascaded DC-DC Converter Connection of Photovoltaic Modules”, IEEE Transactions on Power Electronics, vol. 19, No. 4, Jul. 2004, pp. 1130-1139.
Matsui, et al., “A New Maximum Photovoltaic Power Tracking Control Scheme Based on Power Equilibrium at DC Link”, IEEE, Oct. 3-7, 1999, pp. 804-809.
Hou, et al., Application of Adaptive Algorithm of Solar Cell Battery Charger, Apr. 2004.
Stamenic, et al., “Maximum Power Point Tracking for Building Integrated Photovoltaic Ventilation Systems”, Sep. 15-22, 2000.
International Preliminary Report on Patentability for PCT/IB2008/055092 dated Jun. 8, 2010.
International Search Report for PCT/IB2008/055092 dated Sep. 8, 2009.
International Search Report and Opinion of International Patent Application WO2009136358 (PCT/IB2009/051831), dated Sep. 16, 2009.
Informal Comments to the International Search Report dated Dec. 3, 2009.
PCT/IB2010/052287 International Search Report and Written Opinion dated Sep. 2, 2010.
UK Intellectual Property office, Combined Search and Examination Report for GB1100450.4 under Sections 17 and 18(3), Jul. 14, 2011.
Jain, et al., “A Single-Stage Grid Connected Inverter Topology for Solar PV Systems with Maximum Power Point Tracking”, IEEE Transactions on Power Electronics, vol. 22, No. 5, Sep. 2007, pp. 1928-1940.
Lynch, et al., “Flexible DER Utility Interface System: Final Report”, Sep. 2004-May 2006, Northern Power Systems, Inc., Waitsfield, Vermont B. Kroposki, et al., National Renewable Energy Laboratory Golden, Colorado Technical Report NREL/TP-560-39876, Aug. 2006.
Schimpf, et al., “Grid Connected Converters for Photovoltaic, State of the Art, Ideas for improvement of Transformerless Inverters”, NORPIE/2008, Nordic Workshop on Power and Industrial Electronics, Jun. 9-11, 2008.
Sandia Report SAND96-2797 I UC-1290 Unlimited Release, Printed Dec. 1996, “Photovoltaic Power Systems and The National Electrical Code: Suggested Practices”, by John Wiles, Southwest Technology Development Institute New Mexico State University Las Cruces, NM.
United Kingdom Intellectual Property Office, Combined Search and Examination Report Under Sections 17 and 18(3), GB1020862.7, dated Jun. 16, 2011.
GB Combined Search and Examination Report—GB1203763.6—dated Jun. 25, 2012.
Mohammad Reza Amini et al., “Quasi Resonant DC Link Inverter with a Simple Auxiliary Circuit”, Journal of Power Electronics, vol. 11, No. 1, Jan. 2011.
Khairy Fathy et al., “A Novel Quasi-Resonant Snubber-Assisted ZCS-PWM DC-DC Converter with High Frequency Link”, Journal of Power Electronics, vol. 7, No. 2, Apr. 2007.
Cheng K.W.E., “New Generation of Switched Capacitor Converters”, Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, Power Electronics Conference, May 17-22, 1998, PESC 98.
Per Karlsson, “Quasi Resonant DC Link Converters—Analysis and Design for a Battery Charger Application”, Universitetstryckeriet, Lund University, 1999, ISBN 91-88934-14-4; added to Lund University Publications Jun. 4, 2012; last retrieved on Mar. 29, 2016.
Hsiao Sung-Hsin et al., “ZCS Switched-Capacitor Bidirectional Converters with Secondary Output Power Amplifier for Biomedical Applications”, Power Electronics Conference (IPEC) Jun. 21, 2010.
Yuang-Shung Lee et al.,“A Novel QR ZCS Switched-Capacitor Bidirectional Converter”, IEEE, Nov. 27-30, 2007.
Antti Tolvanen et al., “Seminar on Solar Simulation Standards and Measurement Principles”, May 9, 2006 Hawaii.
J.A. Eikelboom and M.J. Jansen, “Characterisation of PV Modules of New Generations—Results of tests and simulations”, Jun. 2000.
Yeong-Chau Kuo et al., “Novel Maximum-Power-Point-Tracking Controller for Photovoltaic Energy Conversion System”, IEEE Transactions on Industrial Electronics, vol. 48, No. 3, Jun. 2001.
C. Liu et al., “Advanced Algorithm for MPPT Control of Photovoltaic Systems”, Canadian Solar Buildings Conference, Montreal, Aug. 20-24, 2004.
Chihchiang Hua and Chihming Shen, “Study of Maximum Power Tracking Techniques and Control of DC/DC converters for Photovoltaic Power System”, IEEE May 17-22, 1998.
Tore Skjellnes et al., “Load sharing for parallel inverters without communication”, Nordic Workshop in Power and Industrial Electronics, Aug. 12-14, 2002.
Giorgio Spiazzi at el., “A New Family of Zero-Current-Switching Variable Frequency dc-dc Converters”, IEEE Jun. 18-23, 2000.
Nayar, C.V., M. Ashari and W.W.L Keerthiphala, “A Gridinteractive Photovoltaic Uninterruptible Power Supply System Using Battery Storage and a Back up Diesel Generator”, IEEE Transactions on Energy Conversion, vol. 15, No. 3, Sep. 2000, pp. 348?353.
Ph. Strauss et al., “AC coupled PV Hybrid systems and Micro Grids-state of the art and future trends”, 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan May 11-18, 2003.
Nayar, C.V., abstract, Power Engineering Society Summer Meeting, 2000. IEEE, Jul. 16-20 2000, pp. 1280-1282 vol. 2.
D. C. Martins et al., “Analysis of Utility Interactive Photovoltaic Generation System using a Single Power Static Inverter”, Asian J. Energy Environ., vol. 5, Issue 2, (Jun. 2004), pp. 115-137.
Rafael C. Beltrame et al., “Decentralized Multi String PV System With Integrated ZVT Cell”, Congresso Brasileiro de Automática / Sep. 12-16, 2010 (Sep. 16, 2010), Bonito-MS.
Sergio Busquets-Monge et al., “Multilevel Diode-clamped Converter for Photovoltaic Generators With Independent Voltage Control of Each Solar Array”, IEEE Transactions on Industrial Electronics, vol. 55, No. 7, Jul. 2008.
Soeren Baekhoej Kjaer et al., “A Review of Single-Phase Grid-Connected Inverters for Photovoltaic Modules”, IEEE Transactions on Industry Applications, vol. 41, No. 5, Sep./Oct. 2005.
Office Action—JP 2011-539491—dated Mar. 26, 2013.
Supplementary European Search Report—EP08857456—dated Dec. 6, 2013.
Extended European Search Report—EP14151651.8—dated Feb. 25, 2014.
Iyomori H et al: “Three-phase bridge power block module type auxiliary resonant AC link snubber-assisted soft switching inverter for distributed AC power supply”, INTELEC 2003. 25th. International Telecommunications Energy Conference. Yokohama, Japan, Oct. 19-23, 2003; Tokyo, IEICE, JP, Oct. 23, 2003 (Oct. 23, 2003), pp. 650-656, XP031895550, ISBN: 978-4-88552-196-6.
Yuqing Tang: “High Power Inverter EMI characterization and Improvement Using Auxiliary Resonant Snubber Inverter”, Dec. 17, 1998 (Dec. 17, 1998), XP055055241, Blacksburg, Virginia Retrieved from the Internet: URL:http:jjscholar.lib.vt.edu/theses/available/etd-012299-165108/unrestricted/thesis.pdf, [retrieved on Mar. 5, 2013].
Yoshida M et al: “Actual efficiency and electromagnetic noises evaluations of a single inductor resonant AC link snubber-assisted three-phase soft-switching inverter”, INTELEC 2003. 25th. International Telecommunications Energy Conference Yokohama, Japan, Oct. 19-23, 2003; Tokyo, IEICE, JP, Oct. 23, 2003 (Oct. 23, 2003), pp. 721-726, XP031895560, ISBN: 978-4-88552-196-6.
Third party observation—EP07874025.5—dated Aug. 6, 2011.
Related Publications (1)
Number Date Country
20160156193 A1 Jun 2016 US
Provisional Applications (1)
Number Date Country
61265734 Dec 2009 US
Continuations (2)
Number Date Country
Parent 14187756 Feb 2014 US
Child 15014505 US
Parent 12957490 Dec 2010 US
Child 14187756 US