The invention relates to well configurations for use in areas of permafrost, such as Alaska and Siberia, and other areas where temperature control is a concern.
According to the US Geological Survey estimates, the Arctic region, mostly offshore, holds as much as 25% of the world's untapped reserve of hydrocarbons. Therefore, petroleum producers have shown significant interests in exploring oil and gas reserves in Arctic regions, particularly with the depletion of conventional hydrocarbon reservoirs. The areas of interest for oil and gas production mainly include Barents Sea, the Russian arctic, onshore Russia, Chukchi Sea, Beaufort Sea, the Canadian arctic islands, northern Canada, and the east coast of Greenland.
Arctic areas are typically overlain by substantial permafrost layers on the order of 150 to 500 meters thick, which can be continuous from the surfaces, or discontinuous with intermittent unfrozen zones. To mobilize cold hydrocarbon deposits, heat is added to the reservoir until the hydrocarbons are fluid enough to be pumped to the surface. Commonly used in situ extraction thermal recovery techniques include a number of steam-based heating methods, such as steam flooding or steam drive (SD), cyclic steam stimulation (CSS) or “huff-and-puff”, and Steam Assisted Gravity Drainage (SAGD), as well as various derivatives of these techniques.
SAGD is the most extensively used enhanced oil recovery technique for in situ recovery of bitumen resources in the McMurray Formation in the northern Alberta oil sands and other reservoirs containing viscous hydrocarbons. In a typical SAGD pattern, two horizontal wells are vertically spaced by 4 to 10 meters (m). The production well is located near the bottom of the pay and the steam injection well is located directly above and parallel to the production well. In SAGD, steam is injected continuously into the injection well, where it rises in the reservoir and forms a steam chamber. The heat from the steam reduces the oil's viscosity, thus enabling it to flow down to the production well and transported to the surface via pumps or lift gas.
As its name implies, generation of high quality, high temperature and high pressure steam is a prerequisite for the SAGD process. Specifications for the steam used for SAGD are 100% quality, 7,000-11,000 kPa pressure and 238° C.-296° C. temperature. Steam capacity (flowrate) is determined by the steam-to-oil (SOR) ratio which normally ranges around 2˜4. Considering oil production volume (10,000˜100,000 BPD depending on the well size), water requirement for steam generation is immense and the cost to create high quality steam is also highly significant.
As the steam is being transported to the payzone, heat is lost, causing the permafrost around the well to melt and resulting in settling of the soils due to the thaw. Thaw settlement becomes significant when steam carrying wells increase the temperature of surrounding soil and create a permafrost thaw bulb (see e.g.,
Methods to limit heat loss from wellbores have included the use of gelled diesel or insulated packer fluids in an annulus and/or using cement with higher thermal insulation properties. However, these methods have been less than satisfactory.
Another method of limiting heat loss uses vacuum insulated tubing (VIT), a typical sample of a VIT with partial cutaway is shown in
Thus, what are needed in the art are better methods of insulating wellbores in the Artic regions and other areas where temperature control is a concern.
This disclosure provides a well configuration to limit heat transfer and the damage that can result thereby. Generally speaking, the concept requires using not only VIT but also a concentric ring of VIT intermediate casing (VIC) through the permafrost zone. In other words, the well is completed with dual concentric vacuum insulated tubulars. Without some method of reducing heat loss, it is unlikely that thermal developments in Arctic regions will be initiated due to the risk of melting permafrost and subsequent subsidence. The ability to limit heat loss to the permafrost is thus an enabling technology, advancing thermal recovery methods in the Arctic. Further, although specifically designed for Artic use, the inventive well completion configuration can be used anywhere where heat transfer is an issue.
A dual vacuum insulated string reduces heat loss to a greater degree than does a single vacuum insulated string. Other advantages include mitigating accelerated heat loss in the event that a single joint fails or loses its vacuum properties and the higher heat loss experienced through the coupling or connectors on each joint. Since the couplings typically do not have vacuum insulated properties these act as hot spots at every connection. However, in a dual vacuum insulated string, the couplings can be staggered to thus limit heat loss through the inner couplings, since these joints will be encased inside a second insulated string.
Advantages of the dual vacuum tubular well design are based on the fact that while it is a passive system, it offers substantially greater insulation than does regular tubing with insulating annular fluid or a single string of VIT. Installation of the additional string of vacuum insulated casing is no different than similarly sized casing and can be handled by existing rig equipment. Current VIC strings are not made in a wide enough bore to provide the second outer string, and thus, VIT in a wider bore may need to be manufactured.
The use of vacuum insulated tubulars is also gaining popularity in deepwater developments for flow conformance. The use of the dual vacuum concept in deepwater wells could also decrease conformance issues. The dual vacuum concept can also be applied in hot environments where heat transfer in the opposite direction is an issue.
Cold drilling fluid can aggravate lost circulation. This cold drilling fluid can be a problem in deep-water wells where the long risers significantly cool the drilling fluid. VIT with offset connections may alleviate this problem.
The inventive well configuration can be used in any well completion wherein heat transfer presents an issue that needs to be addressed. Thus, it can be used in any steam based enhanced oil recovery technology, including SD, CSS, SAGD, ES-SAGD, VAPEX and the like. Further, although contemplated as particularly useful in steam injector wells, the methods can also be applied to production wells and oil pipelines, whenever there is a need to mitigate against heat loss. One particular use is in deepwater developments to prevent wax and hydrate buildup in production wells and delivery pipelines.
In addition, the dual vacuum insulated pipe configuration can be used with any well completion configuration. Referred to as a casing program, the different levels include production casing, intermediate casing, surface casing and conductor casing, including the use of cement, gravel pack, perforated casing or slotted liners, flow control devices, and the like. The configuration could also be used with open hole completions, but such are unlikely to be useful in the unconsolidated oil sands common in Canadian fields.
The invention includes one or more of the following embodiments, in any combination thereof:
As used herein, the term “steam quality” is defined as the ratio of the mass of water vapor to the total mass of water vapor and liquid of a steam sample. Thus, a steam quality of 0% would be pure liquid, while a quality of 100% would be pure vapor.
By “VIT” or vacuum insulated tubing or similar phrase what is meant is a two layer pipe, with an insulating vacuum between the two layers. The term also includes, however, backfilled VITs having an inert gas in the space between the two layers.
By “VIC” or “VIT intermediate casing” or similar phase, what is meant is a second string of VIT tubing over the inner string. Thus, there are a pair of concentric two layer pipes, each having a vacuum or inert gas filled space.
The use of the word “a” or “an” when used in conjunction with the term “comprising” in the claims or the specification means one or more than one, unless the context dictates otherwise.
The term “about” means the stated value plus or minus the margin of error of measurement or plus or minus 10% if no method of measurement is indicated.
The use of the term “or” in the claims is used to mean “and/or” unless explicitly indicated to refer to alternatives only or if the alternatives are mutually exclusive.
The terms “comprise”, “have”, “include” and “contain” (and their variants) are open-ended linking verbs and allow the addition of other elements when used in a claim.
The phrase “consisting of” is closed, and excludes all additional elements.
The phrase “consisting essentially of” excludes additional material elements, but allows the inclusions of non-material elements that do not substantially change the nature of the invention.
The following abbreviations are used herein:
The disclosure provides a novel method, apparatus and system for reducing heat losses in oil wells, and can be advantageously applied to any oil recovery, but is especially beneficial in Artic or deepwater and other very cold reservoirs where heat loss should be minimized.
Generally speaking, the disclosure provides a dual insulative tubing system, wherein at least two concentric vacuum insulative pipes are used, providing two concentric vacuum (or inert gas filled) layers to insulate against heat loss. If the joints for each layer are staggered, heat loss at the joints can also be minimized.
An additional layer of insulation can be had if an insulative gas, such as methane, is pumped down in between the two layers. Other thermally insulative gas options include CO2, N2O, flue gas and air.
Traditional insulative layers can also be combined with the dual VIT-VIC well design, including the use of insulative gels and liquids, methane, diesel, thermal cement, insulating packer fluids such as N-SOLATE™ from Halliburton or ISOTHERM™ or SAFETHERM from Schlumberger, Glass microsphere such as 3M's Glass Bubbles and Water-Superabsorbent Polymers from Baker Hughes, and the like. In addition to enhanced well insulation, other mitigation options to reduce thaw subsidence driven well deformations can be combined with the methods and well designs herein, including increased well spacing, reduced well operating temperatures, and various combinations of the above options.
The dual vacuum insulative tubing can be used wherever heat loss is a problem, and in particular can be used in the permafrost zone of both injector and producer wells. Further, injector wells can be have dual vacuum insulative tubing along their entire pre-payzone length, thus delivering maximal steam quality to the payzone.
The VIT can be of any design known in the art or to be developed. Exemplary VITs are described in U.S. Pat. No. 3,720,267, U.S. Pat. No. 3,397,745, U.S. Pat. No. 4,512,721, U.S. Pat. No. 7,677,272, U.S. Pat. No. 7,854,236. VIT is also commercially available, e.g., from Industrial Technology Management (CA), who sells a variety of tubing sizes up to 4.5 inches and with varying degrees of thermal protection, including inert gas back-filled VIT. Shengli Petroleum has VIT up to 5 inches. Isothermica and DoubleOil Petroleum Services Co. are additional suppliers. Discussions are in progress with manufacturers to have VIT prepared in a bore large enough for VIC use in field testing in the Surmont and/or Ugnu reservoirs.
A vacuum is an ideal insulator. Creating a vacuum between the two pipes minimizes both gas convection and conduction heat transfer between the inner and outer pipes. Radiative heat transfer is minimized by providing a reflective blanket of insulation over the outside diameter of the inner tube. The inner and outer pipes are welded together, after which the vacuum is created, and the tubing sealed.
Once a vacuum has been established within the annulus between the two pipes, it must be maintained. There is a tendency for molecules to be desorbed from the metal matrix, but also during subsequent oil production, corrosion of the vacuum insulated tubing (VIT) string will generate hydrogen. Some of this hydrogen will permeate into the vacuum annulus, reducing it insulating ability.
The problem of vacuum loss can be solved with “getter.” Essentially, getter captures hydrogen, and traps it via chemical bonding. There are two types of getter used. A non-evaporable getters works by surface adsorption followed by bulk diffusion into the getter matrix. An organic getter absorbs hydrogen through a dehydrogenation reaction. The getter is typically purchased as granules or tablets, and is added during the fabrication process. The multilayer and gettered high vacuum insulated tubing systems (VIT) substantially improve thermal performance having conductivity values in the range of 0.0018-0.0023 Btu/Hr-Ft-° F. (0.003-0.004 w/mK).
Another possible solution is to backfill the vacuum. The first insulated tubing consisted of an Argon gas backfilled insulating system having thermal conductivity values in the range of 0.015 Btu/Hr-Ft-° F. (0.026 w/mK).
An illustration of an exemplary completion is found in
Exemplary tubing arrangements are found in
As can be seen in
In
The following documents are incorporated by reference in their entirety for all purposes:
This application is a non-provisional application which claims benefit under 35 USC § 119(e) to U.S. Provisional Application Ser. No. 61/911,378 filed Dec. 3, 2013, entitled “Dual Vacuum Insulated Tubing Well Design,” which is incorporated herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3397745 | Owens et al. | Aug 1968 | A |
3720267 | Allen et al. | Mar 1973 | A |
4512721 | Ayres et al. | Apr 1985 | A |
5025862 | Showalter | Jun 1991 | A |
5607901 | Toups, Jr. | Mar 1997 | A |
5862866 | Springer | Jan 1999 | A |
7677272 | Hickman et al. | Mar 2010 | B2 |
7854236 | Jibb et al. | Dec 2010 | B2 |
20090014163 | Thomas | Jan 2009 | A1 |
20100200237 | Colgate | Aug 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20150198012 A1 | Jul 2015 | US |
Number | Date | Country | |
---|---|---|---|
61911378 | Dec 2013 | US |