This application relates to a dual vane pump with pre-pressurization passages.
Vane pumps are known, and typically include a rotor rotating within a liner. A cam surface within the liner is positioned eccentrically relative to a rotational axis of the rotor. Vanes extend radially inwardly and outwardly of the rotor, and in contact with the cam surface. Movement of the vanes along the cam surface causes the vanes to move inwardly and outwardly and move a pump fluid from a suction or inlet to a discharge or outlet through pump chambers defined between the vanes.
When the pump chamber communicates with a discharge window opening, an immediate increase in pressure creates rapid decrease in air volume. Pre-pressurization has been utilized in the past to provide a “step change” in the overall volume reduction and pressure increase. Pre-pressurization occurs by introducing pressurized fluid into the pump chambers prior to the chambers communicating with the full discharge opening. With this, there is a stepdown to an intermediate air volume and increase in pressure.
A dual vane pump system includes a first vane pump having a first outer liner, a first rotor with a first plurality of vanes moving radially inwardly and outwardly of the first rotor, and into contact with an inner surface of the first outer liner. The first vane pump has a first suction opening extending through the first outer liner and a first discharge opening extending through the first outer liner. A second vane pump has a second outer liner, a second rotor with a second plurality of vanes moving radially inwardly and outwardly of the second rotor, and into contact with the second inner surface of the second outer liner. The second vane pump has a second suction opening extending through the second outer liner and a second discharge opening extending through the second outer liner. A first pre-pressurization passage connects a first pump inlet in the first pump that is at discharge pressure to a second pump outlet in the second pump which is upstream of the second discharge opening. There is a coupling connecting the first and second rotors for rotation together. The coupling is mounted in the journal within the bearing. The pre-pressurization passage extends through the bearing.
These and other features may be best understood from the following drawings and specification, the following is a brief description.
A liner inner surface 19 is eccentric, and cams the vanes 22 inwardly and outwardly. The rotors 110 and 112 are driven to rotate, and an entrapped fluid in pump chambers 107 between adjacent vanes is moved from a suction opening 100 towards a discharge opening 104.
In the illustrated dual pump 89 a pre-pressurization passage 105 has an inlet 200 at discharge pressure in each of the pumps 90 and 91, and extends to an outlet 106 which empties into a pump chamber 107 in the other of pumps 90 and 91. The location of features 105, 106 and 200 is shown schematically in
As shown, the vane pumps 90 and 91 are in parallel with the discharge opening 104 communicating with a common use 99. Further, the suction openings 100 may communicate with a common source 101. In one embodiment, the source 101 provides oil to be utilized by the common use 99.
Examples of the use include a lubrication pump for an engine starter/generator, and a scavenge pump for returning lubricant back to an oil tank.
Since the pumps 90 and 91 are out of phase the chambers that are being connected by pre-pressurization passages 105 can be closer to being aligned than if the pumps were in phase. Thus, pre-pressurization can be a straighter shot through bearing 116.
An outer housing 51 provides a supporting surface for the journal bearings and liners 50
The pre-pressurization passages 105 are shown schematically in
The inventive pump is utilized to move oil. Oil is particularly susceptible to detrimental effects from the inclusion of air, and thus benefits from the present invention. It should be understood that the invention can be utilized for any fluid that has propensity to have inclusion of air.
The introduction of the discharge pressure oil into an upstream chamber in the other pump increases the pressure, and thus the volume taken up by any entrapped air. As mentioned in the Background section above, this provides valuable benefits.
A dual vane pump system could be said to include a first vane pump having a first outer liner, a first rotor with a plurality of vanes moving radially inwardly and outwardly of the first rotor, and into contact with an inner surface of the first outer liner. The first vane pump has a first suction opening extending through the first outer liner and a first discharge opening extending through the first outer liner. A second vane pump has a second outer liner, a second rotor with a second plurality of vanes moving radially inwardly and outwardly of the second rotor, and into contact with an inner surface of the second outer liner. The second vane pump has a second suction opening extending through the second outer liner and a second discharge opening extending through the second outer liner. A first pre-pressurization passage connects a first pump inlet in the first pump that is at a discharge pressure to a second pump outlet in the second pump which is upstream of the second discharge opening. There is a coupling connecting the first and second rotors for rotation together. The coupling is mounted in the journal within the bearing. The first pre-pressurization passage extends through the first bearing.
A dual vane pump system could also be said to include a first vane pump having a first outer liner, a first rotor with a plurality of vanes moving radially inwardly and outwardly of the first rotor, and into contact with an inner surface of the first outer liner. The first vane pump has a first suction opening extending through the first outer liner and a first discharge opening extending through the first outer liner. A second vane pump has a second outer liner, a second rotor with a plurality of vanes moving radially inwardly and outwardly of the second rotor, and into contact with an inner surface of the second outer liner. The second vane pump has a second suction opening extending through the liner and a discharge opening extending through the second outer liner. A pre-pressurization passage connects an inlet at a discharge pressure in each of the first and second pumps with an outlet upstream of the discharge opening in the other of the first and second pumps.
Although an embodiment has been disclosed, a worker of ordinary skill in this art would recognize that certain modification could come within the scope of this disclosure. For these reasons, the following claims should be studied to determine the true scope and content.
Number | Name | Date | Kind |
---|---|---|---|
2584426 | Crane | Feb 1952 | A |
2745348 | Rueter | May 1956 | A |
3150646 | Springer | Sep 1964 | A |
3430574 | Adelman | Mar 1969 | A |
3707339 | Budgen | Dec 1972 | A |
5431552 | Schuller et al. | Jul 1995 | A |
8668480 | Dennis et al. | Mar 2014 | B2 |
9546728 | Schultz et al. | Jan 2017 | B2 |
20120070327 | Dennis et al. | Mar 2012 | A1 |
20160123323 | Naiki et al. | May 2016 | A1 |
Number | Date | Country |
---|---|---|
S50109503 | Aug 1975 | JP |
2015178791 | Oct 2015 | JP |
Entry |
---|
European Search Report for EP Application No. 21204317.8 dated Mar. 22, 2022. |
Number | Date | Country | |
---|---|---|---|
20220128051 A1 | Apr 2022 | US |