A drum is a musical instrument that is intended to produce loud sounds. This noise level provides drawbacks for the drummer who wishes to play at lower volume; for example, when practicing around other people or in a residence. The drummer may also wish to practice technique and feel by using stage quality drum sticks with full force drum strikes. Further, it may be desired to have both a loud, performance volume playing mode and a quiet, unobtrusive, practice volume playing mode on a single instrument. Currently available solutions for reducing drum strike volume do not satisfactorily achieve these goals.
What is needed is a percussion instrument system that allows the drummer to produce a loud, performance level volume and an unobtrusive, quiet, practice level volume without compromising the physical feel and rebound of the drum heads and without adding, removing, or changing any hardware.
Briefly described, in one aspect the present invention comprises a drum having a drum body having a first edge and a second edge at opposite ends of the drum body. A first drum head is disposed against the first edge and a second drum head is disposed against the second edge. The first drum head has high air resistance and the second drum head has low air resistance.
In another aspect, the present invention comprises a drum having a drum body having a first edge and a second edge at opposite ends of the drum body. A first drum head is disposed against the first edge and second drum head is disposed against the second edge. The drum is configured to make a loud sound when the first drum head is struck by a drumming instrument and to make a quiet sound when the second drum head is struck by the drumming instrument.
In another aspect, the present invention comprises a drum having a base having a first mount surface and an opposed second mount surface. A first shell is disposed on the first mount surface and a first drum head is disposed over the first shell. A second shell is disposed on the second mount surface and a second drum head is disposed over the second shell. A tensioning system connects the base to the first drum head and the second drum head. The tensioning system places the first drum head under a first tension and the second drum head under a second tension.
In another aspect, the present invention comprises a drum having a base having a mount surface and a shell disposed on the mount surface. A drum head is disposed over the shell. One or more snare wires are secured to the base such that a portion of the snare wires are disposed against an underneath surface of the drum head.
In another aspect, the present invention is a method for using a drum. A drum is obtained that comprises a base having a first and second mount surface, a first shell disposed on the first mount surface, a first drum head disposed over the first shell, a second shell disposed on the second mount surface, a second drum head disposed over the second shell, and a tensioning system connecting the base to the first drum head and connecting the base to the second drum head, the tensioning system being configured to place the first drum head under a first tension and place the second drum head under a second tension. The first drum head is tensioned to a first tension. The second drum head is tensioned to a second tension.
In another aspect, the present invention is a method for using a drum. A drum is obtained that comprises a drum body, a first drum head disposed on a first end of the drum body, and a second head disposed on a second end of the drum body; such that the drum is configured to make a loud sound when the first drum head is struck by a drumming instrument and to make a quiet sound when the second drum head is struck by the drumming instrument. The drum is secured into a holder so that the first drum head is oriented into a playing position. The first drum head is struck with a drumming instrument to produce a loud sound. The drum is removed from the holder. The drum is secured into the holder in an inverted position so that the second drum head is oriented into a playing position. The second drum head is struck with the drumming instrument to produce a quiet sound.
In another aspect, the present invention is a method for assembling a drum. A base having a first mount surface and second mount surface is obtained. A first shell is positioned on the first mount surface. A first drum head is positioned over the first shell. A second shell is positioned on the second mount surface. A second drum head is positioned over the second shell. The first drum head and the second drum head are secured to the base with a tensioning system. The tensioning system is adjusted to tune the first drum head and the second drum head.
In another aspect, the present invention is a method for assembling a drum. A base having a mount surface is obtained. A shell is positioned on the mount surface. A drum head is positioned over the shell. The drum head is secured to the base with a tensioning system. A snare wire is obtained having a first end, a second end, and a midsection between the first end and the second end. The snare wire is secured to the base such that the first end and the second end are secured to the base and the midsection is disposed against an underneath surface of the drum head.
These and other features, aspects, and advantages of the present invention will become better understood with references to the following description and claims
Objects, features, and advantages of embodiments disclosed herein may be better understood by referring to the following description in conjunction with the accompanying drawings. The drawings are not meant to limit the scope of the claims included herewith. For clarity, not every element may be labeled in every figure. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating embodiments, principles, and concepts. Thus, features and advantages of the present disclosure will become more apparent from the following detailed description of exemplary embodiments thereof taken in conjunction with the accompanying drawings.
Referring now to the drawing figures, wherein like reference numerals represent like parts throughout the several views,
The base 11 is constructed of a material that is rigid enough to resist warping under the forces related to the tensioning of the drum heads 50, 59. The base 11 may be made of wood. The base 11 may have a thickness within the range of ⅜ inch to ¾ inch. Preferably, the base 11 has a thickness of 7/16 inch for tom-tom style drums and 11/16 inch for other style drums. The base 11 may be made of fiberglass, rigid polymer, or other suitable material. The base 11 may be constructed of solid wood. The base 11 may be made of multiple plies of wood laid up to produce the full thickness.
The base 11 is constructed of a material that is rigid enough to resist warping under the forces related to the tensioning of the drum heads 50, 59. The base 11 may be made of wood. The base 11 may have a thickness within the range of ⅜ inch to ¾ inch. Preferably, the base 11 has a thickness of 7/16 inch. The base 11 may be made of fiberglass, rigid polymer, or other suitable material. The base 11 may be constructed of solid wood. The base 11 may be made of multiple plies of wood laid up to produce the full thickness.
The base 11 has a plurality of tension system holes 14 that extend through the thickness of the base; e.g. from the first mount surface 12 to the second mount surface 13. The holes 14 are preferably arranged in a circular pattern and are equally spaced circumferentially. The holes 14 are parallel with the drum axis 2.
The first drum shell 29 is disposed on the first mount surface 12 and the second drum shell 36 is disposed upon the second mount surface 13. Each of the first drum shell 29 and second drum shell 36 is an annular ring with a thin cylindrical wall with an inner surface, an outer surface, a first edge, and a second edge. The first edge and second edge are parallel, or nearly parallel to each other, and perpendicular to, or nearly perpendicular to, the shell wall. The first shell 29 is disposed on the base 11 with the first shell first edge 32 placed on the first mount surface 12 and the first shell 29 located coaxial with the drum axis 2. The first shell 29 is positioned between the inner bore 16 and the ring of tension system holes 14. The second shell 36 is disposed on the base 11 with the second shell first edge 40 placed on the second mount surface 13 and the second shell 36 located coaxial with the drum axis 2. The second edge of the first shell 33 establishes a first end of the drum body 6 and the second edge of the second shell 41 establishes a second end of the drum body 7. The inner surfaces of the first shell 30 and second shell 38 and the inner bore of the base 16 establish a hollow chamber 43 inside the drum. The length 8 of the drum is the distance from the first end of the drum body 6 to the second end of the drum body 7.
The length of the first drum shell 35 and the length of the second drum shell 37 are depicted in
A first drum head 50 is placed over the first end of the drum body 6, and a second drum head 59 is placed over the second end of the drum body 7. The first drum head 50 and the second drum head 59 each have a central circular membrane section 51, 62, a peripheral circular edge 53, 64, and an angled collar section 52, 63 between the membrane 51, 62 and the peripheral edge 53, 64. Each drum head has a top surface 56, 67 and an underneath surface 57, 68. Along the peripheral edge 53, 64 is a bead 54, 65. The bead 54, 65 is a circumferential ring made of a strong, resilient material, for example aluminum or other metal. The bead 54, 65 gives a stiff, continuous top edge to engage the tensioning system 4.
The tensioning system 4 secures the drum heads 50, 59 to the drum body 3, places the drum heads 50, 59 under tension, and secures the drum shells 29, 36 to the base 11. The tensioning system 4 comprises tension rods 88 secured to the base 11, a first hoop 69, a second hoop 79, and a set of lugs 100, 103. A plurality of rods 88 extends through the plurality of tension system holes 14 on the base 11. Each rod 88 has a first end 90 and a second end 91. A first securing lug 103 is advanced from the first end of the rod 90 (or each rod) and a second securing lug 103 is advanced from the second end of the rod 91 (or each rod). The securing lugs 103 are advanced until they contact the first mount surface 12 and second mount surface 13. The lugs 103 secure the rod 88 to the base 11 so that the first end the rod 90 extends outward, axially (parallel to the drum axis) from the first mount surface 12 and the second end of the rod 91 extends outward, axially from the second mount surface 13. The first end of the rod 90 and the second end of the rod 91 have external screw threads. Alternatively, the rod 88 may have an external thread that extends the full length of the rod 88.
A first hoop 69 is disposed upon the first drum head 50 and engages the first plurality of tension rods 88. The hoop 69 has an annular ring body 70. The ring body 70 has a bottom edge 75. The bottom edge 75 has a circular contact surface 76 that is brought into contact with the top edge of the bead 54. The hoop has a flange 71 extending radially outward from the ring body 70. The flange 71 has a plurality of holes 74. The holes 74 fit around the plurality of tension rods 88. A tensioning lug 100 is advanced from the end of the rod 90 and brought into contact with the flange 71.
Preferably, a tensioning lug 100 is advanced onto each of the tension rods 88. In this way, the hoop 69 can be brought into contact with the drum head 50 at multiple points to provide a tension force that is applied evenly along the periphery of the drum head. As the tensioning lugs 100 are advanced along the rod 88, the first hoop 69 is advanced against the first drum head 50. The first drum head 50 is stretched over the first shell 29 and the first shell 29 is brought into compressive contact with the first mount surface 12. Drum head tension is established in the first drum head 50.
Rods 88, securing lugs 103, and tensioning lugs 100 may be constructed of any material strong enough to support a tension load and a thread. Preferably the rods 88 and lugs are metal such as steel. The threads may be any thread, but are preferably a common thread such as an #8-32 thread. The securing lugs 103 and tensioning lugs 100 have an external body with an outer shape that may be square, hexagonal, or any other shape that is suitable to be grasped by a wrench or other tensioning instrument (not shown). The securing lugs 103 and tensioning lugs 100 have internal screw threads that match the external threads on the rods 88.
The second hoop 79 has significantly the same construction as the first hoop 69. The second hoop 79 has a ring body 83, an outwardly extending flange 86 with holes 82 and circular contact surface 80. The second hoop 79 is positioned in contact with the top edge of the bead 65 on the second drum head 59. The second hoop 79 engages the plurality of tension rod 88 that extends outward from the second mount surface 13. A tensioning lug 100 is advanced from the second end of each of the rods 91 to capture the flange 86 of the second hoop 79. As the tensioning lugs 100 are advanced along the rod 88, the second hoop 79 is advanced against the second drum head 59. The second drum head 59 is stretched over the second shell 36. The second shell 36 is brought into compressive contact the second mount surface 13. Drum head tension is established in the second drum head 59.
The tension system 4 is configured to draw the first drum head 50 over the first shell 29 towards the base 11 and draw the second drum head 59 over the second drum shell 36 towards the base 11. The tensioning system 4 may be used to alter the tension within, or, tune, the drum heads 50, 59. The drum head tension is increased by advancing the tensioning lugs 100 towards the base 11 and the drum head tension is reduced by retracting the tensioning lugs 100 away from the base 11. The first drum head 50 and second head 59 can be tensioned, or tuned, independently.
Optionally there may be one or more anti-backlash features to hold the securing lugs 103 or tensioning lugs 100 in place. Anti-backlash features are generally used to resist reverse movement of a threaded fasteners in a mechanical system in vibratory environments, such as drums. One example of an anti-backlash feature is a washer. A washer 104 may be placed between one of the mount surfaces 12, 13 and a securing lug 103 or between one of the hoops 69, 79 and a tensioning lug 100. The washer 104 may be a flat washer, a split washer, a wave washer, or a star washer. The lugs 100, 103 may have a pliable interference features, such as a polymer lock nut. The rods 88 may be coated with a pliable anti-backlash coating.
The inside surface of ring body 84 is larger than the shell outer diameter 31 so that there is no direct contact between the shell 36 and the hoop 79. The tensioning system 4 has no hardware (e.g. lugs or posts) that is physically mounted to the shell 36 that might interfere with the free vibration of the shell 36; and therefore the sound quality of the drum 1 is not compromised. The shells are, thus, referred to as sandwiched shells.
In one aspect, therefore, the present invention provides for a drum 1 with a drum body 3, sandwiched shells 29, 36, a first drum head 50 secured to one end of the drum body 6, a second drum head 59 secured to a second end of the drum body 7, and a tensioning system 4 that allows for the first drum head 50 and that the second drum head 59 to be tensioned independently. The tensioning system 4 secures the first drum shell 29 by placing it under a compressive load between the first drum head 50 and the base 11, and likewise secures the second shell 36 by placing it under a compressive load between the second drum head 59 and the base 11. The shells 29, 36 are secured to the base 11 in the absence of adhesives, clamps, or securing hardware.
A drum of this configuration may include a first drum head 50 and a second drum head 59 of identical construction. Alternatively, a drum of this configuration may have a first drum head 50 and second drum head 59 of different construction.
One type of drum head is referred to here as a standard drum head 58. Standard drum heads are generally composed of animal skin or a plastic material, for example, polyvinylchloride or polyurethane terephthalate, etc. These materials can vary in thickness but are approximately 0.010″ thick. Standard drum heads may be fabricated from multiple plies. They may be enhanced with coatings or contain oil sandwiched between the layers of the materials to increase mass or stiffness. A standard drum head may be referred to as a batter head, or a batter drum head.
Another type of drum head is referred to here as a mesh head, or mesh drum head. Mesh heads 60 are made of a woven or non-woven fabric. The fabric may be made of plant fibers, carbon fibers, fiber glass, or any suitably strong fiber. The key aspect of a mesh head is that it does not block all the air flow through the membrane; it is a permeable head. The weight or density of a mesh head 60 may be less than a standard drum head 58.
Drum heads can be constructed to have a high air resistance. Air resistance is the amount of drag force that the drum head imparts on the air in the immediate vicinity of the drum head (proximate air) when the drum head and the proximate air move relative to each other. A drum head with high air resistance imparts a high drag force on the air. A drum head with high air resistance couples with the air to a significant amount and the movement of the drum head causes significant concomitant movement of the air. The creation of concomitant air movement is referred to as air linkage. A drum head with high air resistance has high air linkage. At a common extreme, a drum head with high air resistance may be impermeable to air flow. An impermeable drum head blocks all air flow through the membrane of the drum head. A standard drum head is an example of an impermeable drum head.
An impermeable drum head might have holes or slots of considerable size cut into the membrane section of the drum head; and these holes may allow air to pass from one side of the drum head to the other. However, the bulk material is impermeable to air flow and in the absence of these holes or slots the drum head would not allow the passage of air through the membrane section of the drum head.
Drum heads can be constructed to have a low air resistance. A drum head with low air resistance imparts a low drag force on the air. The drum head does not couple with the air to a significant amount and the movement of the drum head does not cause significant concomitant movement of the air; e.g. low air linkage. The drum head may pass relatively easily through the air, or the air may move relatively easily through the drum head. This type of drum head may be referred to as permeable head. Air flow through a permeable drum head is resisted, to some extent, but it is not fully blocked. A mesh head is an example of a permeable drum head.
In one conventional drum configuration, a standard drum head 58 is secured to one end of a hollow drum body 6 and the second end of the drum body 7 is left open. There is no drum head attached to the second end of the drum body 7. Sometimes the drum head attached to the first end of the drum body 6 is a mesh head to produce a quieter drumming instrument. In this configuration, mesh heads 60 are known to produce more bounce than a batter head 58, or “over springiness.” The excess springiness may be detrimental because the mesh head 60 does not provide the same rebound or feel of a batter head 58.
In a second conventional drum configuration, a batter head 58 is secured to one end of a hollow drum body 6 and a different type of impermeable drum head called a resonant head is applied to the second end of the drum body 7. A resonant head is a drum head fabricated of a thinner and lighter material than a standard drum head. The batter head is placed in the playing position of the drum and the resonant head is used to provide a second head to improve the sound quality of the batter head. The resonant head is not intended to be struck or played. Although not struck directly, the resonant head vibrates. Vibrations produced in the batter head are transferred through the drum to the resonant head and excite sympathetic vibrations in the resonant head. A sympathetic vibration is a vibration that is produced by a drum head because of energy transferred from another drum head rather than being directly struck by a drumming instrument. Because the resonant head is made of a different material than the batter head it may be beneficial to be able to tension the resonant head and the batter head independently.
In one aspect, and directed at providing a drum with dual volume support, the present invention presents another drum configuration. The drum 1 has a first drum head 50 having a high air resistance secured to one end of a hollow drum body 6 and a second drum head 59 with a low air resistance secured to the second end of the drum body 7. The drum 1 may have a first drum head 50 that is impermeable and a second drum head 59 that is permeable. This drum may have a standard drum head, or batter head 58, at the first end of a hollow drum body 6 and a mesh head 60 at the second end of the drum body 7. This drum is configured to play a loud, performance volume sound on the first drum head 50 and an unobtrusive, quiet, practice volume sound on the second drum head 59. Adjusting the tension placed on drum heads will affect the timbre, pitch, and amplitude of the sound waves emitted from the instrument; as well as the feel of the rebound of the drumming instrument. So, it may be beneficial to be able to tension the batter head 58 and the mesh head 60 independently.
The drum 1 may have an optional rim guard 108. Hoop 79 has a top rim 87 that extends radially inward from the ring body 83 upon which is installed a rim guard 108. The rim guard 108 is made of an energy absorbing material such as rubber or compliant plastic. The rim guard 108 aids in reducing sound of rim-shots. A rim shot is a strike to the rim or hoop of the drum 79 by a drumming instrument 110. A rim guard 108 may be placed on either or both hoops 69, 79. Preferably, a rim guard 108 may be placed on the second hoop 79 near the mesh head 60 and the rim 77 next to the first hoop 69 is left bare. In this way, any rim shots to the rim next to the reduced volume drum head have reduced volume, while any rim shots on the rim next to the full volume drum head have full volume.
The first drum head 50 is a drum head with high air resistance and the second drum head 59 is a drum head with low air resistance. Specifically, the first drum head 50 may be standard drum head (batter head) 58 and the second drum head 59 may be a mesh head 60. In this embodiment, the tensioning system 5 does not support independently tensionable drum heads however the design is simplified and has a reduction in part count and presumably cost.
The drum 1 may be placed in one orientation to be played in a loud mode and inverted and placed in a second orientation to play in a unobtrusive mode. To utilize the drum in performance (loud) mode the drum may be placed and secured in a holder (not shown) with the performance head placed in the playing position.
Referring to
Referring to
The second head 59, e.g. the mesh head 60, is permeable. Thus, some of the air molecules that were originally inside the drum are driven by the positive pressure inside the drum through the mesh head 60 and into the space below the drum 1. The mesh head 60 deflects downward from the rest position to some extent. The magnitude of the downward deflection of the mesh head 60 is related to the positive pressure inside the drum, the amount of air resistance to the air passing through the mesh head, the mass of the mesh head, and the mesh head tension. The air below the drum is compressed by the movement of the mesh head 60 and the outflow of air from inside the drum to the space below the drum. The compression of the air below the drum is less than the compression of the air within the drum, so the sound created by the mesh head 60 is quieter than the sound produced by the batter head 58.
Referring now to
As the batter head 58 deflects upwardly, the air inside the drum, is stretched and produces a negative pressure region. Air molecules from below the drum are driven by the positive pressure below the drum through the mesh head 60 and into the inside of the drum 43. The mesh head 60 rebounds to a position above, to some extent, the rest position of the mesh head. The magnitude of the upward deflection of the mesh head 60 is related to the positive pressure below the drum, the negative pressure inside the drum, the amount of air resistance to the air passing through the mesh head, the mass of the mesh head, and the mesh head tension.
The resistance to air flow through the mesh head 60 affects the air linkage between the drum heads. The resistance to air flow through the mesh head 60 produces pressure effects inside the drum that are felt by the batter head 58 and change the way the batter head 58 responds to a drum strike—in comparison to a drum having no second head present.
The mesh head 60 dampens, to some extent, the air flow exiting and entering the bottom of the drum shell 7 making the batter drum 58 head behave as if the batter head 58 were working against a greater inertial mass of air that would be present if the drum depth was deeper. The resistance to free air flow out the bottom of the drum shell 7 is noticeable to the player in the attribute of stiffness or springiness of the performance head surface when struck. Without the mesh head 60 in place, the playing surface 56 would feel muddy under very low tension and over springy under higher tension. The presence of the mesh head 60 also extends the decay of the fundamental frequency of the batter head 58 to improve sound quality. That is, the resistance to air flow provided by the mesh head 60 interacts with the batter head 58 to produce better drum head responses and sound quality that would be present if a longer drum shell with an open bottom end were present. The result is a drum with a loud performance head having expected rebound properties with an unexpectedly shallow drum body 3.
Referring to
Thus, the region inside the drum 43 experiences a positive pressure region, but this region has a lower magnitude of positive pressure than if the practice head were impermeable. A small compression wave is formed that radiates outward and away from the drum generating a small sound wave amplitude. In this manner, the mesh head 60 produces a lower volume sound than the batter head 58 when struck in the same way.
Referring to
As the mesh head 60 deflects upwardly, the air inside the drum, is stretched and produces a negative pressure region. Some of the air molecules from above the drum are driven by the positive pressure above the drum through the mesh head 60 and into the inside of the drum 43. Thus, the region above the mesh head experiences a positive pressure region, but this region has a lower magnitude of compressive pressure than if the practice head 59 were impermeable. A small compression wave is formed that radiates outward and away from the drum generating a small sound wave amplitude. In this manner, the mesh head 60 produces a lower volume sound than the batter head 58 when struck in the same way.
The mesh head 60 has low air linkage and so it does not move enough air to significantly impact, or significantly displace the batter head 58 through air linkage. However, energy from the displacement of the mesh head 60 also travels into the solid components of the drum body 3 (shell or shells and base, if present) and excites the natural frequencies of the batter head 58 through mechanical linkage. The batter head 58 perform the function of a sounding board, resonating with sympathetic vibration. The acoustic radiation from the sounding board are more perceivable than the small compression wave generated by the mesh head 60.
The air linkage between the drum heads increases the dampening of the movement of the mesh head 60 compared to a drum in which the batter head 58 is not present. The movement of the mesh head 60 is resisted, in part, by the positive pressure inside the drum when the mesh head 60 deflects downward and the negative pressure inside the drum when the mesh head 60 moves upward. Because the batter head 58 is impermeable it does not allow air to enter or escape the bottom of the drum body 6 to equalize the internal pressure. This additional dampening felt by the mesh head 60 can balance the undesirable overspringness that is typical of drums 1 with mesh heads 60 and open bottom ends 6.
Air linkage between the batter head 58 (e.g. the impermeable head) and the mesh head 60 (e.g. the permeable head) improves the dynamic performance of the drum head when struck, whether batter head 58 or mesh head 60 is struck. However, the magnitude of air linkage drops off as the distance between the drum heads 8, 9 is increased. A preferred distance 8, 9 from drum head to drum head is 2¾ inches or less. The preferred minimum distance between the drum heads is limited by the physical configuration required for sustaining tension on the drum heads. Referring to the embodiment shown in
As shown in
The drum 1 may have one or more snare wires 111. Each snare wire 111 has a first end 112, a second end 113, and a mid-section 114 between the first end 112 and the second end 113. Each end of the snare wire 112, 113 is inserted into one of the snare mounting holes 28. A securing element 119, such as a threaded element (a set screw, for example) is advanced in the snare securing hole 27 until it binds upon the free end of the snare wire 112, 113.
The drum 1 is configured so that when each end of the snare wire, or wires, 112, 113 is secured in a snare mounting hole 28 the midsection 114 of each wire 111 is pressed up against the underside of the drum head 57. Preferably the drum head 50 is a batter head 58. When the drum head 50 is struck with a drumming instrument 110, the drum head 50 vibrates and excites the one or more snare wires 111 to produce an enhanced sound.
One benefit of this snare system is that because the snare wires 111 are mounted to the drum base 11 there are no snare system elements mounted to the shells and so the shells are sandwiched shells free of adhesives, clamps, or other securing hardware that could introduce undesired audible effects.
In one aspect, the drum configurations present is a is a drum having a loud surface and a quiet surface opposing each other at either ends of an unexpected shallow drum body 6, 7. The loud side may produce a sound that is 20 dB a louder than the sound produced by the quiet side when struck in identical manner. The loud side may produce a sound that is 30 dBa louder than the sound produced by the quiet side when struck in identical manner. The loud side (e.g. first drum head 50) may produce a sound that is greater than 90 dBa and the quiet side (e.g. second drum head 59) may produce a sound that is less than 70 dBa when each side is struck with a heavy wood tip drum stick 110 with full force strikes. Volume performance data was measured with a 14-inch snare drum as measured by a digital sound level meter at a 6 feet distance in an open field peaked a reading of 80.5 dBa from the unobtrusive side, and 110.9 dBa from the loud side. This 30.4 dBa boast the unobtrusive side is perceived as being 12% of the volume in direct compartment to the usage of the loud side. Sounds were produced using heavy wood tip drum stick hitting the drum at above normal hard hits. The ambient noise level was measured to be 60 dBa.
As demonstrated in this embodiment, the snare drum may not have the second drum head 59 or second shell 36. The drum may comprise the base 11, the first shell 29, the first drum head 50, a snare wire 111, and tension system 4 that secures the first drum head 50 to the base 11. Preferably the one head 50 is a batter head 58. The drum 1 is configured so that when each end of the snare wire, or wires 112, 113, is secured in a snare mounting hole 28 the midsection 114 of each wire is pressed up against the underside of the first drum head 57.
In another aspect, the present invention is a method for tuning a drum. A drum is obtained that comprises a base 11 having a first mount surface 12 and second mount surface 13, a first shell 29 disposed on the first mount surface 12, a first drum head 50 disposed over the first shell 29, a second shell 36 disposed on the second mount surface 13, a second drum head 59 disposed over the second shell 36, and a tensioning system 4 connecting the base 11 to the first drum head 50 and connecting the base 11 to the second drum head 59. The tensioning system 4 is configured to place the first drum head 50 under a first tension and place the second drum head 59 under a second tension. The first drum head 50 is tensioned to a first tension. The second drum head 59 is tensioned to a second tension. The tension in the first drum head 50 and the tension in the second drum head 59 may be adjusted independently. The tension in the first drum head 50 and the tension in the second drum head 59 may be tensioned sequentially. The drum 1 may be used by striking the first drum head 50 to produce a first drum sound and striking the second drum head 59 to produce a second drum sound.
In another aspect, the present invention is a method for using a drum. A drum 1 is obtained that comprises a drum body 3, a first drum head 50 disposed on a first end of the drum body 6, and a second head 59 disposed on a second end of the drum body 7. The drum 1 is configured to make a loud sound when the first drum head 50 is struck by a drumming instrument 110 and to make a quiet sound when the second drum head 59 is struck by the drumming instrument 110. The drum 1 is first secured into a holder so that the first drum head 50 is oriented into a playing position. The first drum head 50 is struck with a drumming instrument 110 to produce a loud sound. Then the drum 1 is removed from the holder. The drum is inverted and then the drum is secured into the holder in an inverted position so that the second drum head 59 is oriented into a playing position. Then the second drum head 59 is struck with the drumming instrument 110 to produce a quiet sound.
In another aspect, the present invention is a method for assembling a drum. A base 11 having a first mount surface 12 and second mount surface 13 is obtained. A first shell 29 is positioned on the first mount surface 12. A first drum head 50 is positioned over the first shell 29. A second shell 36 is positioned on the second mount surface 13. A second drum head 59 is positioned over the second shell 36. The first drum head 50 and the second drum head 59 are secured to the base 11 with a tensioning system 4. The tensioning system 4 is adjusted to tune the first drum head 50 and the second drum head 59.
In another aspect, the present invention is a method for assembling a drum. A base 11 having a mount surface 12 is obtained. A shell 29 is positioned on the mount surface 12. A drum head 50 is positioned over the shell. The drum head 50 is secured to the base 11 with a tensioning system 4. A snare wire 111 is obtained having a first end 112, a second end 113, and a midsection 114 between the first end 112 and the second end 113. The snare wire 111 is secured to the base 11 such that the first end 112 and the second end 113 are secured to the base 11 and the midsection 114 is disposed against an underneath surface of the drum head 57.
Although the present invention has been described in considerable detail regarding certain preferred versions thereof, other versions are possible. Therefore, the spirit and scope of the appended claims should not be limited to the description of the preferred versions contained therein.
Number | Name | Date | Kind |
---|---|---|---|
729936 | Heybeck | Jun 1903 | A |
859036 | Baggs | Jul 1907 | A |
1615202 | Hagen | Jan 1927 | A |
2604001 | Lewan | Jul 1952 | A |
2858724 | Troppe | Nov 1958 | A |
3635119 | Thompson | Jan 1972 | A |
3911779 | Della-Porta | Oct 1975 | A |
4168064 | Petrovic | Sep 1979 | A |
4214504 | Rex | Jul 1980 | A |
4993304 | Lovelet | Feb 1991 | A |
5377576 | Good | Jan 1995 | A |
6069307 | Rogers | May 2000 | A |
6417432 | Downing | Jul 2002 | B1 |
6441287 | Crouch | Aug 2002 | B1 |
6462262 | Hagiwara | Oct 2002 | B2 |
7498500 | Rogers | Mar 2009 | B2 |
7514617 | Rogers | Apr 2009 | B2 |
7718876 | Good | May 2010 | B1 |
7781661 | Rogers | Aug 2010 | B2 |
7888574 | Acoutin | Feb 2011 | B1 |
8253001 | Liu | Aug 2012 | B1 |
8686264 | Morita | Apr 2014 | B2 |
8835733 | Boulet | Sep 2014 | B2 |
8933310 | Rogers | Jan 2015 | B2 |
9466273 | Krol | Oct 2016 | B2 |
9704460 | Hacker | Jul 2017 | B2 |
20170154613 | Broadbelt | Jun 2017 | A1 |
20180082667 | Bean | Mar 2018 | A1 |
20180137843 | Roderick | May 2018 | A1 |
Number | Date | Country | |
---|---|---|---|
20180082667 A1 | Mar 2018 | US |
Number | Date | Country | |
---|---|---|---|
62396096 | Sep 2016 | US |