This application claims priority, under 35 U.S.C. 119, of earlier-filed EPO Application No. 05257265.8, filed Nov. 25, 2005.
The present invention relates to tappets for use in internal combustion engines, to transmit motion directly from a cam lobe profile of an engine cam shaft to an engine poppet valve. Thus, the present invention relates to engine valvetrain of the “direct acting” type.
Although the improved tappet of the present invention could be utilized in various types of engines, in terms of the type of fuel utilized by the engine, the present invention is especially advantageous when used in a gasoline engine with Port Fuel Injection of the type utilizing intake valve deactivation for one of a pair of intake poppet valves. The invention is even more advantageous in an engine valve control system of the type described above which is utilized for “swirl” control, as that term is now well understood by those skilled in the engine art.
In terms of the type of lift imparted to the engine poppet valve in a direct acting valve train, there are two general categories of such tappets. The first is the conventional mechanical or hydraulic tappet (“bucket tappet”) which receives its input from a single cam lobe profile and therefore, imparts only a single “valve event” to the engine poppet valve. The second category comprises “dual lift” tappets of the general type illustrated and described in U.S. Pat. No. 5,193,496. In dual lift tappets of the type taught in the '496 patent, the tappet includes a central portion and an outer portion with the central portion engaging a low lift cam, to produce a low lift valve event, and the outer portion of the tappet engaging a pair of high lift cam lobe profiles to provide a high lift valve event. Thus, the known, prior art dual lift direct acting tappet typically has associated therewith three separate cam lobe profiles (one low lift, and two high lift), making such an arrangement extremely expensive to manufacture and difficult to package.
The improved tappet, and improved valve control system of the present invention was developed in connection with an effort to improve what is referred to as the “charge motion” (i.e., the flow pattern of the air-fuel mixture after it flows past the intake poppet valve). Specifically, the effort was to increase the charge motion at low to medium engine speeds, on gasoline engines utilizing port fuel injection. It was believed that a dual lift tappet arrangement was needed for this particular application, although for the reasons discussed previously, it was clearly not acceptable to require three, or even two, separate cam lobe profiles for each intake poppet valve, merely to achieve the desired dual lift valve event for each intake poppet valve.
It was also determined during the course of development of the present invention that for this particular type of engine application, utilizing port fuel injection, it would not be acceptable for the dual lift tappet to provide, selectively, either a normal lift (“high lift”) valve event, or a deactivated valve event. During the low speed operation of the engine, with one of the two intake poppet valves deactivated, it was observed that because of the fuel being injected directly into the intake port, a quantity of fuel would accumulate behind the deactivated valve, over a period of time. Then, once that particular intake poppet valve would again be operated in the normal lift mode, the quantity of fuel which had accumulated would be drawn into the combustion chamber, and could result in an uncontrolled combustion condition. Such an uncontrolled combustion condition could lead to various operating problems of the engine, such as extra, undesirable emissions and NVH (“noise-vibration-harshness”) type conditions.
Accordingly, it is an object of the present invention to provide an improved tappet and an improved valve control system for use on intake engine poppet valves, wherein the improved tappet and valve control system overcome the above-described problems of the prior art.
It is a more specific object of the present invention to provide such an improved tappet and improved valve control system such that the intake poppet valve can operate in either a normal lift mode or in another mode which is at least able to prevent the accumulation resulting from the operation of a port fuel injection system.
It is a related object of the present invention to provide an improved tappet and improved valve control system which accomplishes the above-stated objects, but without the need for multiple cam lobe profiles to achieve the multiple lift conditions of each intake poppet valve.
The above and other objects of the invention are accomplished by the provision of a tappet for use in an internal combustion engine including an engine poppet valve and a camshaft having a cam lobe profile including a base circle portion and a lift portion. The tappet is operably disposed between the cam lobe profile and the engine poppet valve. The tappet comprises an inverted, cup-shaped first follower adapted for engagement with the cam lobe profile, and an upright, cup-shaped second follower disposed for reciprocable movement within the first follower, and adapted for engagement with the engine poppet valve. A lost motion spring is operably associated with the first and second followers, and biases the first follower toward an extended position, relative to the second follower and into engagement with the base circle portion of the cam lobe profile.
The improved tappet is characterized by a latching mechanism operably associated with the second follower and including a latch member moveable between a retracted, disengaged position and an extended, engaged position, engaging the first follower to fix the first follower in the extended position, relative to the second follower, and to provide a high lift of the engine poppet valve. The first and second followers define aligned first and second stop surfaces, respectively, disposed such that when the latch member is in the retracted, disengaged position, engagement of the lift portion of the cam lobe profile with the first follower moves the first follower toward the engine poppet valve. This movement of the first follower compresses the lost motion spring until the first stop surface engages the second stop surface, and thereafter, further movement of the first follower moves the second follower to provide a low lift of the engine poppet valve.
Referring now to the drawings, which are not intended to limit the invention,
Opening and closing motion is transmitted to the engine poppet valve 11 by means of a camshaft 19 on which is formed a cam lobe 21 having a cam lobe profile (which will also hereinafter bear the reference numeral “21”), including a base circle portion 23 and a lift portion 25. Disposed between the cam lobe profile 21 and the engine poppet valve 11 is a tappet assembly, generally designated 27.
Referring now primarily to
The tappet assembly 27 also includes an inner follower 33 which is preferably disposed for reciprocable movement within the outer follower 29. As may best be seen in
The cylindrical wall of the outer follower 29 defines, on the inside surface thereof, an annular groove 37 and disposed therein, when the tappet assembly 27 is fully assembled, is a stopping retainer 39, which may be in the general form of a C-clip, as is also visible in
Surrounding the coiled compression spring 41 is an oil passage wall member 43, which preferably comprises a thin piece of steel or other metal. The inner follower 33 defines an internal annular groove 45 (see
Referring still primarily to
Referring still primarily to
The upper wall portion 30 of the outer follower 29 includes an annular, raised portion 71, which is preferably formed integrally with the outer follower 29. The annular portion 71 defines, on its underside, an annular stop surface 73. Similarly, the inner follower 33 defines an annular, upstanding portion 75 including, on the upper side thereof, an annular stop surface 77. Preferably, the annular portion 71 and the annular portion 75 have approximately the same inner and outer diameters, such that the annular stop surfaces 73 and 77 are, under the appropriate operating circumstances, disposed to be in a face-to-face, engaging relationship, as will be described in greater detail subsequently. Preferably, and as may best be seen in
When the valve control system of the present invention is operating in the base circle mode, the coiled compression spring 41 maintains the upper follower surface 31 in engagement with the base circle portion 23 while the valve tip surface 35 remains in engagement with the stem tip of the valve stem 15 of the engine poppet valve 11, in a manner well known to those skilled in the art.
When it is desired to operate the tappet assembly 27 in a normal lift (“high lift”) mode, pressurized control fluid is communicated to the fluid port 49 and from there flows through the oil feed passage 47, filling the annular groove 45. The annular groove 45 is in open communication with each of the radial latch bores 55, such that the presence of control pressure in the annular groove 45 will bias the latch members 57 radially outward from their retracted, disengaged positions to their extended, engaged positions, in opposition to the biasing force of the return spring 61. When the latch members 57 are in the latched position, with the latch surface 53 of the outer follower 29 engaged by the latch surface 59 of the latch member 57, the outer follower 29 and the inner follower 33 are latched in a fixed axial position relative to each other as shown in
In accordance with an important aspect of the present invention, when it is desired to operate the valve control system of the present invention in what is nominally a “deactivated” condition, the control pressure normally communicated to the fluid port 49 is discontinued (such as by draining it to a system reservoir, or low pressure location), thus reducing the fluid pressure within the annular groove 45. In the absence of pressurized control fluid, the return spring 61 biases the latch members 57 toward their retracted, disengaged position, such that the latch surfaces 59 are no longer in engagement with the latch surfaces 53. When the tappet assembly 27 is operating in the above-described unlatched, disengaged condition, engagement of the base circle portion 23 with the upper follower surface 31 will result in the tappet assembly 27 being in its fully extended position shown in
As should be well understood by those skilled in the internal combustion engine art, the biasing force of the compression spring 41 is substantially less than the biasing force of the valve return spring (not shown herein) for the engine poppet valve 11. Therefore, as the lift portion 25 of the cam lobe 21 moves the outer follower 29 downward, the compression spring 41 will begin to be compressed, but there will be no corresponding, downward movement of the engine poppet valve 11.
As the camshaft 19 continues to rotate, with the lift portion 25 of the cam lobe 21 approaching what would normally be the “peak” of its lift, the outer follower 29 merely continues to move downward, compressing the compression spring 41, until such time as the annular stop surface 73 engages the annular stop surface 77. The above-described contact of the stop surfaces 73 and 77 occurs at approximately −15° of cam angle in the graph of
Once the lift portion 25 of the cam lobe 21 reaches approximately +15°, as shown in
Referring now to
The invention has been described in great detail in the foregoing specification, and it is believed that various alterations and modifications of the invention will become apparent to those skilled in the art from a reading and understanding of the specification. It is intended that all such alterations and modifications are included in the invention, insofar as they come within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
05257265 | Nov 2005 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
6076491 | Allen | Jun 2000 | A |
Number | Date | Country | |
---|---|---|---|
20070151534 A1 | Jul 2007 | US |